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We discuss the time-development operator method in quantum mechanics. The equivalence of this
method and the usual method of expansion in terms of energy eigenfunctions discussed in textbooks
is pointed out. As examples of cases of time-dependent Hamiltonians, we discuss the time
development of a Gaussian wave packet for a charged particle subject to a time-dependent electric
field using an operator differential equation. We also consider a spin in a time-dependent magnetic
field through a time-development operator. ©2001 American Association of Physics Teachers.
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I. INTRODUCTION

In a publication in this Journal, Robinett1 has drawn atten-
tion to the merits of the time-development operator meth
for obtaining the quantum mechanical state function at
future time t from the one att50. The time evolution of a
free particle wave packet2 and the oscillating harmonic os
cillator wave packet3 are some of the possible example
Reference 1 has dealt with the time-development oper
for a particle subject to a uniform and time-independ
force. A brief discussion of this operator for the same c
has also been presented earlier in this Journal.4 This problem
has also been discussed using the Heisenberg picture.5 Arri-
ghini et al.6 have considered the same problem and discus
different methods for obtaining the quantum propaga
Holstein7 has also presented additional methods to calcu
the linear potential propagator. Calculations of the propa
tor for a harmonic oscillator have also been reported in
Journal.8–10 All these cases involve time-independent Ha
iltonians.

It will be useful to consider additional examples involvin
time-dependent Hamiltonians for illustrating the tim
development operator method, which may be suitable
introductory courses in quantum mechanics. Fallieroset al.4

have considered the propagator for a particle subject
sinusoidal electric field and have briefly discussed the tim
development operator for a constant force case. Many y
ago Parker11 presented the time evolution operator for
charged harmonic oscillator in a uniform time-varying ele
tric field.

In the present work we treat the case of a charged par
in a time-varying electric field and obtain the tim
development operator and the propagator which are gene
zations of the ones given in Refs. 1, 6, and 7. The met
used is also applicable for cases with time-independent H
iltonians. We also treat the problem of a spin in a tim
dependent magnetic field.

II. CHARGED PARTICLE IN A TIME-DEPENDENT
ELECTRIC FIELD

Before treating this case, a few remarks on the method
obtaining the future state function from the initial state are
order. The time-developed state functionc(x,t) at any time
t is given in terms ofc(x,0) ~for a system with stationary
statescn(x) and energiesEn! by
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c~x,t !5(
n

S E cn* (x8)c~x8,0!dx8 Dcn~x!e2 iEnt/\.

~1!

One can also see that Eq.~1! may be written as

c~x,t !5e2 iHt /\F(
n

S E cn* ~x8!c~x8,0!dx8 Dcn~x!G .
~2!

Identifying the terms in the rectangular bracket asc(x,0)
and the exponential term as the time-development oper
U(t), one sees the equivalence of the time-development
erator method and the usual method of expansion in term
the energy eigenfunctions. The equivalence is exact
classes of initial state functionsc(x,0) for which there are
no technical difficulties in handling the series

F (
n50

`
1

n! S 2
i

\
Ht D nGc~x,0!.

When there are difficulties arising out of convergence
quirements, one has to prefer using Eq.~1! instead of Eq.
~2!.12,13 For cases with time-dependent Hamiltonians
which there are no stationary states, one has either to s
directly the time-dependent Schro¨dinger equation to find
c(x,t) or use the time-development operatorU(t). This op-
erator is now not simply exp(2i/\ Ht), but can be formally
written as an ordered series of integrals.14 In view of the
merits of the time-development operator method indicated
Ref. 1, it will be useful to findU(t) for such cases in close
form. U(t) is to be obtained by solving the operator diffe
ential equation:

i\
]U~ t !

]t
5H~ t !U~ t ! ~3!

with

U~0!5I ,

the unit operator.
For a particle of chargeq and massm constrained to move

in one dimension and subject to an electric fielde(t), the
Hamiltonian is

H~ t !52
\2

2m

]2

]x22qe~ t !x. ~4!
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The general solution of the operator equation of the form
Eq. ~3! has been discussed by Wilcox.15 Following Refs. 11
and 15, we write

U~ t !5e2 i /\ H0tY~ t !, ~5!

where H0 is the kinetic energy operator~time-independent
part!. Substituting in Eq.~3!, one immediately finds

i\
]Y

]t
5ei /\ H0tH1e2 i /\ H0tY~ t ! ~6!

with

Y~0!5I ,

whereH1 is the potential energy term~time-dependent part!
in Eq. ~6!. Making use of the operator expansion,15

eABe2A5B1@A,B#1
1

2!
@A,@A,B##1¯ , ~7!

one gets

]Y

]t
5A~ t !Y~ t ! ~8!

with

A~ t !52
1

i\ Fqe~ t !x1
qe~ t !

m
tpG . ~9!

Operator equations of the form of Eq.~8! also occur in the
Heisenberg and interaction pictures in quantum mechan
We look for the solution of Eq.~8! in the following form;

Y~ t !5ea~ t !i\1b~ t !x1g~ t !p ~10!

wherea, b, andg are to be determined.
On using the special case of the Zassenhaus formula,15

eA1B5eAeBe21/2@A,B#, ~11!

whereA andB are two noncommuting operators, each co
muting with their commutator, one gets

Y~ t !5ei\ @a~ t !21/2b~ t !g~ t !#eb~ t !xeg~ t !p. ~12!

SubstitutingY(t) given in Eq.~12! in Eq. ~8! and premulti-
plying by Y21, one gets

i\ ~ȧ21/2ḃg21/2bġ!1F ḃ1
qe~ t !

i\ GY21xY

1ġp1
qe~ t !t

i\m
Y21pY50, ~13!

where the dot indicates differentiation with respect tot.
Again using the expansion in Eq.~7! and after some simpli-
fication, one gets

b~ t !52
q

i\ E
0

t

e~ t8!dt8, ~14!

g~ t !52
q

i\m E
0

t

t8e~ t8!dt8, ~15!
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n
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-

a~ t !52
1

2i\ F q

m E
0

t

e~ t8!t8b~ t8!dt8

2qE
0

t

e~ t8!g~ t8!dt8G ~16!

5
q2

2\2m E
0

t

dt8E
0

t8
dt9e~ t8!e~ t9!~ t82t9!. ~17!

At this point our results may be compared with those
Parker,11 who investigated a harmonic oscillator subject to
time-varying electric field. Our results in Eqs.~14!–~17! are
the same as those of Parker in the limit as the oscilla
frequencyv→0 in his work. Parker, however, made use
the Magnus expansion,15 which involves commutators of op
erators at different times, instead of the simpler Zassenh
formula used by us.

The time-development operator is now given by

U~ t !5e2 i /\ p2t/2mei\ @a~ t !21/2b~ t !g~ t !#eb~ t !xeg~ t !p ~18!

with a, b, and g as given above. Using the Baker
Campbell–Hausdorff formula15 for any two operatorsA and
B,

eAeB5eA1B11/2@A,B#11/12@A,@A,B##11/12@B,@A,B##1¯, ~18a!

we can recastU(t) in a more convenient form,

U~ t !5ei\ @a~ t !21/2b~ t !g~ t !#eb~ t !xe2 i tp2/2\me@g~ t !2b~ t !t/m#p.
~19!

We consider Eq.~19! as a generalized form forU(t) dis-
cussed in Refs. 1, 6, and 7. Ife(t) is independent of time,
one can easily evaluatea, b, andg and obtain

U~ t !5ei /\ qetxe2 i tp2/2\me2 iqet2p/2\me2 iq2e2t3/6\m, ~20!

which agrees with that obtained in Refs. 1, 6, and 7.
As a first use of Eq.~19!, we consider the spreading of

Guassian wave packet, which at timet50 has the form

c~x,0!5F 1

2pl2G1/4

e2~x2 x̄!2/4l2
. ~21!

With U(t) given in Eq.~19! we find

c~x,t !5ei\ @a~ t !21/2b~ t !g~ t !1b2t/2m#eb~ t !x

3e2 i tp2/2\mF 1

2pl2G1/4

3e2@x1\/ ig~ t !2\/ ib~ t !t/m2 x̄#2/4l2
, ~22!

where we have used the familiar result

ebd/dxf ~x!5 f ~x1b!. ~23!

Using the relation2

]2

]x2 F 1

Al2 e2x2/4l2G5
]

]~l2! F 1

Al2 e2x2/4l2G , ~24!

we immediately get
509S. Balasubramanian
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c~x,t !5ei\ @a~ t !21/2b~ t !g~ t !1b2t/2m#

3eb~ t !xS l2

2p D 1/4 1

A~l21 i\ t/2m!

3e2@x1\/ ig2\/ ibt/m2 x̄#2/4~l21 i\ t/2m!. ~25!

It is easy to see that the peak position has been shifte
x̄2q(I 22tI 1)/m, whereI 1 and I 2 are the integrals inb and
g, respectively, in Eqs.~14! and ~15!. The shift depends on
the electric field and the half-width has become

2lS 11
\2t2

4l4mD 1/2

,

which is independent of the electric field.
Equation~19! can also be used to obtain the quantum m

chanical propagator for the present problem:

K~x,x8,t !5ei\@a~ t !21/2b~ t !g~ t !1b2t/2m#eb~ t !x

3
1

2p\ E
2`

`

dp e2 i tp2/2m\

3e@g~ t !2b~ t !t/m#pei /\p~x2x8!. ~26!

The integral may be easily evaluated and one gets

K~x,x8,t !5~m/2p i\t !1/2ei /\~m~x2x8!2!/2t

3ei\@a~ t !11/2b~ t !g~ t !2mg2~ t !/2t#

3emg~ t !x/te2mx8/t@g~ t !2tb~ t !#2
. ~27!

This again is a generalized form and reduces to the one g
in Refs. 1, 6, and 7 whene(t) is independent of time. It may
be noted that the method adopted in our work can also
used whenH is independent of time with suitable splitting o
H asH01H1 . For example, ife is independent oft, H0 and
H1 could be the same as we had chosen, except nowH1 is
also independent of time. Consequently Eq.~8! may be im-
mediately integrated and the subsequent algebra will als
simpler.

III. TIME-DEVELOPMENT OPERATOR FOR A
SPIN IN A TIME-DEPENDENT MAGNETIC FIELD

As yet another example involving a time-depende
Hamiltonian, we consider a particle of spinJ ~in units of \!
subject to a magnetic fieldB5(B1 cosvt,B1 sinvt,B0),
which corresponds to a static fieldB0 along thez direction
and a field of amplitudeB1 rotating in theX–Y plane with
an angular frequencyv. Such a situation is of interest i
magnetic resonance. The Hamiltonian of the system is

H~ t !52gB0Jz2gB1~Jx cosvt1Jy sinvt !, ~28!

whereg is a constant. Some textbooks16 suggest that for the
above time-dependent problem one should directly try
solve the time-dependent Schro¨dinger equation instead o
finding U(t). We wish to show how the time-developme
operator method can be used for the present problem.

Following the method adopted in Sec. II, we look for t
solution of Eq.~3! with H now given in Eq.~28! in the form

U~ t !5e2 iJzvtY~ t ! ~29!

and obtain by substitutingU in Eq. ~3!,
510 Am. J. Phys., Vol. 69, No. 4, April 2001
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~v02v!JzY~ t !1 i
]Y

]t
5eiJzvtv1~Jx cosvt

1Jy sinvt !e2 iJzvtY~ t !, ~30!

where we have written2gB05v0 and 2gB15v1 . Using
the expansion formula in Eq.~7! and the familiar commuta-
tion relations for the spin operators,J3J5 iJ we get

]Y

]t
52 i @v1Jx1~v02v!Jz#Y~ t !, ~31!

which can be immediately integrated to obtainY(t). Thus
one gets

U~ t !5e2 iJzvte2 iJ"n̂lt ~32!

where

n̂5
v1x̂1~v02v!ẑ

l

with x̂ and ẑ being the unit vectors along thex andz direc-
tions andl5(v1

21(v02v)2)1/2. The operatorU(t) may
also be obtained by going to a rotating coordinate system17

The operator of the forme2 iJ"n̂lt in Eq. ~32! is a rotation
operator which will mix all spin states and the problem
obtaining the spin-flip probability is slightly more
involved.18 For the special case of a spin 1/2 particle, it tur
out that we have a simple expansion of the exponential
erator now involving the Pauli spin operators. For this case,
one has

U~ t !5e21/2szvtFcos
lt

2
2 i sinS lt

2 Ds"nG , ~33!

which is obtained by expandinge21/2(s"n̂)lt and using the
result (s"n̂)25I . U(t) can also be written down using th
following result ~which can be simply proved!;

ebA5
l2ebl12l1ebl2

l22l1
1

ebl12ebl2

l12l2
A, ~34!

wherel1 andl2 are the distinct eigenvalues of the opera
A which can be represented by a 232 matrix andb is a
scalar.

Supposing the initial spin statex~0! is given by (0
1) ~the

‘‘spin-up’’ spinor!, one gets

x~ t !5e2 ivt/2Fcos
lt

2
2

i ~v02v!

l
sin

lt

2 G S 1
0D

2eivt/2F iv1

l
sin

lt

2 G S 0
1D . ~35!

Equation~35! gives the well known ‘‘spin-flip’’ probability

v1
2

l2 sin2S lt

2 D .

The spin-flip probability shows a peak atv5v0 which is the
condition for ‘‘spin resonance.’’

IV. SUMMARY

We have drawn attention to the equivalence of the tim
development operator method and the method of expan
in terms of energy eigenfunctions for obtainingC(x,t) from
510S. Balasubramanian
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C(x,0) when the Hamiltonian is time independent. We ha
shown how the time-development operator may be obtai
for a charged particle in a time-dependent electric field a
hence the propagator for the problem. The results are ge
alizations of the ones for the case of a particle in a tim
independent electric field discussed in this Journal. The w
known problem of a spin in time-dependent magnetic field
also treated through the time-development operator meth
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EARLY VACUUM PHYSICS

Dear Uncle Robert, I enclose receipt signed. I forgot to dispatch it as I was sent for to London,
to be ready to explain to the Queen why Otto von Guericke devoted himself to the discovery of
nothing, and to show her the two hemispheres in which he kept it, and the picture of the 16 horses
who could not separate the hemispheres, and how after 200 years W. Crookes has come much
nearer to nothing and has sealed it up in a glass globe for public inspection.* Her Majesty however
let us off very easily and did not make much ado about nothing, as she had much heavy work cut
out for her all the rest of the day . . .

*As the editors note: ‘‘This is a reference to the Loan Exhibition of Scientific Apparatus, held
in London in 1876. Queen Victoria visited the exhibition where Maxwell presented ‘Molecular
Physics’ and explained the operation of various pieces of apparatus.’’

James Clerk Maxwell, letter to Robert Cay, 15 May 1876, reprinted in Elizabeth Garber, Stephen G. Brush, and C. W. F.
Everitt, editors,Maxwell on Heat and Statistical Mechanics: On ‘‘Avoiding All Personal Enquiries’’ of Molecules~Lehigh
University Press, Bethlehem, PA, 1995!, p. 404.
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