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We study the isospin-singlet neutron-proton pairing in bulk nuclear matter as a function of density and
isospin asymmetry within the BCS formalism. In the high-density, weak-coupling regime the neutron-proton
paired state is strongly suppressed by a minor neutron excess. As the system is diluted, the BCS state with
large, overlapping Cooper pairs evolves smoothly into a Bose-Einstein condensate of tightly bound neutron-
proton pairs(deuterons In the resulting low-density system a neutron excess is ineffective in quenching the
pair correlations because of the large spatial separation of the deuterons and neutrons. As a result, the Bose-
Einstein condensation of deuterons is weakly affected by an additional gas of free neutrons even at very large

asymmetries.
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[. INTRODUCTION surfaces are pushed further apart by isospin asymmetry

[4,7,8. Note that this situation is quite analogous to pairing
The crossover from BCS superconductivity to Bose-of, e.g., spin-polarized electrons. As is well known, an extra
Einstein condensatiofBEC) manifests itself in fermionic amount of spin-up electrons over the spin-down electrons is
systems with attractive interactions whenever either the dencery efficient in destroying the superfluidity in the weak-
sity is decreased and/or the interaction strength in the systefPUpling regime. .
is increased sufficiently. The transition from large overlap-  This situation is well known also from odd nuclei or nu-

ping Cooper pairs to tightly bound nonoverlapping boson<lel with quasipar_ticle excitations, where the so-called
can be described entirely within the ordinary BCS theory, iftlocked gap equation emergg®. Indeed, the ground state
the effects of fluctuations are ignoréthean-field approxi- wave function for axp BCS state witiN excess neutrons can

mation. Indeed in the free-space limit the gap equation re—be written in the following way9l:
duces to the Schdinger equation for bound pairs. This type ot +

of transition has been studied initially in the context of ordi- | P)n=any, ank, - - @i [BCS)
nary superconductor$l], excitonic superconductivity in

semiconductor$2], and, at finite temperature, in an attrac- = I af, TI (utviatal_lvao,
tive fermion gad3]. Although the BCS and BEC limits are k=kp, ooky o kEKg, ok
physically quite different, the transition between them was (1)

found smooth within the ordinary BCS theory.

More recently it was argueidh—6] that a similar situation wherea' anda' are the quasiparticle and bare particle cre-
should occur in symmetric nuclear matter, where neutronation operators anfBCS) is the superfluid ground state in
proton (hp) pairing undergoes a smooth transition from athe symmetric case. From E@.) we see that the presence of
state ofnp Cooper pairs at higher densities to a gas of Bosethe extra neutrons entails a suppression of the Cooper pairs
condensed deuterons, when the nucleon density is reduceditothenp BCS state, which have the same quantum numbers
extremely low values. At the same time the chemical potenas the extra neutrons. The variational minimization of the
tial evolves from positive values to negative ofi@sregard-  Hamiltonian then leads to the so-called blocked gap equation
ing a mean fielgl approaching half of the deuteron binding [9], where the window ok, . . . ky states is missing in the
energy in the zero-density limit. This transition may be rel-integral equation for the gap. Since this window is situated
evant, and could give valuable information ap correla- close to the Fermi energy, where most of the pairing corre-
tions, in low-density nuclear systems such as the surface dations are built, the suppression mechanism is extremely
nuclei, expanding nuclear matter from heavy ion collisions efficient. This is the case for positive chemical potential.
collapsing stars, etc. The situation is, however, more complex when the chemi-

The np pairing effect is largest in the isospin symmetric cal potential approaches zero and becomes negative, i.e., in
systems. However, most of the systems of interest are, tthe limit of strong coupling. Clearly thep pairs will evolve
some extent, isospin asymmetric, i.e., there is usually a cete tightly bound deuterons in this limit and, because of the
tain excess of neutrons over protons. In this case the pairingospin asymmetry, they will coexist with a dilute gas of
is suppressed, since for neutrons and protons lying on diffefexcess neutrons. It is physically conceivable that in this limit,
ent Fermi surfaces the phase space overlap decreases as thekere the deuterons as well as the extra neutrons are ex-
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tremely dilute, the Pauli blocking effect of neutrons on the 1

deuterons will become negligible. This may have interesting Gm,wo'(k,t—t')=i—<T[ V(KDL L (kD]), (22
consequences, for example, in the far tail of nuclei, where a

deuteron condensate may exist in spite of the fact that there 1

the _denSIty can be quite asymmetric. Apart from f|n|te_> nuclei, Fro o (Kt =t) = =(T[,0 (K D) o (ki t)]),  (2D)
similar physical effects could play an important role in other I

low-density asymmetric nuclear systems.

The aim of this work is, therefore, a detailed study of thewhereo=1,] andr=n,p denote the spin and isospin quan-
behavior ofnp pairing in asymmetric nuclear matter as atum numbers, respectively. On introducing the Matsubara
function of density and asymmetry. The paper is organized aBequenciesv,= (2v+1)#T, whereT=1/3 is the tempera-
follows. In Sec. Il we set up the general frame in terms of theture, v=0,1,2 . . . , thepropagators are conveniently written
Gorkov formalism at finite temperature. In Sec. Il we in the Fourier representation as
specify the relevant equations to zero temperature and dis-
cuss the analytical limiting case in the weak-coupling ap- 1 .
proximation. Numerical results are presented and discussed Gro o)== 79G,, 1yi(kw,), (38
in Sec. IV. Our conclusions are summarized in Sec. V. !

Il. BASIC EQUATIONS Fo (kb= EE e tF (k). (3b)
- . . . TO,T O 1 18 = TO,T O [ Rl 1
In this section we briefly review the treatment of an

isospin-singlet superfluid Fermi system within the Green’sUSing the short-hand notatioB. A. G. and E. for 4X4

function formalism, se,e also _Reféﬁ—S_]._We use the stan- matrices in spin-isospin space, the Gorkov equations can be
dard method of Green'’s functions at finite temperatures, S€Qyritten as

e.g., Refs[10-14. In this formalism interacting superfluid

systems are described in terms of the Gorkov equations, D(k,w,) A(K) ) 1
which generalize the Dyson equation for normal Fermi sys- T’ v )( : Y ):( ) (4)
tems by doubling the number of propagators. For a homoge- A'(k)  —D(k,~w,)/\F'(k,®,) 0
neous system the normal and anomalous propag&@msd
F are defined as where
|
iw,—&n(K) 0 0 0
0 iw,—en (K) 0 0
D(k,w,)= . 5
(k) 0 0 i, —ep(K) 0 ©
0 0 0 iw,—&p (k)

and1 denotes the four-dimensional unit matrix. Since we are In this article we concentrate on pairing in the dominant
mostly interested in the pairing properties at very low den-4sospin-singlet channel that can be described by a gap func-
sity, where the nuclear mean field plays a minor role, theion A(k) with the structure

single-particle spectrum adopted in this work is simply the

kinetic one 0 0 0 Ag+ilAg
A 0 0 —Ag+iAg 0
k? B 0 —Ag—iA; 0 0 ’
SnT(k):Snl(k)ESn(k):%_ansk"_ ou, (63 AnciA 0 0 0
0 1
()
k2 which is a particular case of a unitary st&615,16
8p](k):8p1(k)58p(k):ﬁ_Mngk_ om, (6b)
ATA=A%1, A%=.detA=AZ+A7. (8

wheresk=k2/2m—,u,,u=(,un+,up)/2 is the average chemi- It allows in principle the coexistence of spin-singl&@=0)

cal potential between protons and neutrons, @po=(u,  and spin-triplet 8=1) pairing correlationf\g. In the low-
—mp)/2 is the associated shift. From now on we assumelensity region that we are interested in, pairing is realized in
nuclear matter with neutron excess so that>0. the spin-tripletswave channefSD,, i.e., A=iA;.
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p=23 f 90 A k) (w)
R )
=2>
k

(2m)
1( Sk) + 1( Sk) =+
> 1+E—k f(Ek)+§ l—E—k [1-f(E)]|

(12

where =, = [d3k/(27)® and f(E)=[1+exp(BE)] ! is the
Fermi distribution function.
Analogously, the discontinuity of the anomalous propaga-
FIG. 1. Sketch of the quasiparticle spectrum. Fory the  tor F',
lower (uppe) solid line correponds to neutror(rotons in the
normal state. Foe> u the lower(upped solid line corresponds to ~ A(k)
protons (neutron$ in the normal state. The corresponding dashed B(k,w)=27[ 8(w—E{)— d(w+E, )]f, (13
lines refer to nucleons in the superfluid state. k

€x

The anomalous propagatéi has the same spin-isospin Yields the gap equation
structure as\, whereas the normal propagateris diagonal

in the spin-isospin indices. Taking this into account, the sys- , . do
tem Eq.(4) can be inverted with the solution Ak ):% (K'[V[K) ZB(kvw)f(w)
iw,+&y(K) A(k) _
Gk w,)= e , 9 =— > (K'|VIK) ==[1-f(E )~ f(E)].
(ko) = e e ) (%a) 2 (KIVllo Zg (1= F(EO—f(E)]
(14)
iw,+en(K)
Gp(kywv): . — . 44! (9b) . . . .
(lo,—E)(iw,tE) Using the angle-averaging procedure, which is an adequate
approximation for the present purpo&mee Ref.[16]), the
—A(K) BCS gap equation for asymmetric nuclear matter can be de-
Froko,)=— — —, (9c)  rived:
(IwV— Ek )(Iw,,-i- Ek)
, , Ay (k) N _
; +A(K) Ap(k)==2 2 V(K 5=—[1-f(E))—f(E)],
Fin(k@,)= : (9d) K 2y
(iw,—E{)(iw,+Ey)
(1,1"=0,2), (15

where
. where EZ=¢2+ A(k)? and A(k)?=Aq(k)?+A,(k)? is the
Ei =Ex* ou=ei+AK)*+ dpu. (100 angle-averaged neutron-proton gap function. The driving

term,V,,., is the bare interaction in th&SD, channel. We

The isospin asymmetry thus lifts the degeneracy of the qugjge for the numerical computations in this work the Argonne
siparticle spectra, leading to two separate branches for pro\714 potential[17].

tons and neutrons. This is sketched in Fig. 1. In the region From Eq.(12) the total densityo=p,+ p, and the neu-
. ntpp

arognd,u, where E,< du, the ;uperf|q|d state is unstable tron excess’p=p,—p, can easily be derived and one gets
against the normal state and indeed it accomodates the un-

paired neutrons. This “isospin window” is responsible for .

the pairing gap suppression in the density domain Wh_ere p=22 N, nk=1——k[1—f(E§)—f(Ek’)],

nuclear matter is superfluid. It corresponds to the blocking K Ex

effect for the pairing in nucl€fi9]. (163
After analytical continuation of the Green'’s functions in

the complexw plane one calculates the spectral function

A(k, ), which is given by the discontinuity d across the sp=22, on, on=f(Ex)—F(E). (16b
real axis K
1 ey L1 ek - For a convenient parametrization of the total density, we also
AT(k’w):ZW[E 1+ E_k>5(w_Ek)+ > 1_E_k S(0+Ec)|s  introduce the quantitke=(372p/2)*3 which is, however,
(11) apart from the isospin symmetric system, not to be identified
with a Fermi momentum.
and then the density of particles Introducing the anomalous density
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Ay(k n
w|<k)=<a$,ka£,k>.=%k)[1—f<E:)—f<E;>]. ;- "

(17 n,p

and making use of Eq163), the gap equation, E@15), can
be recast in the Schdinger-like form

k2
() (L=m) 2 2 Vi (kK)o (k') = 24 (K). b P
k/ I/ 1 1 T
(18 pude  u uade e

In the limit of vanishing densityn,— 0, this equation goes FIG. 2. Momentum distributions of neutrons and protons in
over into the Schidinger equation for the deuteron bound asymmetric superfluid matter.
state[6]. The chemical potential 2= u,+ u, then plays the
role of the energy eigenvalue. physical interpretation of the formalism is that in asymmetric

Let us finally remark that in this article we do not study nuclear matter a superfluid state wp Cooper pairs with
the competition between and possible coexistence of isospi#ensity p— dp=2p, coexists with a gas of free neutrons
singlet and triplet pairing18]. It is clear thatT=1 nn and  with density dp. Since this latter is occupying a region
pp pairing gaps, which are unaffected by the isospin asymaround the Fermi surfackdetermined by 1 6(E, )], the
metry, will be larger than th& =0 gap at sufficiently large momentum space available for the pairing is reduced. Thus
asymmetry. Our results are thus valid up to the asymmetriethe effect of isospin asymmetry is to reduce the magnitude of
(yet unspecifiedat which the isospin triplet pairing becomes the energy gap; with increasing neutron excess the superflu-
dominant. On the other hand, as we show below, for venydity rapidly disappear$4,7,8.
low density systems the suppression mechanism due to the The solution of the gap equation, E4.9), assumes dif-
shift of Fermi surfaces is ineffective and it is reasonable tdferent properties according to the value of the chemical po-
assume that thep pairing will dominate other channels in a tential. One may distinguish three domaifi$:u>A (weak-
wide range of values of the asymmetry. coupling, pairing regimg (i) u~0 (Mott transition, and

We also restrict ourselves to work with a free single-(iii) <0 (strong-coupling, bound-state regimeé\pproxi-
particle spectrum, which is adequate at low density. Atmate analytical results can be found in the cdgeand (iii),
higher density, when the effective mass deviates substantiallgnd are described in the following.
from the bare mass, renormalization of the single-particle
spectrum should be taken into acco(ih6,19,2Q. This af- A. Weak-coupling regime
fects the magnitude of the pairing gap in general and the . o
critical asymmetries at which the pairing effect disappears !N the regionu>A the gap equation in the form of Eq.
[8]. In view of this approximation, the results shown below (198 can be solved in the usual weak-coupling approxima-

should be considered as only qualitative in the high-densitfion [21], in order to gain some insight in the qualitative
region. ehavior of the pairing properties in the asymmetric case.

This approximation is not very accurate, but it preserves the

physical content of the exact solution.
First, one notes from Eq19¢ that the unpaired neutrons
In order to disentangle the isospin effects from the therare concentrated in the energy intenfal — de,+ de],

mal ones, we focus in the following on the limit of zero with the half-width

temperature, wher&(E; ) =0 andf(E, )=1— 6(E, ), 6 be-

ing the step function. In this limit Eq$15) and(16) reduce Se=1op— A% (20

to

Ill. ZERO TEMPERATURE GAP EQUATION

This interval is free of protons and does not contribute to the
Ak) pairing interaction, whereas outside of it neutron and proton
Ap(k==> > Vir(k k') 5= 0(Ec), (198 distributions are equal and given by the BCS result, see Eq.
ol k (19b). This situation is sketched in Fig. 2. One notes at this
e point that the conditiodx> A has to be fulfilled in order to
pzzE {1_ _ke(Ek)} (19b) generate an asymmetry. Indeed forde < u the momentum
k Ey distributions of the two species are very sh@ppactically
Fermi distributiong and one obtains as relation between the

sp=23[1— 8(EQ)]. (199 asymmetrya and de:
“ ntde n—oe
In general these three coupled nonlinear equations have to be pn—p ( fo - fo )de\/é Se
solved numerically, maintaining the self-consistency. Before a=——+"P -——, (22
presenting the numerical results, let us, however, first discuss Pnt Pp ( fﬂ+58+ Jﬂ_ﬁs)de\/é 2 n
in some detail the physical content of these equations. The 0 0
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A The superfluidity vanishes smoothly, but with an infinite
(a) slope at
%] 3A,
amaxzmi (26)

which in the weak-coupling limit is a very small value.
We can also determine the dependence of the gap on the
Bu N difference of chemical potentialsu [7,22]:

A 20

N A o]
° \ Ao Ao ! @9
Ag21 In the symmetric system one hag.=A,,5e =0, while in-

creasing the asymmetry the gap decreases déttreasing
op and increasinge and vanishes afu = de=A/2.

a2 N o Physicglly, this be.havipr can be understood .by noting that
0 the chemical potential differencedg = u,— u, is the en-

FIG. 3. Dependence of gap (a) and chemical potential differ- €'Y On€ must invest in order to remove a proton from the

ence sy (b) on the width of the blocking intervabe within the ~ System and then to insert a neutron instead, in other words

weak-coupling approximation, see E@4). The solid lines denote the symmetry energy. However, in order to do so in the su-
the superfluid phase and the dashed lines the normal one. perfluid system with a neutron exce@&ven very smal| one

must necessarily break a pair in order to remove the proton,

i.e., the asymmetry is directly proportional &&. Thus we but then one does not gain energy by adding the neutron to
see thatie has the interpretation of an “effective” difference the top of its Fermi sea. That is whju=A in the pairing
of chemical potentials, since it i8¢ and notdu which de-  regime andéu=u“+ A< in the bound state regiméhe
termines the density of excess neutronsXet0. Only in the ~ equalities holding in the symmetric systero, clearly in a
normal system one hass = u, whereas pairing scree@g. ~ superfluid system of any density and asymmetiy, can
such thatde<du, and it needs a critical finitdu=A in  never be zero, because it involves breaking a fmibound

order to obtain a finite density of excess neutrons. state.
Coming now to the gap equation, with a contact interac- Then, successively increasing the asymmetry by breaking
tion V and energy cutoft., Eq. (193 reads pairs in this way and filling up the Fermi sea of excess neu-
trons, the pairing correlations are destroyed, and conse-
(2m)%2A/ [ec etp guently one must invest less energy in Qrder to exchange
1=- Wf_ﬂds 0(|e|— b¢) P (22)  pen. Thereforesu decreaseswith increasing asymmetry

(while e increases up to the point where, abu= d¢
=A,/2, thenp gap disappears completely ané2 is simply
given by the difference of Fermi energies of the two nonin-
teracting Fermi gases at this asymmetry. The system is then
in the normal phasejs = Su, which means that in order to
det+ou . :
1=N(0)VIn , (23)  further increase the asymmetry the paraméjerhas toin-
2\/,u_sc creaseagain, up todu= u, corresponding to pure neutron
matter. Consequently, values &f betweenA /2 andA g are
whereN(0)=mk:/27 is the level density at the Fermi sur- present in the superfluid as well as in the normal phase,
face of one type of particles. Therefore corresponding to different compositions of small and large
asymmetry, respectively. The relations betweéendu, and
de are sketched in Fig. 3.

We comment finally on the analogy to an electron system
in a magnetic field. Whereas in the case of nuclear matter
discussed before, an increasing asymmetry is imposed on the
system, leading to a smooth disappearance of the gap at a
Brtain maximum asymmetry, the situation for the electron
system is qualitatively different; Varying in this case the
magnetic field is equivalent to imposing the chemical poten-
tial differencedu instead of the asymmetry, which now cor-
responds to the magnetization of the system. Therefore one
A 7 observes in this case a first-order phase transitiodat
2\ 2* (25)  =Ao, when the pairs are suddenly broken up and the system

jumps immediately from the symmetric superfluid phase to

ForA<u<eg,, the integral can be approximately calculated,
yielding

Su+de=constEA, & A?=A2-2A.8s, (24)

whereAj is the value of the gap in the symmetric system of
the same density. We again see that itSis and notdu,
which determines the reduction & from its symmetric
value. The gap decreases very rapidly and disappears wh
the width of the window reachesé2 =A,, i.e., the size of
the gap at symmetry. This is shown in FidaB

We can now combine Eqg21) and (24) in order to
specify the dependence of the gap on the asymmetry:
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the magnetized normal phase. A magnetized superfluid pha3ée numerical value of the last integral being2, one ob-

is thermodynamically unstable in this case. tains for the asymmetry
-2 A?
- o a=t"Po_q Pu 29
. Mott-transition regime P P Mp
Let us now discuss the situation when the dengitgte- ith
creases. As we have shown in RE8)], simultaneously the wi
chemical potentialu decreasegdisregarding the Hartree- (2mup)3?
Fock shify and at a certaifvery low) density(of the order of Pu= D ~0.00049 fr3. (30)

p~po/100, wherepo~0.17 fm 2 is the nuclear matter satu- 8w

ration density u passes through zero, corresponding to th

®'he low-density result is therefof@3
Mott transition of the deuterof6]. This also remains true in Y es]

the asymmetric case; in fact, the weak-coupling approxima- A p(1—a)
tion used above predicts that in pure neutron matter this hap- M—(p,a) = \/p—, (3
D M

pens atu,=(7/2)°up, Whereup=Ep/2~1.1 MeV is half
of the deuteron binding energy. This corresponds to a density,q thus a gap exists for any asymmetry.

p~0.0016 fn>. . _ _ The ineffectiveness of the neutrons in -0 limit also

It seems clear that the Pauli blocking starts to loose it$ecomes evident when considering Egg8). Indeed in the
efficiency once the left-hand side of the windpw— e, jimjt p, ,pp—0 also the momentum distributiam, vanishes
+de] passes beyond zero, because then only part of thgnq then the equation goes over into the free deuterori Schro
window participates in the blocking. Whem has reached ginger equation, independent of the asymmetry of the sys-
negative values, less than half of the blocking window iste . Since the Pauli blocking becomes less and less impor-
a_lctually effective. While in the symm(_atric case noth_ing Parltant as the density decreases, the asymmetry can become
ticular happens when thep Cooper pairs change their char- |arger without destroying the superfluidity. As we mentioned
acter to bound deuterons in the low-density limit, the asymready in the introduction, this aspect can become important
metric case withsu#0 needs special attention. Here both i the far tail of the nuclear densities or in other low-density
oun andu vary strongly with asymmetryat fixed total den-  nyclear systems.

sity), and the results have to be found numerically, solving | the presence of a neutron excess the Bose-condensed

the coupled Eqs(19). deuterons occupy the negative energy skate— Ep and the
free neutrons the positive energy states. With increasing
C. Strong-coupling regime asymmetry the neutrons accommodate in the next positive

Once the density becomes so low that simultaneously EN€rgy states according to the Pauli principle. As we see
the mean distance among the deuterons as well as amoff§™m the wave function in the introduction, even in the low-
deuterons and excess neutrons becomes much larger than {ifghsity limit the excess neutrons stay antisymmetrized with
deuteron radius, the excess neutrons cannot excert any Sig]_e_neuf[rons bound in the deuterons. Therefore one cannot
nificant influence on the deuteron wave function. This isdistinguish between bound and unbound neutrons, the
quite opposite to the weak-coupling cage-A considered chemical potential of the neutrons is always the one of the

above, where we have seen that only a slight neutron exces&Pound ones which is tending to zerogaapproaches zero.
destroys thenp Cooper pairs. On the other hand the proton chemical potentigltends to

For negative chemical potentials E(@5) is not valid, the binding energy of the deuteron, since it is t_he binding
since the Fermi surface drops into the unphysical region€N€rdy of the system per half the number of particles bound
However, the low-density limip—0 of the BCS equations N the deuterons. Therefore the mean chemical poteptial
provides simple analytical expressions, once the density is s (#nt #p)/2 tends to half the binding energy of the deu-
low that the chemical potential is close to the asymptoticléron such that the eigenvalug.f Eq. (18) hits precisely
value u— — up=—Ep/2~—1.1 MeV. In some sense now the e|genvalue of thg deuteron @& 0. To summarize, the
the gap equatiofi198 and the density equatiori&9b),(190 beha_vlor. of Fhe various chemical potentials in the low-
interchange their roles, because the gap equation goes oV@@nsity limit is u,—0,up—~—Ep,u— —Ep/2,6u—Ep/2,
into the Schidinger equation, determining the chemical po-independent of the asymmetry.
tential, whereas the value of the gap can be extracted from
the equations for the density, in the following manner. The IV. NUMERICAL RESULTS

density of protons is given b . . .
yore d y We discuss now the results that were obtained by numeri-

cal solution of the system of E@L9), using the Argonné&/,,

(2m)%? (= 1 e—u , . : g :
Pp= 5 de\e > 1-—m— potential as the bare interaction. We begin, in Fig. 4, with an
2% Jemin<lul V(e—p)*+A overview of the resulting gap in the density-asymmetry

2mug)¥? AZ (= X plane. As discussed in Sec. Ill, in the high-density pairing
~($_2f dxA /_2_ (28) regime the superfluidity vanishes at a finite asymmetry
272 4upplo (x+1) amadp), decreasing with increasing density, whereas in the
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the superfluid protons. As discussed before, see Fig. 2, there
is a proton-free region that is at high density centered around
the Fermi momentum, and at low density excludes all low-
momentum states, representing the Fermi sea of nonsuper-
fluid excess neutrons. The resulting variation of the gap func-
tion in the relevant regions of momentum space is rather
small at low density, however, it is competing with the ki-
netic energy in the self-consistent determination of the nor-
mal region, which is determined by the variation Bf
=/eZ+ AZ. The anomalous density develops a characteristic
peak at the Fermi momentum only in the high-density re-
gime, whereas at low density it exhibits a smooth variation
typical of the deuteron wave function.
In Fig. 6, we show in more detail the gap in symmetric
matter, together with the analytical approximation Egfl)
(top panel; the maximum value of asymmetry at which the
superfluidity disappears, in comparison with the analytical
estimate Eq(26) (middle panel, as well as, in the bottom
. . panel, the variation of the various chemical potentials along
k. [fm™] 5 the line[p,amadp)]. The asymptotic behavior predicted in
F the previous section du, wn, 1, mp) —(1,0-1,—2)up is
FIG. 4. The pairing gap as a function of total densjty observed fop—0.
=(3w%p/2)"®] and asymmetry. We finally discuss briefly the situation at finite tempera-
ture, that was treated in detail in Refd4.,6—§. As long as
low-density bound-state regiofbelow ke~0.35 fm 1,p  T<A, the temperature effects are small. However, in the
~po/100) a gap exists for any asymmetry, roughly following low-density limit, whenA—0, a qualitatively different be-
the analytical result, Eq31). havior from the zero temperature case can be observed: In
In Fig. 5, we show the momentum distributions, gap func-Fig. 6 we have seen that in this limjk,—0 and u,
tions, and anomalous densities at three different dengities — —2up, due to the coexistence of the deuterons with a
=10 %,10"2,10 * fm~3, representative of the low, inter- Fermi sea of free neutrons, see the discussion in Sec. Ill A.
mediate, and high-density regions mentioned in Sec. Ill. The\t finite temperature, however, part of the deuterons are bro-
top panels of the figure show the momentum distributions oken up and therefore this argument does not apply any more.

-
o
|

-
o
|

[

A [MeV]

~

n

o
-

p =0.0001 fm® k. =0.114fm™ p=0.0100 fm®, k. =0.520fm™ p =0.1000 fm™®, k. = 1.140 fm"”

A [MeV]

C
0.2

k [fm™]

FIG. 5. Proton momentum distributions,(k), gap functionsA(k), and anomalous densitiag(k), for different total densitiesp
=10"%,102,10"1 fm~3, and different asymmetries. The dots indicate the boundaries of the interval containing the neutron excess in each
case.
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—— T=01MeV
s ———- T=05MeV e
—-—-- T=1.0MeV T

Aq [MeV]

T BRI BT U R i

4 I
0 0.005 0.01

p [fm ]

FIG. 7. Chemical potentials of neutrofigoper curvesand pro-
tons (lower curve$ at «=0.1 as functions of density for different
temperatures.

0.25
and one clearly sees that this relation can only be fulfilled, at
any finite temperature, fou=0, i.e., uy=u,. On the
other hand, we see from E(L8) that u— — up . Therefore

we have forT #0 the limit u, wn , up— — up . This behavior

is clearly born out from the numerical calculation, Fig. 7,
which shows the density dependenceugfand ., for fixed
asymmetry «=0.1 and various temperatureb=0.1,0.5,

1.0 MeV. Itis seen how with vanishing temperature the situ-
ation shown in the lower panel of Fig. @r a«=1) is ap-
proached.

0.4
o
(=] [34]
LI N L L L L L L L L B B

w
L AL AL BN N N

0 _/ V. CONCLUSIONS

[ e In this article we extended a previous stud] of the
"""""" transition from a neutron-proton BCS superconducting state

0 0.2 0.4 06 08 1 1.2 to a Bose condensate of deuterons in symmetric nuclear mat-
| o Kelfml . ter to systems with isospin asymmetry. This is an important
00 _ 0.001 0003 0.01 0.03 0.05 01 aspect, since most of the low-density nuclear systems, such
p [fm3] as tails of nuclear density distributions in nuclei, have a
strong neutron excess. In the high-density weak-coupling re-
FIG. 6. Top panel: Thé€SD; gap in symmetric nuclear matter gime, u>A, even a small asymmetry is sufficient to sup-
as a function of total density or equivalent Fermi momentuik:  press the pairing correlations completely via the Pauli block-
=(3n?p/2)'? (solid line). The dashed line shows the analytical jng effect. However, we find that in the situation where the
approximation Eq(31). Central panel: The maximum asymmetry at density drops so low that the chemical potential turns nega-
which a gap existgsolid ling) and the approximation Eq26)  tiye and deuterons start to form, the isospin asymmetry is
(dashed ling Lower panel: The values of the various chemical 3 ch |ess important, i.e., the system supports pair correla-
potentials, o, g pp . COrTesponding to the asymmeipacdis-  tions (in the form of a deuteron condensater much larger
played in the panel above. asymmetries.
Indeed one can argue that, once the density is so low that
This can be seen from E@16b) for §p. In the limit p,6p  the spatial separation between deuterons and between deuter-
—0 we haveA =0, since at finite temperature the systemons and extra neutrons is large, the Pauli principle is ineffec-
becomes normal at a certain critical density. Therefore Edgtive and, hence, asymmetry can not destroy any longer the
(16b) reads binding of neutron-proton pairs. Our numerical calculations
fully confirm this conjecture. Most easily this effect can be
understood by examining the phase space blocking effect on
0222 [f(e—ou)—fe+ op)] (32) the anomalous density. In the high-density r'egime the latter
K guantity shows a peak structure as a function of the mean
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chemical potential of neutrons and protops Once the the expandindasymmetri¢ nuclear matter in heavy ion col-
asymmetry is imposed the Pauli blocking effectively cuts outlisions, and other low-density nuclear systems.

the major part of this peak structure. When the chemical

potential turns negative, there is no peak any more in the ACKNOWLEDGMENTS
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