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Transition from BCS pairing to Bose-Einstein condensation in low-density asymmetric
nuclear matter
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We study the isospin-singlet neutron-proton pairing in bulk nuclear matter as a function of density and
isospin asymmetry within the BCS formalism. In the high-density, weak-coupling regime the neutron-proton
paired state is strongly suppressed by a minor neutron excess. As the system is diluted, the BCS state with
large, overlapping Cooper pairs evolves smoothly into a Bose-Einstein condensate of tightly bound neutron-
proton pairs~deuterons!. In the resulting low-density system a neutron excess is ineffective in quenching the
pair correlations because of the large spatial separation of the deuterons and neutrons. As a result, the Bose-
Einstein condensation of deuterons is weakly affected by an additional gas of free neutrons even at very large
asymmetries.
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I. INTRODUCTION

The crossover from BCS superconductivity to Bos
Einstein condensation~BEC! manifests itself in fermionic
systems with attractive interactions whenever either the d
sity is decreased and/or the interaction strength in the sys
is increased sufficiently. The transition from large overla
ping Cooper pairs to tightly bound nonoverlapping boso
can be described entirely within the ordinary BCS theory
the effects of fluctuations are ignored~mean-field approxi-
mation!. Indeed in the free-space limit the gap equation
duces to the Schro¨dinger equation for bound pairs. This typ
of transition has been studied initially in the context of or
nary superconductors@1#, excitonic superconductivity in
semiconductors@2#, and, at finite temperature, in an attra
tive fermion gas@3#. Although the BCS and BEC limits ar
physically quite different, the transition between them w
found smooth within the ordinary BCS theory.

More recently it was argued@4–6# that a similar situation
should occur in symmetric nuclear matter, where neutr
proton (np) pairing undergoes a smooth transition from
state ofnp Cooper pairs at higher densities to a gas of Bo
condensed deuterons, when the nucleon density is reduc
extremely low values. At the same time the chemical pot
tial evolves from positive values to negative ones~disregard-
ing a mean field!, approaching half of the deuteron bindin
energy in the zero-density limit. This transition may be r
evant, and could give valuable information onnp correla-
tions, in low-density nuclear systems such as the surfac
nuclei, expanding nuclear matter from heavy ion collisio
collapsing stars, etc.

The np pairing effect is largest in the isospin symmetr
systems. However, most of the systems of interest are
some extent, isospin asymmetric, i.e., there is usually a
tain excess of neutrons over protons. In this case the pa
is suppressed, since for neutrons and protons lying on di
ent Fermi surfaces the phase space overlap decreases as
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surfaces are pushed further apart by isospin asymm
@4,7,8#. Note that this situation is quite analogous to pairi
of, e.g., spin-polarized electrons. As is well known, an ex
amount of spin-up electrons over the spin-down electron
very efficient in destroying the superfluidity in the wea
coupling regime.

This situation is well known also from odd nuclei or nu
clei with quasiparticle excitations, where the so-call
blocked gap equation emerges@9#. Indeed, the ground stat
wave function for anp BCS state withN excess neutrons ca
be written in the following way@9#:

uF&N5ank1

† ank2

†
•••ankN

† uBCS&

5 )
k5k1 , . . . ,kN

ank
† )

kÞk1 , . . . ,kN

~uk1vkank
† ap2k

† !uvac&,

~1!

wherea† anda† are the quasiparticle and bare particle c
ation operators anduBCS& is the superfluid ground state i
the symmetric case. From Eq.~1! we see that the presence
the extra neutrons entails a suppression of the Cooper p
in thenp BCS state, which have the same quantum numb
as the extra neutrons. The variational minimization of t
Hamiltonian then leads to the so-called blocked gap equa
@9#, where the window ofk1 , . . . ,kN states is missing in the
integral equation for the gap. Since this window is situa
close to the Fermi energy, where most of the pairing cor
lations are built, the suppression mechanism is extrem
efficient. This is the case for positive chemical potential.

The situation is, however, more complex when the che
cal potential approaches zero and becomes negative, i.e
the limit of strong coupling. Clearly thenp pairs will evolve
to tightly bound deuterons in this limit and, because of t
isospin asymmetry, they will coexist with a dilute gas
excess neutrons. It is physically conceivable that in this lim
where the deuterons as well as the extra neutrons are
©2001 The American Physical Society14-1
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LOMBARDO, NOZIÈRES, SCHUCK, SCHULZE, AND SEDRAKIAN PHYSICAL REVIEW C64 064314
tremely dilute, the Pauli blocking effect of neutrons on t
deuterons will become negligible. This may have interest
consequences, for example, in the far tail of nuclei, wher
deuteron condensate may exist in spite of the fact that th
the density can be quite asymmetric. Apart from finite nuc
similar physical effects could play an important role in oth
low-density asymmetric nuclear systems.

The aim of this work is, therefore, a detailed study of t
behavior ofnp pairing in asymmetric nuclear matter as
function of density and asymmetry. The paper is organize
follows. In Sec. II we set up the general frame in terms of
Gorkov formalism at finite temperature. In Sec. III w
specify the relevant equations to zero temperature and
cuss the analytical limiting case in the weak-coupling a
proximation. Numerical results are presented and discus
in Sec. IV. Our conclusions are summarized in Sec. V.

II. BASIC EQUATIONS

In this section we briefly review the treatment of a
isospin-singlet superfluid Fermi system within the Gree
function formalism, see also Refs.@6–8#. We use the stan
dard method of Green’s functions at finite temperatures,
e.g., Refs.@10–14#. In this formalism interacting superfluid
systems are described in terms of the Gorkov equatio
which generalize the Dyson equation for normal Fermi s
tems by doubling the number of propagators. For a homo
neous system the normal and anomalous propagatorsG and
F are defined as
ar
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-
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Gts,t8s8~k,t2t8!5
1

i
^T@cts~k,t !ct8s8

†
~k,t8!#&, ~2a!

Fts,t8s8~k,t2t8!5
1

i
^T@cts~k,t !ct8s8~k,t8!#&, ~2b!

wheres5↑,↓ andt5n,p denote the spin and isospin qua
tum numbers, respectively. On introducing the Matsub
frequenciesvn5(2n11)pT, whereT[1/b is the tempera-
ture,n50,1,2, . . . , thepropagators are conveniently writte
in the Fourier representation as

Gts,t8s8~k,t !5
1

b(
n

e2 ivntGts,t8s8~k,vn!, ~3a!

Fts,t8s8~k,t !5
1

b(
n

e2 ivntFts,t8s8~k,vn!. ~3b!

Using the short-hand notationD, D, G, and F, for 434
matrices in spin-isospin space, the Gorkov equations can
written as

S D~k,vn! D~k!

D†~k! 2D~k,2vn!
D S G~k,vn!

F†~k,vn!
D 5S 1

0D , ~4!

where
D~k,vn!5S ivn2«n↑~k! 0 0 0

0 ivn2«n↓~k! 0 0

0 0 ivn2«p↑~k! 0

0 0 0 ivn2«p↓~k!

D ~5!
nt
nc-

in
and1 denotes the four-dimensional unit matrix. Since we
mostly interested in the pairing properties at very low de
sity, where the nuclear mean field plays a minor role,
single-particle spectrum adopted in this work is simply t
kinetic one

«n↑~k!5«n↓~k![«n~k!5
k2

2m
2mn5«k1dm, ~6a!

«p↑~k!5«p↓~k![«p~k!5
k2

2m
2mp5«k2dm, ~6b!

where«k5k2/2m2m,m5(mn1mp)/2 is the average chemi
cal potential between protons and neutrons, anddm5(mn
2mp)/2 is the associated shift. From now on we assu
nuclear matter with neutron excess so thatdm.0.
e
-
e

e

In this article we concentrate on pairing in the domina
isospin-singlet channel that can be described by a gap fu
tion D(k) with the structure

D5S 0 0 0 D01 iD1

0 0 2D01 iD1 0

0 2D02 iD1 0 0

D02 iD1 0 0 0

D ,

~7!

which is a particular case of a unitary state@6,15,16#

D†D5D21, D25AdetD5D0
21D1

2 . ~8!

It allows in principle the coexistence of spin-singlet (S50)
and spin-triplet (S51) pairing correlationsDS . In the low-
density region that we are interested in, pairing is realized
the spin-triplets-wave channel3SD1, i.e., D5 iD1.
4-2
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The anomalous propagatorF† has the same spin-isosp
structure asD, whereas the normal propagatorG is diagonal
in the spin-isospin indices. Taking this into account, the s
tem Eq.~4! can be inverted with the solution

Gn~k,vn!5
ivn1«p~k!

~ ivn2Ek
1!~ ivn1Ek

2!
, ~9a!

Gp~k,vn!5
ivn1«n~k!

~ ivn2Ek
2!~ ivn1Ek

1!
, ~9b!

Fnp
† ~k,vn!5

2D~k!

~ ivn2Ek
2!~ ivn1Ek

1!
, ~9c!

Fpn
† ~k,vn!5

1D~k!

~ ivn2Ek
1!~ ivn1Ek

2!
, ~9d!

where

Ek
65Ek6dm5A«k

21D~k!26dm. ~10!

The isospin asymmetry thus lifts the degeneracy of the q
siparticle spectra, leading to two separate branches for
tons and neutrons. This is sketched in Fig. 1. In the reg
aroundm, where Ek,dm, the superfluid state is unstab
against the normal state and indeed it accomodates the
paired neutrons. This ‘‘isospin window’’ is responsible f
the pairing gap suppression in the density domain wh
nuclear matter is superfluid. It corresponds to the block
effect for the pairing in nuclei@9#.

After analytical continuation of the Green’s functions
the complexv plane one calculates the spectral functi
A(k,v), which is given by the discontinuity ofG across the
real axis

At~k,v!52pF1

2S 11
«k

Ek
Dd~v2Ek

6!1
1

2S 12
«k

Ek
Dd~v1Ek

7!G ,
~11!

and then the density of particles

FIG. 1. Sketch of the quasiparticle spectrum. Fore,m the
lower ~upper! solid line correponds to neutrons~protons! in the
normal state. Fore.m the lower~upper! solid line corresponds to
protons~neutrons! in the normal state. The corresponding dash
lines refer to nucleons in the superfluid state.
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rt52(
k
E dv

~2p!
At~k,v! f ~v!

52(
k

F1

2 S 11
«k

Ek
D f ~Ek

6!1
1

2 S 12
«k

Ek
D @12 f ~Ek

7!#G ,
~12!

where (k5*d3k/(2p)3 and f (E)5@11exp(bE)#21 is the
Fermi distribution function.

Analogously, the discontinuity of the anomalous propag
tor F†,

B~k,v!52p@d~v2Ek
1!2d~v1Ek

2!#
D~k!

2Ek
, ~13!

yields the gap equation

D~k8!5(
k

^k8uVuk&E dv

2p
B~k,v! f ~v!

52(
k

^k8uVuk&
D~k!

2Ek
@12 f ~Ek

1!2 f ~Ek
2!#.

~14!

Using the angle-averaging procedure, which is an adeq
approximation for the present purpose~see Ref.@16#!, the
BCS gap equation for asymmetric nuclear matter can be
rived:

D l 8~k8!52(
k

(
l

Vll 8~k,k8!
D l~k!

2Ek
@12 f ~Ek

1!2 f ~Ek
2!#,

~ l ,l 850,2!, ~15!

where Ek
25«k

21D(k)2 and D(k)2[D0(k)21D2(k)2 is the
angle-averaged neutron-proton gap function. The driv
term, Vll 8 , is the bare interaction in the3SD1 channel. We
use for the numerical computations in this work the Argon
V14 potential@17#.

From Eq.~12! the total densityr5rn1rp and the neu-
tron excessdr5rn2rp can easily be derived and one ge

r52(
k

nk, nk512
«k

Ek
@12 f ~Ek

1!2 f ~Ek
2!#,

~16a!

dr52(
k

dnk, dnk5 f ~Ek
2!2 f ~Ek

1!. ~16b!

For a convenient parametrization of the total density, we a
introduce the quantitykF[(3p2r/2)1/3, which is, however,
apart from the isospin symmetric system, not to be identifi
with a Fermi momentum.

Introducing the anomalous density

d

4-3
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c l~k!5^an,k
† ap,2k

† & l5
D l~k!

2Ek
@12 f ~Ek

1!2 f ~Ek
2!#,

~17!

and making use of Eq.~16a!, the gap equation, Eq.~15!, can
be recast in the Schro¨dinger-like form

k2

m
c l~k!1~12nk!(

k8
(
l 8

Vll 8~k,k8!c l 8~k8!52mc l~k!.

~18!

In the limit of vanishing density,nk→0, this equation goes
over into the Schro¨dinger equation for the deuteron boun
state@6#. The chemical potential 2m5mp1mn then plays the
role of the energy eigenvalue.

Let us finally remark that in this article we do not stud
the competition between and possible coexistence of iso
singlet and triplet pairing@18#. It is clear thatT51 nn and
pp pairing gaps, which are unaffected by the isospin asy
metry, will be larger than theT50 gap at sufficiently large
asymmetry. Our results are thus valid up to the asymmet
~yet unspecified! at which the isospin triplet pairing become
dominant. On the other hand, as we show below, for v
low density systems the suppression mechanism due to
shift of Fermi surfaces is ineffective and it is reasonable
assume that thenp pairing will dominate other channels in
wide range of values of the asymmetry.

We also restrict ourselves to work with a free sing
particle spectrum, which is adequate at low density.
higher density, when the effective mass deviates substant
from the bare mass, renormalization of the single-part
spectrum should be taken into account@16,19,20#. This af-
fects the magnitude of the pairing gap in general and
critical asymmetries at which the pairing effect disappe
@8#. In view of this approximation, the results shown belo
should be considered as only qualitative in the high-den
region.

III. ZERO TEMPERATURE GAP EQUATION

In order to disentangle the isospin effects from the th
mal ones, we focus in the following on the limit of zer
temperature, wheref (Ek

1)50 andf (Ek
2)512u(Ek

2), u be-
ing the step function. In this limit Eqs.~15! and~16! reduce
to

D l 8~k8!52(
k

(
l

Vll 8~k,k8!
D l~k!

2Ek
u~Ek

2!, ~19a!

r52(
k

F12
«k

Ek
u~Ek

2!G , ~19b!

dr52(
k

@12u~Ek
2!#. ~19c!

In general these three coupled nonlinear equations have
solved numerically, maintaining the self-consistency. Bef
presenting the numerical results, let us, however, first disc
in some detail the physical content of these equations.
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physical interpretation of the formalism is that in asymmet
nuclear matter a superfluid state ofnp Cooper pairs with
density r2dr52rp coexists with a gas of free neutron
with density dr. Since this latter is occupying a regio
around the Fermi surface@determined by 12u(Ek

2)#, the
momentum space available for the pairing is reduced. T
the effect of isospin asymmetry is to reduce the magnitude
the energy gap; with increasing neutron excess the supe
idity rapidly disappears@4,7,8#.

The solution of the gap equation, Eq.~19!, assumes dif-
ferent properties according to the value of the chemical
tential. One may distinguish three domains:~i! m@D ~weak-
coupling, pairing regime!, ~ii ! m'0 ~Mott transition!, and
~iii ! m,0 ~strong-coupling, bound-state regime!. Approxi-
mate analytical results can be found in the cases~i! and~iii !,
and are described in the following.

A. Weak-coupling regime

In the regionm@D the gap equation in the form of Eq
~19a! can be solved in the usual weak-coupling approxim
tion @21#, in order to gain some insight in the qualitativ
behavior of the pairing properties in the asymmetric ca
This approximation is not very accurate, but it preserves
physical content of the exact solution.

First, one notes from Eq.~19c! that the unpaired neutron
are concentrated in the energy interval@m2d«,m1d«#,
with the half-width

d«5Adm22D2. ~20!

This interval is free of protons and does not contribute to
pairing interaction, whereas outside of it neutron and pro
distributions are equal and given by the BCS result, see
~19b!. This situation is sketched in Fig. 2. One notes at t
point that the conditiondm.D has to be fulfilled in order to
generate an asymmetry. Indeed forD,d«!m the momentum
distributions of the two species are very sharp~practically
Fermi distributions! and one obtains as relation between t
asymmetrya andd«:

a5
rn2rp

rn1rp
'

S E
0

m1d«

2E
0

m2d« D deAe

S E
0

m1d«

1E
0

m2d« D deAe

'
3

2

d«

m
, ~21!

FIG. 2. Momentum distributions of neutrons and protons
asymmetric superfluid matter.
4-4
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i.e., the asymmetry is directly proportional tod«. Thus we
see thatd« has the interpretation of an ‘‘effective’’ differenc
of chemical potentials, since it isd« and notdm which de-
termines the density of excess neutrons forDÞ0. Only in the
normal system one hasd«5dm, whereas pairing screensdm
such thatd«,dm, and it needs a critical finitedm5D in
order to obtain a finite density of excess neutrons.

Coming now to the gap equation, with a contact inter
tion V and energy cutoff«c , Eq. ~19a! reads

152
~2m!3/2V

8p2 E
2m

«c
d«u~ u«u2d«!A «1m

«21D2. ~22!

For D!m!«c , the integral can be approximately calculate
yielding

15N~0!V lnFd«1dm

2Am«c
G , ~23!

whereN(0)5mkF/2p2 is the level density at the Fermi su
face of one type of particles. Therefore

dm1d«5const5D0 ⇔ D25D0
222D0d«, ~24!

whereD0 is the value of the gap in the symmetric system
the same density. We again see that it isd«, and notdm,
which determines the reduction ofD from its symmetric
value. The gap decreases very rapidly and disappears w
the width of the window reaches 2d«5D0, i.e., the size of
the gap at symmetry. This is shown in Fig. 3~a!.

We can now combine Eqs.~21! and ~24! in order to
specify the dependence of the gap on the asymmetry:

D

D0
5A12

4m

3D0
a. ~25!

FIG. 3. Dependence of gapD ~a! and chemical potential differ-
encedm ~b! on the width of the blocking intervald« within the
weak-coupling approximation, see Eq.~24!. The solid lines denote
the superfluid phase and the dashed lines the normal one.
06431
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,

f
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The superfluidity vanishes smoothly, but with an infini
slope at

amax5
3D0

4m
, ~26!

which in the weak-coupling limit is a very small value.
We can also determine the dependence of the gap on

difference of chemical potentialsdm @7,22#:

D

D0
5A2dm

D0
21. ~27!

In the symmetric system one hasdm5D0 ,d«50, while in-
creasing the asymmetry the gap decreases withdecreasing
dm and increasingd« and vanishes atdm5d«5D0/2.

Physically, this behavior can be understood by noting t
the chemical potential difference 2dm5mn2mp is the en-
ergy one must invest in order to remove a proton from
system and then to insert a neutron instead, in other wo
the symmetry energy. However, in order to do so in the
perfluid system with a neutron excess~even very small!, one
must necessarily break a pair in order to remove the pro
but then one does not gain energy by adding the neutro
the top of its Fermi sea. That is whydm>D in the pairing
regime anddm>Am21D2 in the bound state regime~the
equalities holding in the symmetric system!. So, clearly in a
superfluid system of any density and asymmetry,dm can
never be zero, because it involves breaking a pair~or bound
state!.

Then, successively increasing the asymmetry by break
pairs in this way and filling up the Fermi sea of excess n
trons, the pairing correlations are destroyed, and con
quently one must invest less energy in order to excha
p↔n. Thereforedm decreaseswith increasing asymmetry
~while d« increases!, up to the point where, atdm5d«
5D0/2, thenp gap disappears completely and 2dm is simply
given by the difference of Fermi energies of the two non
teracting Fermi gases at this asymmetry. The system is
in the normal phase,d«5dm, which means that in order to
further increase the asymmetry the parameterdm has toin-
creaseagain, up todm5m, corresponding to pure neutro
matter. Consequently, values ofdm betweenD0/2 andD0 are
present in the superfluid as well as in the normal pha
corresponding to different compositions of small and lar
asymmetry, respectively. The relations betweenD, dm, and
d« are sketched in Fig. 3.

We comment finally on the analogy to an electron syst
in a magnetic field. Whereas in the case of nuclear ma
discussed before, an increasing asymmetry is imposed on
system, leading to a smooth disappearance of the gap
certain maximum asymmetry, the situation for the electr
system is qualitatively different: Varying in this case th
magnetic field is equivalent to imposing the chemical pot
tial differencedm instead of the asymmetry, which now co
responds to the magnetization of the system. Therefore
observes in this case a first-order phase transition atdm
5D0, when the pairs are suddenly broken up and the sys
jumps immediately from the symmetric superfluid phase
4-5
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LOMBARDO, NOZIÈRES, SCHUCK, SCHULZE, AND SEDRAKIAN PHYSICAL REVIEW C64 064314
the magnetized normal phase. A magnetized superfluid p
is thermodynamically unstable in this case.

B. Mott-transition regime

Let us now discuss the situation when the densityr de-
creases. As we have shown in Ref.@6#, simultaneously the
chemical potentialm decreases~disregarding the Hartree
Fock shift! and at a certain~very low! density~of the order of
r'r0/100, wherer0'0.17 fm23 is the nuclear matter satu
ration density! m passes through zero, corresponding to
Mott transition of the deuteron@6#. This also remains true in
the asymmetric case; in fact, the weak-coupling approxim
tion used above predicts that in pure neutron matter this h
pens atmn5(p/2)2mD , wheremD5ED/2'1.1 MeV is half
of the deuteron binding energy. This corresponds to a den
r'0.0016 fm23.

It seems clear that the Pauli blocking starts to loose
efficiency once the left-hand side of the window@m2d«,m
1d«# passes beyond zero, because then only part of
window participates in the blocking. Whenm has reached
negative values, less than half of the blocking window
actually effective. While in the symmetric case nothing p
ticular happens when thenp Cooper pairs change their cha
acter to bound deuterons in the low-density limit, the asy
metric case withdmÞ0 needs special attention. Here bo
dm andm vary strongly with asymmetry~at fixed total den-
sity!, and the results have to be found numerically, solv
the coupled Eqs.~19!.

C. Strong-coupling regime

Once the densityr becomes so low that simultaneous
the mean distance among the deuterons as well as am
deuterons and excess neutrons becomes much larger tha
deuteron radius, the excess neutrons cannot excert any
nificant influence on the deuteron wave function. This
quite opposite to the weak-coupling casem@D considered
above, where we have seen that only a slight neutron ex
destroys thenp Cooper pairs.

For negative chemical potentials Eq.~25! is not valid,
since the Fermi surface drops into the unphysical reg
However, the low-density limitr→0 of the BCS equations
provides simple analytical expressions, once the density i
low that the chemical potential is close to the asympto
valuem→2mD52ED/2'21.1 MeV. In some sense now
the gap equation~19a! and the density equations~19b!,~19c!
interchange their roles, because the gap equation goes
into the Schro¨dinger equation, determining the chemical p
tential, whereas the value of the gap can be extracted f
the equations for the density, in the following manner. T
density of protons is given by

rp5
~2m!3/2

2p2 E
emin!umu

`

deAe
1

2 F12
e2m

A~e2m!21D2G
'

~2mmD!3/2

2p2

D2

4mD
2 E

0

`

dxA x

~x11!2. ~28!
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The numerical value of the last integral beingp/2, one ob-
tains for the asymmetry

a5
r22rp

r
512

rm

r

D2

mD
2 ~29!

with

rm[
~2mmD!3/2

8p
'0.00049 fm23. ~30!

The low-density result is therefore@23#

D

mD
~r,a!5Ar~12a!

rm
, ~31!

and thus a gap exists for any asymmetry.
The ineffectiveness of the neutrons in ther→0 limit also

becomes evident when considering Eq.~18!. Indeed in the
limit rn ,rp→0 also the momentum distributionnk vanishes
and then the equation goes over into the free deuteron Sc¨-
dinger equation, independent of the asymmetry of the s
tem. Since the Pauli blocking becomes less and less im
tant as the density decreases, the asymmetry can bec
larger without destroying the superfluidity. As we mention
already in the introduction, this aspect can become impor
in the far tail of the nuclear densities or in other low-dens
nuclear systems.

In the presence of a neutron excess the Bose-conde
deuterons occupy the negative energy stateE'2ED and the
free neutrons the positive energy states. With increas
asymmetry the neutrons accommodate in the next pos
energy states according to the Pauli principle. As we
from the wave function in the introduction, even in the low
density limit the excess neutrons stay antisymmetrized w
the neutrons bound in the deuterons. Therefore one ca
distinguish between bound and unbound neutrons,
chemical potential of the neutrons is always the one of
unbound ones which is tending to zero asr approaches zero
On the other hand the proton chemical potentialmp tends to
the binding energy of the deuteron, since it is the bind
energy of the system per half the number of particles bo
in the deuterons. Therefore the mean chemical potentiam
5(mn1mp)/2 tends to half the binding energy of the de
teron such that the eigenvalue 2m of Eq. ~18! hits precisely
the eigenvalue of the deuteron atr50. To summarize, the
behavior of the various chemical potentials in the lo
density limit is mn→0,mp→2ED ,m→2ED/2,dm→ED/2,
independent of the asymmetry.

IV. NUMERICAL RESULTS

We discuss now the results that were obtained by num
cal solution of the system of Eq.~19!, using the ArgonneV14
potential as the bare interaction. We begin, in Fig. 4, with
overview of the resulting gap in the density-asymme
plane. As discussed in Sec. III, in the high-density pairi
regime the superfluidity vanishes at a finite asymme
amax(r), decreasing with increasing density, whereas in
4-6
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low-density bound-state region~below kF'0.35 fm21,r
'r0/100) a gap exists for any asymmetry, roughly followin
the analytical result, Eq.~31!.

In Fig. 5, we show the momentum distributions, gap fun
tions, and anomalous densities at three different densitier
51024,1022,1021 fm23, representative of the low, inter
mediate, and high-density regions mentioned in Sec. III. T
top panels of the figure show the momentum distributions

FIG. 4. The pairing gap as a function of total density@kF

[(3p2r/2)1/3# and asymmetry.
06431
-

e
f

the superfluid protons. As discussed before, see Fig. 2, t
is a proton-free region that is at high density centered aro
the Fermi momentum, and at low density excludes all lo
momentum states, representing the Fermi sea of nonsu
fluid excess neutrons. The resulting variation of the gap fu
tion in the relevant regions of momentum space is rat
small at low density, however, it is competing with the k
netic energy in the self-consistent determination of the n
mal region, which is determined by the variation ofEk

5A«k
21Dk

2. The anomalous density develops a characteri
peak at the Fermi momentum only in the high-density
gime, whereas at low density it exhibits a smooth variat
typical of the deuteron wave function.

In Fig. 6, we show in more detail the gap in symmet
matter, together with the analytical approximation Eq.~31!
~top panel!; the maximum value of asymmetry at which th
superfluidity disappears, in comparison with the analyti
estimate Eq.~26! ~middle panel!; as well as, in the bottom
panel, the variation of the various chemical potentials alo
the line @r,amax(r)#. The asymptotic behavior predicted i
the previous section (dm,mn ,m,mp)→(1,0,21,22)mD is
observed forr→0.

We finally discuss briefly the situation at finite temper
ture, that was treated in detail in Refs.@4,6–8#. As long as
T!D, the temperature effects are small. However, in
low-density limit, whenD→0, a qualitatively different be-
havior from the zero temperature case can be observed
Fig. 6 we have seen that in this limitmn→0 and mp
→22mD , due to the coexistence of the deuterons with
Fermi sea of free neutrons, see the discussion in Sec. II
At finite temperature, however, part of the deuterons are b
ken up and therefore this argument does not apply any m
in each

FIG. 5. Proton momentum distributionsnp(k), gap functionsD(k), and anomalous densitiesc(k), for different total densitiesr

51024,1022,1021 fm23, and different asymmetries. The dots indicate the boundaries of the interval containing the neutron excess
case.
4-7
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This can be seen from Eq.~16b! for dr. In the limit r,dr
→0 we haveD50, since at finite temperature the syste
becomes normal at a certain critical density. Therefore
~16b! reads

052(
k

@ f ~«k2dm!2 f ~«k1dm!# ~32!

FIG. 6. Top panel: The3SD1 gap in symmetric nuclear matte
as a function of total densityr or equivalent Fermi momentumkF

5(3p2r/2)1/3 ~solid line!. The dashed line shows the analytic
approximation Eq.~31!. Central panel: The maximum asymmetry
which a gap exists~solid line! and the approximation Eq.~26!
~dashed line!. Lower panel: The values of the various chemic
potentialsm,dm,mn ,mp , corresponding to the asymmetryamax dis-
played in the panel above.
06431
q.

and one clearly sees that this relation can only be fulfilled
any finite temperature, fordm50, i.e., mn5mp . On the
other hand, we see from Eq.~18! that m→2mD . Therefore
we have forTÞ0 the limit m,mn ,mp→2mD . This behavior
is clearly born out from the numerical calculation, Fig.
which shows the density dependence ofmn andmp for fixed
asymmetry a50.1 and various temperaturesT50.1,0.5,
1.0 MeV. It is seen how with vanishing temperature the si
ation shown in the lower panel of Fig. 6~for a51) is ap-
proached.

V. CONCLUSIONS

In this article we extended a previous study@6# of the
transition from a neutron-proton BCS superconducting st
to a Bose condensate of deuterons in symmetric nuclear m
ter to systems with isospin asymmetry. This is an importa
aspect, since most of the low-density nuclear systems, s
as tails of nuclear density distributions in nuclei, have
strong neutron excess. In the high-density weak-coupling
gime, m@D, even a small asymmetry is sufficient to su
press the pairing correlations completely via the Pauli blo
ing effect. However, we find that in the situation where t
density drops so low that the chemical potential turns ne
tive and deuterons start to form, the isospin asymmetry
much less important, i.e., the system supports pair corr
tions ~in the form of a deuteron condensate! for much larger
asymmetries.

Indeed one can argue that, once the density is so low
the spatial separation between deuterons and between de
ons and extra neutrons is large, the Pauli principle is ineff
tive and, hence, asymmetry can not destroy any longer
binding of neutron-proton pairs. Our numerical calculatio
fully confirm this conjecture. Most easily this effect can b
understood by examining the phase space blocking effec
the anomalous density. In the high-density regime the la
quantity shows a peak structure as a function of the m

l

FIG. 7. Chemical potentials of neutrons~upper curves! and pro-
tons ~lower curves! at a50.1 as functions of density for differen
temperatures.
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chemical potential of neutrons and protonsm. Once the
asymmetry is imposed the Pauli blocking effectively cuts
the major part of this peak structure. When the chem
potential turns negative, there is no peak any more in
relevant physical region of the anomalous density and
Pauli blocking looses its efficiency, which enables t
proton-neutron pairs to condense in the very low den
regime even in the presence of a large neutron excess
anticipate that this aspect may be important for the und
standing of the far tails of density profiles of exotic nucl
at

.

06431
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l
e
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,

the expanding~asymmetric! nuclear matter in heavy ion col
lisions, and other low-density nuclear systems.
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