Time-development operator method in quantum mechanics
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We discuss the time-development operator method in quantum mechanics. The equivalence of this
method and the usual method of expansion in terms of energy eigenfunctions discussed in textbooks
is pointed out. As examples of cases of time-dependent Hamiltonians, we discuss the time

development of a Gaussian wave packet for a charged particle subject to a time-dependent electric
field using an operator differential equation. We also consider a spin in a time-dependent magnetic

field through a time-development operator. 2801 American Association of Physics Teachers.
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[. INTRODUCTION

EREDS U Y (X ) (X", 0)dX" | g (x) € 1EnA,
In a publication in this Journal, Robinktias drawn atten- n
tion to the merits of the time-development operator method @
for obtaining the quantum mechanical state function at anyone can also see that E@) may be written as
future timet from the okng at=0. The time evolution of a
free particle wave packetind the oscillating harmonic os- o , , ,
cillator wave packetare some of the possible examples. ~ #(X.t)=¢ IHW{E (f Y (X)P(X,00dX" | grn(x)
Reference 1 has dealt with the time-development operator )
for a particle subject to a uniform and time-independent

force. A brief discussion of this operator for the same casedentifying the terms in the rectangular bracket &¢,0)
has also been presented earlier in this Joutiilis problem  and the exponential term as the time-development operator
has also been discussed using the Heisenberg prtiune. U(t), one sees the equivalence of the time-development op-
ghini et al® have considered the same problem and discussesgtator method and the usual method of expansion in terms of
different methods for obtaining the quantum propagatorthe energy eigenfunctions. The equivalence is exact for
Holsteirl has also presented additional methods to calculatg|asses of initial state functiong(x,0) for which there are
the linear potential propagator. Calculations of the propagang technical difficulties in handling the series
tor for a harmonic oscillator have also been reported in this
Journaf~1% All these cases involve time-independent Ham- S N n
iltonians. > m(—%Ht) #(x,0).

It will be useful to consider additional examples involving n=0 1"
time-dependent Hamiltonians for illustrating the time-\yhen there are difficulties arising out of convergence re-
development operator method, which may be suitable fogirements, one has to prefer using E) instead of Eq.
introductory courses in quantum mechanics. Falliesoal* 2).1213 For cases with time-dependent Hamiltonians for
have considered the propagator for a particle subject 10 hich there are no stationary states, one has either to solve
sinusoidal electric field and have briefly discussed the timegjirectly the time-dependent Scldiager equation to find
development operator for a constant forg:e case. Many Ya%x t) or use the time-development operatdft). This op-
ago Parker pregenteq the time e\./OIUI'On operator for Aerator is now not simply expfi/# Ht), but can be formally
;?Ca;ig;eelg harmonic oscillator in a uniform time-varying elec'writt.en as an.ordered series of integriidn view. of_ the .

: . merits of the time-development operator method indicated in

In the present work we treat the case of a charged part'CIerf 1, it will be useful to findJ(t) for such cases in closed
in a time-varying electric field and obtain the time- C ) . . ;
development operator and the propagator which are generafe'™- U(t) is to be obtained by solving the operator differ-
zations of the ones given in Refs. 1, 6, and 7. The metho§Mtial equation:

used is also applicable for cases with time-independent Ham- au(t)
iltonians. We also treat the problem of a spin in a time- i ——=H(t)U(t) (3)
dependent magnetic field. ot
with
u)=lI,

Il. CHARGED PARTICLE IN A TIME-DEPENDENT
ELECTRIC FIELD the unit operator.
For a particle of chargg and massn constrained to move

Before treating this case, a few remarks on the methods gh one dimension and subject to an electric field), the
obtaining the future state function from the initial state are inHamiltonian is

order. The time-developed state functigfix,t) at any time
t is given in terms ofy(x,0) (for a system with stationary
statesy,(x) and energieg,) by

K2 52

H(t)= = 5= —5—Qe(t)x. 4
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The general solution of the operator equation of the form in 1[q [t
Eq. (3) has been discussed by WilcGkFollowing Refs. 11 a()=-5— Efof(t UL dt
and 15, we write
. t
U(t)=e " Holy(t), (5 —qf e(t')y(t')dt'} (16)
0

whereH, is the kinetic energy operatdtime-independent

L. . . . X 2 t ,
pard). Substituting in Eq(3), one immediately finds _ 222mf dt,ft et e(t) () —1"). 17)
0 0

ihﬁ:ei/h HOtH e—i/h HotY(t) (6)
at 1 At this point our results may be compared with those of

, Parker'! who investigated a harmonic oscillator subject to a

with time-varying electric field. Our results in Eqd.4)—(17) are
Y(0)=1 the same as those of Parker in the limit as the oscillator

' frequencyw—0 in his work. Parker, however, made use of
whereH; is the potential energy teriime-dependent part the Magnus expansictiwhich involves commutators of op-
in Eq. (6). Making use of the operator expansin, erators at different times, instead of the simpler Zassenhaus
formula used by us.

1 The time-development operator is now given by
e"Be A=B+[A,B]+ STLALABI]+--, (7)
' U(t)=e 1/ PPU2mgifi [a(t) = 1126(0) ¥(1)]gB(Lxg¥(P (18)
one gets ) ) )
with «, B, and y as given above. Using the Baker—
aY Campbell-Hausdorff formuta for any two operatoré\ and
—C=AMY() ® B,
with eAeB:eA+B+1/2[A,B]+1/12‘[A,[A,B]]+1/12[B,[A,B]]+---, (183
1 ge(t) we can recast (t) in a more convenient form,
A(t)=— 7 ge(t)x+ —m P (9)
U(t)= el [a<t)*lIZE(t)v(U]eﬁ(t)xe*itp2/2ﬁme[V(U*B(t)t/m]p_
Operator equations of the form of E) also occur in the (19
Heisenberg and interaction pictures in quantum mechanics. ) i )
We look for the solution of Eq(8) in the following form; ~ We consider Eq(19) as a generalized form fdd(t) dis-
A cussed in Refs. 1, 6, and 7. 4{t) is independent of time,
Y(t)=eWit+AUXF¥P (100 one can easily evaluate, 3, andy and obtain
whereqa, B, andy are to be determined. U(t)=e'’ qetxe—itp2/2hme—iqet2p/2ﬁme—iq252t3/6hm’ (20)

On using the special case of the Zassenhaus forfula,
which agrees with that obtained in Refs. 1, 6, and 7.

As a first use of Eq(19), we consider the spreading of a
Guassian wave packet, which at tire 0 has the form

eA+B_ gAgBo~1/2AB] (11)

whereA andB are two noncommuting operators, each com-

muting with their commutator, one gets 1/4

e 00T, (D)

Y(t) =gl [ = 1280 ¥(V]gBDxg¥(VP, (12 Yp(x.0= 2m\?
SubstitutingY (t) given in Eq.(12) in Eq. (8) and premulti-  With U(t) given in Eq.(19) we find
plying by Y1, one gets

P(x,t) =6l [a(t) = 1/2B(1) y(t) + B2t/2m] g B(DX

o [.aed] |
it (a—1/28y—1/28%)+| B+ ——|Y XY , 1 VA
ih Xeﬂtpzlzhm }
2
2N\
spr 2Oy (13 )~ B X122
YP Am pPY=0, Xe*[XJrﬁ/I7(t)7ﬁ,/lﬁ(t)t/mfx] /4)\, (22)

where the dot indicates differentiation with respecttto Wwhere we have used the familiar result

Again using the expansion in E¢7) and after some simpli-
fication, one gets e®¥f(x)=f(x+b). (23

Using the relatiof

t
p=- 1 [ ewnar, a9
| 0 (92 1 2 2 J 1 w2 2
_ XEIANE | — X“I4AN (24)
q [t . Pant IN?) [ N? ’
t)y=———| t'e(t’)dt’, 15
70 iim Jo €(t") A9 we immediately get
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— aifi [a(t)—112B(t) y(t) + g2t/2m] Y .
wo— w)J, i —=e""w,(J, Ccosw
l,//(X,t) e o )J Y t)+ " iJ, ot (J t

N2\ 14 1 d
x eBOx[ 2 : ~i3 0t

27 J(NZ+ifit/2m) +Jysinwt)e 2y (1),  (30)
s @~ [x+hliy—fli pUm=xI2/40+i% t/2m) (25) where we have writter- yBy=wy and — yB;=w;. Using

the expansion formula in E¢7) and the familiar commuta-
It is easy to see that the peak position has been shifted tgon relations for the spin operatordx J=iJ we get
X—q(l,—tl;)/m, wherel, andl, are the integrals i8 and

. . . Y
v, respectively, in Eqs(14) and (15). The shift depends on L iTw du+ —o)JY(t 31
the electric field and the half-width has become ot [0t (0o~ @)J (L), 3D
h2t? |\ 12 which can be immediately integrated to obtadiit). Thus
2N 1+ eml one gets
which is independent of the electric field. U(t)=e Nzwte It (32

Equation(19) can also be used to obtain the quantum menere
chanical propagator for the present problem: ~ ~
_ ) o Xt (wp—w)Z
K(X,Xr,t):elﬁ[a(t)*l/ZB(tW(t)JrB t/2m] o B(t)x n=——

N
% - dp @~ itp?/2mh with X andZ being the unit vectors along theandz direc-
27h ) . tions and\ = (w5 + (wo— w)?)Y2. The operatorU(t) may
. , also be obtained by going to a rotating coordinate system.
t)— B(D)t/ I1p(x— -
X by AUmIpgl Py, (26)  The operator of the forme™ ™ in Eq. (32) is a rotation
The integral may be easily evaluated and one gets operator which will mix all spin states and the problem of
) _ 2 obtaining the spin-flip probability is slightly more
K(x,X',t)=(m/2mifit) /e (mx=x)00 involved® For the special case of a spin 1/2 particle, it turns

out that we have a simple expansion of the exponential op-
erator now involving the Pauli spin operaiar For this case,
xemy(t)x/te—mX’/t[y(t)—t,B(t)]Z_ 27) one has

¢ @ fla(t)+1128(t) y(t) —my*(t)/2t]

This again is a generalized form and reduces to the one given U(t) =g Y2oz0t
in Refs. 1, 6, and 7 whea(t) is independent of time. It may
be noted that the method adopted in our work can also b
used wherH is independent of time with suitable splitting of
H asHy+H;,. For example, ife is independent of, Hy and

H, could be the same as we had chosen, except lHews

, (33

At (At
cos_-—i sin —fo™n
fhich is obtained by expanding” Y2@ M\t and using the
result (o~A)?=1. U(t) can also be written down using the
following result(which can be simply proved

also independent of time. Consequently E&). may be im- A NoePi—) ePz  ePhi—gPh
rr]edilately integrated and the subsequent algebra will also be € = No— A, + VW A, (34)
simpler.

where)\; and\, are the distinct eigenvalues of the operator
A which can be represented by &2 matrix andb is a

[ll. TIME-DEVELOPMENT OPERATOR FOR A scalar.

SPIN IN A TIME-DEPENDENT MAGNETIC FIELD Supposing the initial spin statg(0) is given by §) (the

, ) ) “spin-up” spinor), one gets
As yet another example involving a time-dependent

Hamiltonian, we consider a particle of spin(in units of ) el A (@) N1

subject to a magnetic fieldB= (B, coswt,B, sinwt,By), x()=e COS~™ X Sm?}(o)

which corresponds to a static fieRl along thez direction .

and a field of amplitudd, rotating in theX-Y plane with _glot2 Iﬂsinﬁ (0) (35)
an angular frequencw. Such a situation is of interest in A 2 \1

magnetic resonance. The Hamiltonian of the system is Equation(35) gives the well known “spin-flip” probability

H(t)=—yBoJ,— ¥Bi(Jx COswt + Jy sinwt), (28 w% X
wherey is a constant. Some textbodksuggest that for the x2S (?)

above time-dependent problem one should directly try to o N o
solve the time-dependent Schiger equation instead of The spin-flip probability shows a peakat= wo which is the
finding U(t). We wish to show how the time-development condition for “spin resonance.”
operator method can be used for the present problem.

Following the method adopted in Sec. Il, we look for the |y, SUMMARY

solution of Eq.(3) with H now given in Eq.(28) in the form
We have drawn attention to the equivalence of the time-

— a—iJ, ot :
U(t)=e =Y (1) (29 development operator method and the method of expansion
and obtain by substitutingy in Eq. (3), in terms of energy eigenfunctions for obtainitix,t) from
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EARLY VACUUM PHYSICS

Dear Uncle Robert, | enclose receipt signed. | forgot to dispatch it as | was sent for to London,
to be ready to explain to the Queen why Otto von Guericke devoted himself to the discovery of
nothing, and to show her the two hemispheres in which he kept it, and the picture of the 16 horses
who could not separate the hemispheres, and how after 200 years W. Crookes has come much
nearer to nothing and has sealed it up in a glass globe for public inspédtlenMajesty however
let us off very easily and did not make much ado about nothing, as she had much heavy waork cut
out for her all the rest of the ga . .

*As the editors note: “This is a reference to the Loan Exhibition of Scientific Apparatus, held
in London in 1876. Queen Victoria visited the exhibition where Maxwell presented ‘Molecular
Physics’ and explained the operation of various pieces of apparatus.”

James Clerk Maxwell, letter to Robert Cay, 15 May 1876, reprinted in Elizabeth Garber, Stephen G. Brush, and G. W. F.
Everitt, editorsMaxwell on Heat and Statistical Mechanics: On “Avoiding All Personal Enquiries” of Molectilekigh
University Press, Bethlehem, PA, 1995. 404.
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