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An “exact” numerical calculation is presented for the energy spectrum of biexcitons, with spatially separated
electrons and holes, in coupled quantum dots in the presence of a perpendicular magnetic field. When the
interdot distance is small the two electrons and two holes form a strongly correlated complex whose spin state
undergoes characteristic transitions with increasing interdot separation and magnetic field. For the smallest
distances and magnetic fields the biexciton is bound with respect to dissociation into two excitons. At larger
distances we observe angular momentum transitions with sawtooth-shaped phase boundaries. The biexciton
diamagnetic shift shows a sign reversal as a function of the interdot distance.

DOI: 10.1103/PhysRevB.71.115319 PACS numberssd: 73.21.La, 78.67.Hc

I. INTRODUCTION

Ground-state angular momentum transitions define a par-
ticularly relevant topic and a point of interest in physics of
few-electron quantum dots.1–4 With increasing magnetic field
the extent of the electron wave function in the quantum dot is
reduced and thus increases the Coulomb interaction energy
up to the point when it becomes energetically more favorable
for the electrons to jump to higher angular momentum orbit-
als, thus increasing the interparticle separation and conse-
quently reducing the Coulomb repulsion. These transitions
frequently go hand-in-hand with transitions of the spin
multiplicity,5–8 since only certain combinations of the orbital
and spin quantum numberssusually referred to as “magic
numbers”d are compatible. While the increase of the angular
momentum with increasing external magnetic field strength
is a classical phenomenon,1,9 the quantization of the angular
momentum leads to abrupt changes in the quantum dot size
and various contributions to the total energy of the quantum
dot.1 A recent experiment10 succeeded in detecting the dot
area changes by around 10% in a capacitance spectroscopy
measurement. The transitions also induce oscillations of
other observable quantities such as the electronic heat
capacity7,11 and magnetization.5,6

The addition of holes, which are positively charged
and thus introduce attractive forces into the system, adds
new physics to the quantum dot problem. In vertically
coupled quantum dots and double quantum-well12 systems
electrons and holes can be spatially separatedse.g., through
an internal or externally applied electric fieldd and thus
have much larger radiative lifetimes. The interplay between
the Wigner crystallization and the formation of interdot ex-
citons in vertically coupled dots was recently investigated
using path integral Monte Carlo simulations.13 Four distinct
states of the electron-hole system were identified as both
excitonic, and decoupled electron and hole phases can form
in either a liquid or a crystal state. The magnetoplasma os-
cillations in a double-dot electron-hole system were also
studied14 and a strong coupling between the center-of-mass
modes of the individual electron and hole systems was
found. Effects induced by the interdot tunneling in double
quantum dots have been considered,15,16and unexpected spa-

tial correlations between the carriers were discovered. In par-
ticular, it was shown that the exciton tunneling dominates
over the individual tunneling of electrons and holes, and lo-
calization of two electron-hole pairs in one dot may occur.16

The most interesting phenomenon to be looked for in these
systems is the predicted Bose-Einstein condensation of the
interlayer excitons.17–19

In a previous paper20 we considered the ground-state an-
gular momentum transitions of a negatively charged exciton
confined in a double quantum dot. It was found that the
presence of a hole modifies the transitions in the electronic
subsystem by partially screening the electron-electron inter-
action. However, the hole subsystem itselfsconsisting in this
case of only one particled remains largely inert. The charge
redistributions change the radius of the hole dot by only
1%–2%. The purpose of the present paper is to study a biex-
citon, i.e., a complex of two electrons and two holes, where
we will concentrate on the ground-state phase diagram, the
possibility for the biexciton to become bound, and the dia-
magnetic shift.

The paper is organized as follows. Section II describes the
model used and the numerical procedure. Sections III and IV
present the results obtained at small interlayer separations:
spin multiplicity transitions and binding of the biexcitons. In
Sec. V angular momentum transitions at larger separations
are considered, and Sec. VI discusses the diamagnetic shifts.
We summarize our results in Sec. VII.

II. MODEL

Our model involves two strictly two-dimensional elec-
trons of effective massm* and charge −e moving in one
layer, and two holes of massM* and charge +e moving in a
parallel layer separated by a vertical distanced. The lateral
confinement in the layers is, in both cases, assumed to be
circularly symmetric and parabolic with the confining fre-
quenciesv0 andV0 for electrons and holes, respectively. The
two oscillator radii are given by

l0 =Î "

m*v0
andL0 =Î "

M*V0
, s1d

and we set these lengths tol0=2.5aB
* and L0=2aB

*
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saB
* =e"2/m*e2 is the effectiveelectron Bohr radiusd, thus

accounting for the fact that the holes are typically more
strongly confined. The magnetic field is described in terms of
the symmetric-gauge vector potentialA = 1

2fB3 r g.
The Hamiltonian of the system consists of single-body,

Zeeman, and Coulomb interaction parts,

H = o
i=1

2

Tei + o
i=1

2

Thi + HZ + VC. s2d

The single-particle energies of electrons and holes, respec-
tively, are given by

Tei =
"2

2m* Fpei +
e

c
Asr eidG2

+
1

2
m*v0

2rei
2 ,

Thi =
"2

2M* Fphi −
e

c
Asr hidG2

+
1

2
M*V0

2rhi
2 , s3d

and the Zeeman Hamiltonian is

HZ = mBBsge
*Sez+ gh

*Shzd, s4d

wheremB is the Bohr magneton,ge,h
* are the effective elec-

tron and hole gyromagnetic factors, andSez,hz are the total
spin projections of electrons and holes.

The interaction partVC is the sum of the Coulomb inter-
action terms between all pairs of particles. When the two
involved particles are of the same kind and, accordingly,
move in the same layer the respective term reads

Vij =
e2

e

1

ur i − r ju
, s5d

while for different particles this term becomes

Vij = −
e2

e

1

ur i − r j + du
, s6d

with d being the vertical distance between the layers. Since
the dots are vertically separated, the overlap between the
electron and hole wave functions is exponentially small and
thus we may neglect the electron-hole exchange interaction.

We work in dimensionless “atomic” units set by theelec-
tron material parameters, i.e.,m* =e2/e="=1. Thus,
the lengths are measured in theelectron Bohr radii
aB

* =e"2/m*e2 and the energies in theelectron effective
Hartree energies EH

* =e2/eaB
* . If GaAs parameters

sm* /me=0.067 ande=12.4d are assumed, the above units
becomeaB

* =9.8 nm andEH
* =11.86 meV. For the effective

hole mass we take the valueM* /me=0.45.
Both the electrons and the holes can form either spin-

singlet or spin-triplet states, and we label the terms by indi-
cating the spin state as a pair of two numberss“1” for singlet
and “3” for tripletd, the first pertaining to electrons and the
second one to holes. For example, the state in which the
electrons form a spin triplet and holes are in a spin-singlet
state is denoted by “31”. We found it instructive to particu-
larly consider the case without the Zeeman interaction
sobtained by setting the effective gyromagnetic factors
ge

* =gh
* =0d. This limit helps elucidate a systematic pattern of

ground-state transitions. However, in GaAs whose material
parameters we use, the gyromagnetic factors are not negli-
gible sge

* =−0.44,gh
* =0.7d, we also present the results per-

taining to this more realistic case.
The eigenvalues and eigenstates of the Hamiltonians2d

are calculated using exact diagonalizations. The basis of
many-particle configurations is built of the single-electron
and single-hole states in the presence of a parabolic potential
and a magnetic field but in the absence of interparticle inter-
actions, i.e., so-called Fock-Darwin states. For electrons, the
wave function corresponding to the angular momentumm
and the radial quantum numbern reads

wesnmurud =
eIm u

Îp
Î n!

sn + umud!
e−r2/2l2 r umu

l umu+1Ln
umuS r2

l2
D . s7d

Here, Ln
ksxd is the associated Laguerre polynomial, andl

stands for the magnetic-field-renormalized oscillator length.
It is computed froml−4= l0

−4+ 1
4lc

−4 with lc=s"c/eBd1/2 being
the magnetic length. The expression for the hole states is
identical to that given in Eq.s7d with the replacement of the
characteristic lengthl →L, with L−4=L0

−4+ 1
4lc

−4. Note that the
magnetic lengthlc is independent of the material parameters.
Therefore, although we assume a stronger lateral confine-
ment for the holes, at high magnetic fields the extension of
the electron and hole wave functions will approach each
other due to the magnetic localization.

In the above-introduced basis the single-particle part of
the Hamiltonian is immediately diagonal. The single-electron
and single-hole energies are given by

Eesnmd = "Îv0
2 +

vc
2

4
s2n + umu + 1d +

1

2
m"vc,

Ehsnmd = "ÎV0
2 +

Vc
2

4
s2n + umu + 1d −

1

2
m"Vc, s8d

with vc=eB/m*c and Vc=eB/M*c denoting the respective
cyclotron frequencies. Equations8d indicates that in strong
magnetic fields electrons will preferentially occupy orbitals
of negative angular momenta while holes will favor positive
ones. The matrix elements of the Coulomb interaction are
calculated to a large extent analytically as described in Ref.
20.

Biexciton energies calculated as a function of the applied
magnetic field include a background of the single-particle
cyclotron energies which may be much larger than the rel-
evant energies determining the transitions between various
states. Therefore, we typically calculate and plot the differ-
ence of the biexciton energy and the ground-state energy of
its constituent particles,

ECsX2d = EsX2d − 2Esed − 2Eshd, s9d

which is referred to as thebiexciton correlation energy.
One of the relevant issues is whether the biexciton is

bound with respect to dissociation into two noninteracting
showever, still confined in a quantum-dot moleculed excitons.
The biexciton binding energyis defined as the difference
between the energy of two excitons and a biexciton so that
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its positive value corresponds to bound biexcitons. We ex-
press this energy as

EBsX2d = 2EsXd − EsX2d = 2ECsXd − ECsX2d, s10d

with the exciton correlation energyECsXd=EsXd−Esed
−Eshd defined in analogy with Eq.s9d.

III. SINGLET-TRIPLET TRANSITIONS

We begin by discussing closely spaced dots, in which case
the two electrons and two holes form a strongly correlated
four-particle complex. Consequently, due to efficient screen-
ing of the electron-electron interaction by holes and vice
versa, in this limit the tendency to minimize the interaction
energy by switching to high-angular-momentum states is
suppressed and the ground-state total angular momentum of
the quantum dot molecule isL=0. However, we still find
some interesting transitions of the ground-state spin multi-
plicity. The nature of these transitions depends on the
strength of the Zeeman interaction. For the sake of clarity we
first consider the case without the Zeeman term to help un-
derstand the systematics of the transitions. Later we explain
the role of a nonvanishing Zeeman term which would be
present in most realistic cases. In Fig. 1sad, we plot the mag-
netic field dependence of the correlation energyEC corre-
sponding to four possible biexciton spin configurations when
ge

* =gh
* =0, the total angular momentum of the system is

L=0 and the interdot distance is set tod=0.7 aB
* . As dis-

cussed above, the spin configurations are labeled by the two-
digit numbers 11, 13, 31, and 33. One notes in Fig. 1sad that
the different terms cross and rearrange in the way schemati-
cally depicted in the inset. The pairs of terms 11 and 33 on
one hand and 13 and 31 on the other hand cross each other
once in the covered range of magnetic fields up to 8 T. In

particular, the spin configuration of the ground state changes
from a double singlet to a double triplet at a magnetic field
around 2.2 T. A similar transition was found21 in an analyti-
cal model of tunnel-coupled quantum dots. At higher mag-
netic fields, the two terms 11 and 33 converge very close to
each other in energy, and a transition back to 11 ground state
occurs only at a magnetic field of 19 T.

We compare this situation to that observed in the subspace
characterized by the total angular momentumL=1 swhich is
not the ground state in the considered parameter ranged plot-
ted in Fig. 1sbd. One sees that the magnetic field behavior is
similar, with the difference that the two lowest terms are 13
and 31, and the transition is shifted towards higher magnetic
fields and takes place at 4.3 T. At even higher magnetic
fields the two terms converge towards each other and there is
an inconspicuous reentrant transition from 31 to 13 at a mag-
netic field of 23 Tsnot shown in the figured. A qualitatively
similar behavior is observed also for higher angular mo-
mentaL and for different interdot distances.

These singlet-triplet transitions are summarized in Fig. 2,
where we plot the critical magnetic fields at which the spin
transitions take place as a function of the separation between
the two dots. The fullsdottedd lines correspond to the switch-
ings of the spin multiplicity of the lowest energy state in the
L=0 sL=1d subspaces.

The above-described behavior of energy levels in closely
spaced dots can be explained as a modification of the usual
singlet-triplet transitions taking place in two-electronsor
two-holed quantum dots. It is well known that in two-particle
dots in the absence of the Zeeman interaction the absolute
value of the ground-state angular momentum is growing with
increasing magnetic field in unit steps, and the even momen-
tum states are spin singlets while the odd momentum states
are spin triplets.

FIG. 1. Magnetic-field evolution of four possible spin configu-
rations in the subspaces of the total angular momentumL=0 sad
andL=1 sbd in the absence of the Zeeman interactionsge

* =gh
* =0d.

The different states are identified by a pair of numbers denoting
singlet s“1” d and triplets“3” d states of, respectively, electrons and
holes. The inset shows the schemes of level rearrangement. The
ground-state configuration switches from 11 to 33 at around 2.2 T
while in the subspaceL=1 there is a transition from 13 to 31 at
4.3 T.

FIG. 2. Phase diagram of biexciton spin-multiplicity transitions
in the absence of the Zeeman term. The full lines correspond to
the subspaceL=0, and these transitions are the actual ground-state
transitions. With increasing magnetic field and/or interdot distance,
at the lower boundary the configuration switches from 11 to 33
and switches back to 11 at the higher boundary. The dotted
lines depict the transitions from state 13 to 31 and vice versa in
the L=1 subspace. The hash-marked area close to the origin indi-
cates the parameter range where the biexciton binding energy is
positive.
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In the present case of two closely spaced dots the angular
momentum of each individual dot is not a good quantum
number. However, it is still possible to define a most prob-
able value of the angular momentum of an individual dot or
its expectation value. In Fig. 3 we plot the probabilitiespm to
find the hole subsystem in a state of angular momentumm.
Here we confine our attention to the state with total angular
momentumL=0, therefore, the distribution of electronic an-
gular momenta will be identical up to a sign. That is, the
electron subsystem is found in states of total angular momen-
tum −m with the same probabilitiespm. The panels 3sad and
3sbd correspond to the terms 11 and 33, respectively.

One sees that the individual-dot angular momentum val-
ues are rather ill-determined, especially at high magnetic
fields, so that a dot may be found in many different angular
states with appreciable probabilities. Nevertheless, at low
magnetic fields the quantum dot is predominantly found in
the statem=0 for the singlet spin configurationfFig. 3sadg
andm=1 for the spin tripletfFig. 3sbdg. Moreover, the even-
odd effect known for single dots is still quite discernible. It is
seen in Fig. 3 that evensoddd momenta are generally pre-
ferred over oddsevend momenta in the singletstripletd state.

These observations explain the reentrant singlet-triplet
transition presented in Fig. 1sad. At zero magnetic field the
coupled quantum dots are found in the most probable con-
figurationme=0, mh=0 which favors the spin parts to com-
bine into singlets. At somewhat higher magnetic fields, the
preferred state of quantum dots switches intome=−1,
mh=1, and the spin parts change into triplets. However, after
this transition the indeterminacy of individual-dot angular
momenta becomes too high, and it is no longer possible to
identify transitions into configurations with higher absolute
values ofme andmh. Therefore, the energies of the spectral
terms 11 and 33 become very similar. For the considered
interdot distance ofd=0.7 there still is a transition back to
the 11 ground state atB=19 T, however, for smaller dis-
tances such a transition is not found up to very high magnetic
fields ssee Fig. 2d.

The analysis of the singlet-triplet transition in the sub-
spaceL=1 can be carried out in a very similar fashion and
we do not repeat it here. In that case, since the total angular
momentum is odd, at a low magnetic field the individual

quantum dots will have most probable angular momenta of
opposite parity, and consequently, the competition for the
lowest energy term will be taking place between the spin
configurations 13 and 31. We see from Fig. 2 that the general
trend of phase boundaries is very similar to that correspond-
ing to theL=0 states.

The inclusion of the Zeeman term with a finitege,h
* does

not alter the diagonalization of the Hamiltonian matrix and
the above analysis of distribution of particles among various
orbital states. It merely resolves the degeneracy of the triplet
states and shifts the energy of the lowermost triplet compo-
nent downwards by an amount proportional to the magnetic
field strength thus making this component a more likely can-
didate for the ground state. In Fig. 4 we plot the energy
spectra obtained by settingge

* =−0.44 andgh
* =0.7. In the sub-

spaceL=0 we still observe the transition from 11 to 33,
which is now shifted to slightly lower magnetic fields
sB=1.6 Td. However, at higher magnetic fields the energy of
the double-triplet states33d is further lowered by the Zeeman
interaction thus precluding the transition back to the 11 state.
In the subspaceL=1, notable modifications are also seen.
The previously found transition 13→31 is now revoked
since the Zeeman energy of the holes is much higher than
that of electrons thus favoring the configuration 13. At higher

FIG. 3. The probabilitiespm to find the holes in a state of total angular momentumm=0, . . . ,5 for the biexciton stateL=0. The electrons
are found in states of total angular momentum −m with the same probabilities.sad corresponds to the spin configuration 11, andsbd is plotted
for the configuration 33. Note that only at the lowest magnetic fields a predominant value of angular momentum can be identified. The
interdot distance isd=0.7aB

* .

FIG. 4. The same as in Fig. 1 but with the effects of the Zeeman
interaction. The most conspicuous transition 11→33 survives and
is slightly shifted towards lower fields.
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magnetic fieldssB=6.4 Td the lowest-energy state switches
to the configuration 33 where both types of particles are spin
polarized.

IV. BOUND BIEXCITONS

The hash-marked area in Fig. 2 signifies the parameter
range where the biexcitons are bound. We see that this bind-
ing occurs only at the very lowest values of interdot distance
and magnetic field. With increasingd the biexcitons become
like two repelling dipoles. Because of the electron and hole
confinement potentials the electrons and holes do not move
to infinity in the “unbound” region.

In order to see the difference between “bound” and “un-
bound” biexcitons we plot in Fig. 5 the radial charge distri-
butions of electrons and holes in the bound ground state at
d=0.1aB

* andB=3 T. We see that, due to the strong mutual
attraction, the electrons and the holes are confined to a small
region close to the center of the dot. Stronger external con-
finement of the holes results in their narrower distribution.
For comparison, we present also the electron and hole charge
density distribution obtained at the same magnetic field
strength but for decoupled dotssd=100aB

* d. In this case, both
the holes and the electrons form ringlike structures since the
magnetic field forces them into orbitals of high angular mo-
mentum. This effect is stronger for the holes due to their
closer spacing of the energy levels.

The correlation between electrons and holes is visualized
in Figs. 6sad–6sdd which show the conditional-probability
distribution of electrons corresponding to the same bound
ground state at a magnetic field ofB=3T andd=0.1aB

* . The
two holes are fixed on thex axis opposite to each other at
distances 0.5aB

* , aB
* , 1.5aB

* , 2.5aB
* , respectively, from the dot

center. One observes that the electrons tend to concentrate
close to the dot center, and the position of holes only weakly
polarize the almost circular distribution. However, for the
largest separation of the holes in Fig. 6sdd it is possible to

observe a two-peak structure. Note that in this case the holes
are situated at the edge of the quantum dot.

V. ANGULAR MOMENTUM TRANSITIONS

When the separation between the dots is increased to dis-
tances comparable to or larger than the radii of the dots the
screening of the interelectron interactions mediated by the
nearby holes and vice versa is diminished. Thus, the dot
populated by electrons and the dot populated by holes can
manifest transitions to higher angular momentum states in an
uncorrelated fashion, and a number of angular momentum
transitions appear. Here we keep track only of the total an-
gular momentum quantum number and do not identify the
different possible spin configurations. In this regime the en-
ergies of various spin states converge very closely to each
other and are hardly discernible. In Fig. 7 we plot the mag-
netic field versus the interdot separation-phase diagram cor-
responding to this regime. One notes that with increasing
magnetic field and/or interdot distance the total angular mo-
mentum follows a sequence of growing positive values.
However, this growth is nonmonotonous and the phase
boundaries display a rather peculiar sawtoothlikesand for
larged even a reentrantd behavior.

This behavior can be qualitatively understood by realizing
that with increasing magnetic field the dot populated by
holes will be switching to the states characterized by ever
increasingpositivevalues of the angular momentum, while
the electronic dot will prefer to switch to negative angular
momenta also growing in absolute value. However, since the
effective mass of the holes is much larger than that of the

FIG. 5. Electronsfull lined and holesdashed lined charge density
distribution in the bound ground state at the interdot separation
d=0.1aB

* and magnetic fieldB=3 T. Stronger lateral binding of the
holes is apparent. For comparison, we show also the charge distri-
bution in decoupledsd=100aB

* d dots at the same magnetic field.

FIG. 6. Electron-hole correlation function—the conditional
probability to find an electron when the two holes are fixed opposite
to each other at a distancesad 0.5aB

* , sbd aB
* , scd 1.5aB

* , andsdd 2.5aB
*

from the center. The positions of holes are marked with white
crosses.
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electrons, the level spacings are much smaller for the holes
and thus the angular momentum transitions occur much more
frequently with a growing magnetic field. Therefore, the an-
gular momentum of the quantum dot molecule as a whole
will be increasing in steps of +1 most of the time, and once
in a whileswhenever a transition in the electronic dot occursd
this growth will be interrupted by an occasional decrease.
Similar results for double quantum dots containing 1–3
electron-hole pairs were obtained previously but only in the
limit of high magnetic fields.22

For a better understanding we also consider the above-
described process from the point of view of a simple model.
We assume that the electrons and the holes are confined in
quantum dots of characteristic frequenciesv0 and V0, re-
spectively, at infinitely large interdot separations. As the dots
are brought closer to each other, the attractive force due to
the holes creates an additional confining potential,

Vsrd = −
2e2

eÎr2 + d2
< −

2e2

ed
+

e2

ed3r2 s11d

in the dot populated by the electrons. If we take this potential
into account in the lowest order parabolic approximation as
in Eq. s11d it can be straightforwardly summed with the bare
confining potential and the potential due to the magnetic
field. In this way, we can compute the effective confinement
frequency as a function of the interdot distance and the mag-
netic field,

veff =Îv0
2 +

1

4
vc

2 +
2e2

em*d3 , s12d

and determine the values of the magnetic-field strength
and interdot separation at which the ground state of a
two-electron system switches between the successive
values of its angular momentum.9 An analogous procedure
is carried out for the holes, and the results are presented in
Fig. 8. The full lines denote the phase boundaries at which
the angular momentum of the electrons undergoes transitions
0→−1→−2→¯, and the dotted lines identify the analo-

gous phase boundaries where the angular momentum of the
holes increases as 0→1→2→¯ . We see that the switching
of the holes occur more frequently, and moreover, the phase
boundaries of the holes rise more steeply in the direction of
smaller interdot distances. As a result, the phase diagram in
Fig. 8 contains a number of crossings of full and dotted lines
as schematically shown in Fig. 9sad. The total angular mo-
mentum of all four particles is the samesLd in the regions
above and below the crossing point, and jumps by 2si.e.,
L−1→L+1d when moving from the region on the left to the
region on the right at the crossing point.

The inclusion of interparticle interactions at a more so-
phisticated level than that employed in the above simple
model leads to the opening of finite gaps separating the re-
gions of angular momentaL−1 andL+1 as shown in Fig.
9sbd, and the regions corresponding to the angular momen-
tum L become connected. These modifications transform the
phase boundary crossings in Fig. 8 into the sharp sawtooth-
shaped corners resembling the numerically calculated phase
diagram in Fig. 7.

Let us now consider the effects of the Zeeman interaction.
Figure 10 shows theB-d phase diagram corresponding to this

FIG. 7. The ground-state angular momentum phase diagram.
The full lines denote the boundaries between the states of different
angular momenta given by numbers. Areas corresponding to odd
angular momenta are indicated by hash marks for clarity.

FIG. 8. The ground-state angular momentum phase diagram ob-
tained from a simplified model. The fullsdottedd lines denote the
successive phase boundaries at which the angular momentum of the
electronsholed dot switches to a higher negativespositived value.

FIG. 9. The pattern of the angular momenta at the intersection
of electron and hole phase boundaries.sad shows the independent
dot result, which is modified to that schematically shown insbd by
a more careful inclusion of interparticle interactions.

E. ANISIMOVAS AND F. M. PEETERS PHYSICAL REVIEW B71, 115319s2005d

115319-6



case. We see that at high magnetic fields the regions corre-
sponding to the odd values of the total angular momenta
disappear. This happens because the states of even angular
momenta have spin configurations of 33, i.e., with both elec-
trons and holes polarized. Therefore, the Zeeman interaction
maximally lowers the energy of these states and drives the
odd angular momentum states—that have only one type of
particle polarized—out of competition. The states of odd an-
gular momentum are still present only in the low-magnetic-
field part of the phase diagram. Namely, we see two regions
of L=1. The upper of the two is actually a fragment of the
L=1 region present in the no-Zeeman-interaction casesFig.
7d. In contrast, the lower region ofL=1 is inducedby the
Zeeman interaction that lowered the energy of this state be-
low the competingL=0 state. Thus, we conclude that the
Zeeman term brings certain rearrangements into the biexci-
ton phase diagram, however, the characteristic sawtooth-
shaped phase boundaries partially survive.

VI. DIAMAGNETIC SHIFT

Let us discuss the diamagnetic shift of the biexciton
ground state. This quantity may be controlled experimentally
and it clearly manifests the effects of the formation of the
strongly interacting electron-hole complexes. At low mag-
netic fields the magnetic-field dependence of the biexciton
energy can be expressed as

EsX2,Bd = EsX2,0d + bB2, s13d

where the quantityb is the diamagnetic shift. In Fig. 11 we
show the dependence of the diamagnetic shift on the distance
between the dots alongside with the biexciton binding energy
at zero magnetic field. The ground state at low magnetic
fields is a double singlet, therefore, these results are indepen-
dent of the Zeeman term. It is interesting to observe that at
small interdot distances, in the range somewhat exceeding
that where bound biexcitons are formed, the diamagnetic
shift becomes negative. That is, the energy of a bound biex-
citon decreases when a magnetic field is applied. This pecu-
liar behavior may be understood by recalling that at close

interdot distances the strong coupling between the dots leads
to indeterminacy of angular momenta of the individual dots
ssee Fig. 3d. Thus, while the total angular momentum of the
system is zero, the electron and hole dots are in a superpo-
sition of states of various angular momenta, bothm=0 and
mÞ0. This partial occupation of orbitals of negativesposi-
tived angular momentum by the electronssholesd leads to a
negative energy dispersion with respect to the applied mag-
netic field.

VII. CONCLUSION

In conclusion, we investigated a system consisting of two
electrons and two holes in vertically coupled quantum dots.
Interesting singlet-triplet and angular momentum transitions
as a function of the magnetic field and/or interdot distance
were found. At low magnetic fields and small interdot dis-
tances the ground state of the biexciton has angular momen-
tum L=0 but the spin multiplicities of electron and hole sub-
systems simultaneously switch from a double singlet to a
double triplet configuration. At larger interdot separations
and stronger magnetic fields we observe ground-state angular
momentum transitions with phase boundaries in theB-d
plane that display a sawtoothlike behavior. As a conse-
quence, the dependence of the ground-state angular momen-
tum on the applied magnetic field for a fixed interdot dis-
tance is nonmonotonic. We also identified the parameter
range where the biexcitons are boundsunboundd with respect
to dissociation into two excitons and showed that in this
regime the diamagnetic shift is positivesnegatived.
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FIG. 10. The same as in Fig. 7 but now with the Zeeman inter-
action included. Regions corresponding to the angular momenta
L=1 andL=4 are distinguished by hash marks.

FIG. 11. The diamagnetic shiftsfull line, left axisd and the zero-
magnetic-field binding energysdashed line, right axisd of a biexci-
ton confined in a double quantum dot. At low interdot distances the
biexciton is bound and the diamagnetic shift becomes negative.
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