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Abstract

In this paper, we consider a method for implementing a quantum logic gate with photons
whose wave function propagates in a one-dimensional Kerr-nonlinear photonic crystal. The
photonic crystal causes the incident photons to undergo Bragg reflection by its periodic
structure of dielectric materials and forms the photonic band structure, namely, the light

dispersion relation. This dispersion relation reduces the group velocity of the wave function of
the photons, so that it enhances nonlinear interaction of the photons. (Because variation of the
group velocity against the wave vector is very steep, we have to tune up the wavelength of

injected photons precisely, however.) If the photonic crystal includes layers of a Kerr medium,

we can rotate the phase of the wave function of the incident photons by a large angle
efficiently. We show that we can construct the nonlinear sign-shift (NS) gate proposed by
Knill, Laflamme and Milburn (KLM) by this method. Thus, we can construct the conditional
sign-flip gate for two qubits, which is crucial for quantum computation. Our NS gate works
with probability unity in principle while KLM’s original one is a nondeterministic gate

conditioned on the detection of an auxiliary photon.

1. Introduction

Since Shor’s quantum algorithms for prime factorization and
discrete logarithms appeared, many researchers have been
devoting their efforts to realization of quantum computation
in their laboratory [1]. To implement a quantum computer,
we have to prepare qubits, which are two-state systems, and
quantum logic gates, which apply unitary transformations
to qubits. Generally speaking, we can apply an arbitrary
transformation of U(2) group to a qubit at ease no matter
which physical system we choose as the qubit. However,
almost all the researchers think implementation of a two-qubit
gate to be very difficult because the two-qubit gate has to
generate entanglement between two local systems. Moreover,
it is shown that we can construct any unitary transformation
applied to qubits from U (2) transformations and a certain two-
qubit gate, such as the controlled-NOT gate or the conditional
sign-flip gate [2—4]. From the above reasons, theoretical and
experimental physicists aim for realizing the two-qubit gate.
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Among proposals made for implementing quantum
computation, for example realization of qubits by cold trapped
ions interacting with laser beams [5,6], polarized photons in the
cavity quantum electrodynamics system [7], nuclear spins of
molecules under nuclear magnetic resonance [8], and so on, the
scheme of Knill, Laflamme and Milburn (KLM) is very unique
[9,10]. They show a method for constructing the conditional
sign-flip gate from linear optical elements (single photon
sources, beamsplitters, and photodetectors). Because many
researchers believe that only nonlinear interaction between
two qubits can generate quantum correlation, KLM’s scheme
that does not require any nonlinear devices seems to be novel
and attractive. In KLM’s method, Bose—Einstein statistics
of photons play an important role, so that we can observe
bunching of photons in outputs of beamsplitters. Recent
progress about KLM’s linear optical quantum computing is
reviewed in [11].

To implement the conditional sign-flip gate, KLM use the
nonlinear sign-shift (NS) gate, which applies the following
transformation to a superposition of the number states of
photons |n) for n = 0, 1,2: «¢|0) + B|1) + y|2) — «|0) +
BI1) — y|2) (with probability %). The NS gate is essential for

© 2008 IOP Publishing Ltd  Printed in the UK
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KLM’s scheme, and they construct this gate only from passive
linear optics. Although KLM’s NS gate is a nondeterministic
gate that works with probability }1, we can detect its false event
by measuring an auxiliary photon.

In this paper, we discuss the method for implementing
the NS gate with a one-dimensional Kerr-nonlinear photonic
crystal.

A photonic crystal is a periodic structure of dielectric
materials whose dielectric constants are different from each
other. If a wavelength of a propagating electromagnetic wave
is comparable to the period of the crystal, Bragg reflection
occurs and the photonic band gap (the light dispersion relation)
is formed [12-14]. This dispersion relation reduces the group
velocity of the electromagnetic field of incident photons, and
thus it enhances nonlinear interaction of the photons. If we
construct the photonic crystal from alternating layers of a Kerr
medium and a medium with linear polarization (a medium with
x® = 0and x® # 0 and a medium with x® = x® =0,
where x ™ is the nth-order nonlinear electric susceptibility) as
a one-dimensional periodic structure, we can rotate the phase
of the wave function of the incident photons by a large angle
efficiently. (In general, for almost all the dielectric media, Kerr
nonlinearity is too weak to rotate the phase of wave function
of photons by a certain angle.) Using this method, we realize
KLM’s NS gate. In our implementation, the NS gate works
with probability unity in principle.

Someone may make an objection to our proposal because
we are going to introduce a nonlinear device into KLM’s
scheme that aims to construct a quantum computer only with
passive linear optics. However, the author thinks that our
proposal is a practical compromise because the Kerr medium
is a well-studied material in the field of optics and rapid
progress has been made in experimental studies of photonic
crystals. The idea of making use of the Kerr medium for
the conditional sign-flip gate can be found in [15]. Inoue
and Aoyagi show experimental evidence of enhancement of
the nonlinearity in a Kerr-nonlinear photonic crystal in [16].
Numerical investigations of a one-dimensional Kerr-nonlinear
photonic crystal are made in [17, 18]. Some research groups
have recently proposed optical quantum computation schemes
using weak cross-Kerr nonlinearities and strong probe coherent
fields [19-23]. Their proposals and our method use optical
nonlinearities in common with each other.

This paper is organized as follows: In the rest of this
section, we give a brief review of KLM’s scheme. In section 2,
we outline the NS gate realized by the Kerr-nonlinear photonic
crystal. And then, we estimate the time-of-flight that the
injected photons need for obtaining a certain angle of the phase
rotation caused by nonlinear interaction in the homogeneous
Kerr medium. In section 3, we investigate the photonic band
structure in the photonic crystal and evaluate the group velocity
of the photons. From these results, we give a concrete example
of a design for the photonic crystal that realizes the NS gate
with giving numerical values of the period of the crystal, the
thickness and the dielectric constant of each layer, and so on.
In section 4, we give discussions. In appendix A, we explain
the third-order nonlinear susceptibility x® and the nonlinear
refraction coefficient n,. In appendix B, we derive the wave

x1 x1

x2 ]x

Yiy2 y2 ]y

Figure 1. Implementation of the conditional sign-flip gate with the
NS operations. Qubits x and y consist of a pair of modes x1 and x2
and a pair of modes y1 and y2, respectively. Symbols B1 and B2
represent beamsplitters. Symbols NS1 and NS2 represent the NS
gates. Photons travel from left to right in this network.

equation and the effective Hamiltonian of the electromagnetic
field in the nonlinear dielectric medium.

Here, we sketch out KLM’s quantum circuit for
implementing the conditional sign-flip gate.  First, we
construct a qubit from a pair of optical paths. The optical path
(mode) forms a physical system which takes a superposition
of the number state |n) forn = 0,1, 2, ..., where n is the
number of photons on the path. |0),; ® |1) is a state where
modes x1 and x2 have zero and one photons, respectively,
and we regard it as a logical ket vector |0),. We regard
[1),1 ® |0)42 as a logical ket vector )., similarly. And we
describe an arbitrary state of a qubit as |¢p), = «]0), + B|1)x
for |a|> + |B|> = 1. (This construction of a qubit is called the
dual-rail qubit representation [15].)

Second, we define the NS operation as follows:

[¥) = al0) + BI1) +y[2) — [¥) = «|0) + BI1) — y[2).
ey

We pay attention to the fact that the NS operation does not
work on a qubit but on a superposition of the number states of
a single mode, |0), |1), and |2).

Third, we construct the conditional sign-flip gate from
the NS operation as shown in figure 1. An optical network
drawn in figure 1 works as the conditional sign-flip gate, whose
operation is given by
D)x @ lk)y = (=D 1) ® 1K)y for j k € {0, 1)

(2)

Let us confirm the function of this network. In figure 1,
symbols B1 and B2 represent beamsplitters, which transform
the incident number states of modes al and a2 as follows:

(@)™ (@)™0)4110)42

1
[n)a1lm)a2 =
vnlm!

S G a I @] = ) 10)a (0}
/—n!m! \/5 1 2 \/i 1 2
forn,m € {0,1,2, ...}, 3)

where a'l" and a; are creation operators of modes al and
a2, respectively, and their commutation relations are given
by laj.a] = 85 and [aj, @] = [a].a]] = O for j.k €
{1, 2}. The beamsplitters B1 and B2 replace a'll' and a;' with

¥

(1 /«/5)((11 + ag) and (1/ «/5)(:11T — az), respectively. We give
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Figure 2. An outline of the NS gate constructed from a
one-dimensional Kerr-nonlinear photonic crystal. The photonic
crystal is composed of alternating layers of materials A and B with
thicknesses [ and /g, respectively. (Thus, a period of the crystal is
given by (I + [g).) The material A is a linear dielectric medium
whose dielectric constant is given by €4, and the material B is a Kerr
medium whose dielectric constant and third-order nonlinear
susceptibility for optical Kerr effect are given by €g and XéS)»
respectively. A wave function of injected photons |1r) propagates
through the photonic crystal with nonlinear phase rotation of the
optical Kerr effect enhanced by the slow group velocity, and it goes
out of the photonic crystal as |¢/').

attention to the fact that B2 applies an inverse transformation of
B1. Symbols NS1 and NS2 represent the NS gates that apply
the operation given in (1) to the modes a1 and a2, respectively.
If we put a superposition of |(_))x|(_))y, |(_))X|T)y, and |1), |6)y
into the left side of the network shown in figure 1, the
network leaves it untouched and returns it as an output from
the right side of the network. However, if we put a state
I1)211)y = [1)x110)x2]1),1]0) 2 into the network, the following
transformation is applied to the modes x1 and y1:

Bl
IDxal Dy —>

1
ﬁ(|2>a1 10)a2 = 10)a112)a2)

1
——(2)4110),
ﬁ(|)1|)2

NSI,NS2 B2
— —10)a112)a2) — —1)x1l1)y1-

“
Thus, we obtain —|1),[1), = —[1),1]0)2]1),1]0),2 as an
output for the input state |1)| T)y.

Therefore, we confirm that the network shown in figure 1
realizes the conditional sign-flip gate. Moreover, we notice
that implementing the NS gate is essential for the network in
figure 1.

2. An outline of the NS gate

In this section, we explain the NS gate, which is constructed
from a one-dimensional Kerr-nonlinear photonic crystal. As
shown in figure 2, we inject photons whose wave function
is given by |¢) (a superposition of |0), |1) and |2)) into
the photonic crystal. The photonic crystal is composed of
alternating layers of materials A and B, and they form a one-
dimensional periodic structure with a period (/s + /g). The
material A is a linear dielectric medium whose dielectric
constant is given by €5, and the material B is a Kerr
medium whose dielectric constant and third-order nonlinear
susceptibility for optical Kerr effect are given by eg and Xé’” ,
respectively. While the wave function of the photons travels
through the photonic crystal, it undergoes Bragg reflection and
its group velocity decreases. At the same time, the phase of
the wave function is rotated by the optical Kerr effect induced
by the layers of he Kerr medium B. Because the slow group

velocity enhances the Kerr nonlinearity, we can expect the
phase to rotate by a large angle efficiently.

Here, we estimate the rotational angle of the phase caused
by the optical Kerr effect in a homogeneous Kerr medium by
way of trial. (We do not investigate the phase rotation in a one-
dimensional Kerr-nonlinear photonic crystal here. We evaluate
the phase rotation caused by the photonic crystal in section 3.)
According to [24, 25], we have the effective Hamiltonian of
photons in the homogeneous Kerr medium with € and x® as

+ 1 N2 2
H>~hw aa+§ +hyx(a")a 5
and 3
_9n
wx? ©)
~ 8 e2Sd

where w is a circular frequency of the photons, S represents
the cross-sectional area of a device made of the Kerr medium,
and d represents the width of the wave-packet of the photons
in the medium. Thus, Sd is the volume for the quantization
of photons. (While x©® is given by a fourth-rank tensor as
P=x":E+x® :EEE in general, x® in (6) represents
a certaln component of the fourth-rank tensor. In appendix A,
we give a brief explanation about x® and the nonlinear
refraction coefficient n,, which is observed in an experiment
direct. In appendix B, we show derivation of the effective
Hamiltonian given by (5) and (6).)

To derive the effective Hamiltonian given by (5) and (6),
we carry out the following process. First of all, we perform
the quantization of the free electromagnetic field whose
Hamiltonian does not include x®. Next, regarding x® as
an expansion parameter, we evaluate the first-order perturbed
energy, which we can consider to be the effective Hamiltonian.
(This process is explained in appendix B.) In the derivation of
the Hamiltonian given in (5) and (6), we assume that photons
travel in the homogeneous Kerr medium. However, the system
that we discuss in this paper is photons propagating through the
photonic crystal. Thus, we have to consider the wave function
of photons which extends over many layers of the photonic
crystal. Therefore, the Hamiltonian given by (5) and (6) offers
us a rough picture of the phase rotation. (Moreover, although
we discuss the phase rotation by quantum mechanics in this
section, we derive the photonic band gap by classical theory
of electrodynamics in section 3. Hence, our analysis of the
quantum gate is semi-classical.)

According to (5), the number state of the photons |n) for
n =0,1,2,... obtains the phase rotation exp[ixn(n — 1)t],
where ¢ is the photons’ time-of-flight in the crystal. (We
remember (a)?a?|n) = n(n — 1)|n). Because the first term
of (5) (namely, the unperturbed Hamiltonian) gives only the
background phase rotation expf{iw[n + (1/2)]t} for |n), we
can neglect it.) Thus, the Kerr medium transforms the wave
function of the travelling photons as «|0) + g|1) + y|2) —
a|0) + B|1) +e2X'y|2). If we let | x| be equal to 77 /2, we can
use this photonic crystal as the NS gate.

In [26-28], nonlinear optical properties of GaAs/GaAlAs
multiple quantum well (MQW) material are studied. In [27],
Miller et al prepare a sample that consists of 84 periods of
144 A GaAs and 102A GaAs/Gag,Aly3As and obtain the
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nonlinear refraction coefficient 7, ~ 1.2 x 10~*cm? W—! at
wavelength (~850 nm). The dielectric constants of GaAs and
GaAlAs are given by € = 13.0 x ¢y, where ¢p (= 8.85 x
10~"2Fm™") is the dielectric constant of vacuum. From the
result of n; ~ 1.2 x 10~*cm? W', the third-order nonlinear
susceptibility of GaAs/GaAlAs MQW structure is given by
x® =297 x 10 %esu = 3.67 x 102! m C V3 (SI unit).
This |x®| is much larger than those of other materials. (The
relation between 7, and x ® is explained in appendix A [29].)

Let us estimate t = m/(2x), the time-of-flight for
realizing the conditional sign-flip operation, numerically. We
assume that the wavelength of the incident photons is given
by A =847 x 107" m (w = 27 (c/A) = 2.23 x 10 rads™!,
v = ¢/A = 3.54 x 10'*s71) which is slightly out of tune
from 850nm. (We use ¢ = 3.00 x 108 ms~!.) We also
assume that the incident photons form a wave-packet whose
cross-sectional area and width in vacuum are given by § =
1.0 x 1078 m? (a square with the side-length 0.1 mm) and
dy = 4.24 x 107®m (five times as long as the wavelength),
respectively. This wave-packet corresponds to a femtosecond
pulse of width 14.1 fs. Because the width of the wave-packet is
shortened in the medium as d = /(eopo)/ (€ n)dy, where g
and p represent the magnetic permeabilities of vacuum and
the material, respectively, we obtain d = 1.18 x 10~ (m)
in GaAs/GaAlAs. (We use the fact © ~ uo for GaAs and
GaAlAs.) The Planck constant is given by i = h/(2n) =
1.05 x 1073*Js~!. Substituting the above numerical values
into (6), we obtain x = 1.38 x 10°s~!. Thus, we need
t = 7/Qy) = 1.14 x 1079 for the time-of-flight in
GaAs/GaAlAs MQW material. To obtain the time-of-flight
t = 1.14 x 10795 in the GaAs/GaAlAs MQW material,
we have to prepare a device whose length is equal to L =
Vo) /(emyet = 9.49 x 1073 m. (In this evaluation, we
assume that the velocity of the photons in the Kerr medium is
not affected by the term of . This is because the contribution
of the term of x is much smaller than the Hamiltonian of the
free photons. We notice that the term of x in the Hamiltonian
increases in proportion to the square of the number of the
photons and we consider the case where the number of the
photons is equal to two at most now. Details of this discussion
is given in section 3.)

In the above estimation, the volume for the quantization
of photons Sd is crucial. We assume § = 1.0 x 10~%m?
and this quantity corresponds to the cross-sectional area of the
device of the GaAs/GaAlAs MQW material. To prevent the
wave function of photons from tunnelling outside of the box for
quantization, we have to wrap up the device of GaAs/GaAlAs
in a material whose refractive index is larger than refractive
indexes of both GaAs and GaAlAs. This means that we
have to make a cavity of the GaAs/GaAlAs MQW material
for confining photons inside, and the cross-sectional area and
the length of the cavity is given by S = 1.0 x 10~¥m? and
L =9.49 x 1073 m, respectively.

The author cannot judge whether this requirement is
feasible for realizing in the laboratory. Because the ratio
between two side-lengths of the cavity is very large, it seems to
be difficult to fabricate this device. To overcome this problem,
we reduce the group velocity of photons in the Kerr medium
by the dispersion relation induced by the photonic crystal.

3. Dispersion relation of the Kerr-nonlinear
photonic crystal

In this section, we investigate the photonic band gap (the
dispersion relation) induced in the photonic crystal of figure 2.
And then, we derive the group velocity of incident photons
from this dispersion relation.

The wave equation of the electromagnetic field in a one-
dimensional Kerr-nonlinear photonic crystal is given by

82 32

32L& 1) — o) 77 £z, 1)

072
32

—nox V(@75 E@ D" =0, %)
0 0
—F , 1) = ——B , 1), 8
pr L@ D =5 B ®)
where
€(z+1a+1p) =€(2) for — oo < x < 00, 9)

_Jea(=0) 0<z<la,
SO {eB<> 0) I <z <lx+l, (19)
xP@+Ia+18) = x®) for —o0 < x < o0, (11)

0 0<z<l

3) _ X As
xT@) = {x“) In <z <l +1s. (12)

In (7), we assume that the photonic crystal is periodic
in the z-direction and uniform in the xy-plane, and the
electromagnetic wave propagates in the positive z-direction.
Derivation of (7) and (8) is shown in appendix B.

Here, we assume that the medium B is the GaAs/GaAlAs
MQW material and all physical quantities are given in
section 2. We can estimate the contribution made by the term
wox @ (2)(8%/3t*)E(z, t)* of (7) as follows: because of (6) and
(B.22), (B.24), (B.29) in appendix B, we obtain the relation

@ ho 8 X

XVE? ~ 4 ——= =

=. 13
e€Sd 9w 13

(We pay attention to the fact that the number of photons

in the wave-packet is equal to two at most.) And, using

x =138 x 105! and w = 2.23 x 10" rads~!, we obtain
8 x

-2 =550x 107,

9% (14)

Thus, we arrive at

1PV E? «e. (15)

Hence, we can neglect the term that include x® in (7)
for evaluating the photonic band gap. Moreover, we take
monochromatic light as an approximation of the injected pulse
into the photonic crystal, so that we only need to consider a
stationary solution,

E(z,1) = E(z)e . (16)

(In section 2, we assume that the signal injected to the
photonic crystal is a femto-second pulse of the typical length
5i. Propagation of ultrashort pulses in the Kerr-nonlinear
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photonic crystal is considered in [17]. Scalora et al indicate
that the nonlinearity causes various effects to the pulse near the
band edge. However, because we need hard calculations for
analysing the behaviour of the ultrashort pulse in the photonic
crystal and it is beyond the purpose of this paper, we neglect
these effects for simplicity. Thus, we adopt the approximation
by the monochromatic light.) Thus, the wave equation that we
have to solve is written down as

32 (@) (o)’ _
[a— ?(z) }E@ =0

where (9) and (10) are assumed. This problem is known as
Kronig-Penney model and we can derive its exact solutions
[30,31].

Let us solve (9), (10), and (17). Solutions of the region I
(0 < z < lp)and the region II (I5 < z < Ia + () for (10) and
(17) are given by

E;j(z) = Cj.exp(iK;z) + C;_exp(—iK;z)
for j =1, 1I,

w [€EA w [€B
Ki=—[—, Ky=—/—.
c €0 c €0

At points where a finite potential step exists, the above
solution must be continuous together with their derivatives (i.e.
the continuity conditions). Moreover, because € (z) is periodic,
we can apply Bloch’s theorem to the continuity conditions of
the solution.

a7

(18)
where

19)

Bloch’s theorem. Suppose Ei(z) is a solution of (9) and (17).
Then, Ey(z) satisfies the following relations:

Ex(z) = i (2), (20)

up(z +1a +1g) = ur(z) for — o0 < z < 00, 21
T b4

— <k < . 22

Ia+1p Ia+1p (22)

Thus, we can require the continuity conditions to E1(z)
and Ey(z) as follows:

E((0) = Eu(0), (23)
d d
—E| =—En| ., (24)
dz z=0 dz z=0
Eq(lp) = "0 Ey(~1p), (25)
d - d
—Ep =) — |y (26)
dZ Z=1A < Z=7l|3
The above four equations can be rewritten in the form
CI+
Ci-
M =0, 27
Cus @7
Cr-

w(lA+lB)/27TC

0.4+
e
02}
I
I
(Ia+lp)k
- —n/2 0 /2 T

Figure 3. The dispersion relation of the photonic crystal with

In =15 =3.57 x 1077 (m), €5 /€0 = 1.0 and €5 /€y = 13.0. Broken
lines indicates a point where w (Ix + Ig)/2mc = 0.843 (i.e.
=223 x 108rads™! and A = 8.47 x 107" m) and

(Ia +Ig)k = 0.158. This point belongs to the fourth conduction
band.

where
1 1 —1 —1
| K1 —K; —Ky Ky
M = P /P —Q/R —QOR |’ (28)
KiP —-K;/P —KuyQ/R KnpOR
P = exp(iKila), (29)
QO = explik(la + )], (30
R = exp(iKnlB). (31)
From (27), we obtain det M = 0, and it implies
cos[(Ip +Ig)k] — cos(Io K7) cos(Ig K1)
KK KD sinda K = O 32)
————sin sin =0.
2K Ky AK1 B K1

From (32), we can obtain the light dispersion relation
o = w(k).

Here, we substitute physical quantities introduced in
section 2 into (32). The implementation is as follows: the
materials A and B are air and GaAs/GaAlAs MQW structure,
respectively. The dielectric constants of them are given by
ea/€0 = 1.0 and eg/€ep = 13.0. We assume the thicknesses
of layers that compose the photonic crystal are given by
In =l = 3.57 x 1077 m. Using (19) and (32), we obtain the
light dispersion relation drawn in figure 3. The group velocity
of the light in the photonic crystal can be written in the form

dw
vglko) = o

. 33
i, (33)

We draw the group velocity ve(k) of the fourth conduction
band in figure 4.

Because the variation of vg against k is very steep in the
region where v, takes a small value as shown in figure 4, we
need to tune up the wavelength of injected photons precisely
for obtaining the slow group velocity. (At the same time, we
have to adjust /5 and /g precisely because v, is sensitive to the
thickness of the layers, as well.)

If we inject photons with A = 8.5 x 10~’m and
@ = 2.22 x 10" rads™! into the photonic crystal, its wave
vector and group velocity are given by (/a +Ig)k = 0.295
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0.3

0 /2 n
(Ia+1p)k

Figure 4. The group velocity v, (k) /c of the fourth conduction band
in figure 3. When we have (I, + [g)k = 0.158, we obtain
v,/c = 0.0995. Broken lines indicates this point.

and vg/c = 0.171, respectively. On the other hand,
if we inject photons with A = 847 x 107’m and
@ =223 x 10rads™" into the photonic crystal (this
corresponds to w(la +1g)/2mc = 0.843), its wave vector
and group velocity are given by (I + lg)k = 0.158 and
vg/c = 0.0995, respectively.

Now, we obtain the group velocity v, of photons in the
photonic crystal. However, photons injected into the photonic
crystal undergo Kerr-nonlinear interaction only while they
travel through the layers of the material B. Thus, we have to
estimate the probability P, that the photons stay in the layers
of the material A and the probability Pg (= 1 — Pa) that
the photons stay in the layers of the material B. Because the
number of photons in a certain box is in proportion to energy
contained in it, we obtain the relation

PAZPB

w 27 /w IA 1 1
= — dtS/ dz—|:eAE1(z, H*+ —Bi(z, l)2i|
2 0 0 2 Mo

21 /w Ia+lg
13 1 , 1 2
. drS dz=|egEn(z, )"+ —Bu(z, t)
27 Jo In 2 Mo
21 /w I €
- dt | dz| =2 Ei(z, 1)* + Bi(z, 1)?
0 0 €0C2

27 /w Ia+lp €B
: / dt/ dz|:—2EH(Z,t)2+B[1(Z,t)2i|,
0 Ia €pC

where E;(z,t) and Bj(z, t) are given by
E;(z,t) =Re{[Cj; exp(iK;z)
+C;_exp(—iK;z)] exp(—iwt)},

(34)

K; .
Bj(z,t) =Re ;[C_H exp(iK;z)

—Cj_exp(—iK;z)] exp(—ia)t)} for j =1, 1L 35)

(We take an average of the energy over time ¢ in (34).)
Substituting w(lp + Ig)/2wrc = 0.843 that corresponds
to A = 847 x 107" m and (Is + Ig)k = 0.158 into the
matrix M defined in (28), we can obtain the coefficients of
the electromagnetic field, Ci+, Ci—, Cyi+ and C— form (27).

After carrying out slightly tough numerical calculations, we
obtain
PA:PB:1:11.2. (36)

In section 2, we obtain the time-of-flight 1oy = 7/(2yx) =
1.14 x 107195 that we need to flip the sign of the phase in the
homogeneous GaAs/GaAlAs MQW material. Thus, the length
of the photonic crystal for realizing the NS gate is given by

PA + PB
Lpnc = Tiof

vy =3.71 x 1077 m. (37)

The photonic crystal with the length Lpyc = 3.71 x
1073 m consists of about 10400 layers (about 5200 periods)
of materials A and B (the air and the GaAs/GaAlAs MQW
structure).  Moreover, each layer of the GaAs/GaAlAs
MQW structure consists of about 15 periods of GaAs and
GaAs/GaAlAs (the width of each quantum well is equal to
about 100 A).

In the above estimation, we cannot obtain a great reduction
in the length of the device by the slow group velocity in the
photonic crystal. (The lengths of the homogeneous sample
of the Kerr medium and the sample of the Kerr-nonlinear
photonic crystal for the phase rotation are equal to 9.49 mm
and 3.71 mm, respectively.) To obtain a significant reduction,
we have to adjust the wavelength of the injected photons more
precisely. However, as shown in figure 4, the variation of the
group velocity v, against the wave vector k is very steep when
v, takes a small value, so that an accurate adjustment of the
wavelength of the injected photons is very difficult. This is a
weak point of our proposition. However, the author thinks that
we can expect the great reduction in the length of the device
by a precise tuning up of the parameters.

4. Discussion

According to our estimation, to realize the NS gate, we
have to construct the photonic crystal from about 10000
layers, each of whose thickness is equal to about 0.4 um.
Moreover, the layers of the Kerr medium has the GaAs/GaAlAs
MQW structure. These requirements seem to be very severe.
However, for example, Noda and his collaborators fabricate
woodpile-structure of GaAs, whose typical period is equal
to 0.7 um [32,33]. Hence, the author believes that we can
construct the NS gate from the one-dimensional Kerr-nonlinear
photonic crystal in the not-too-distant future.

The variation of the group velocity v, against the wave
vector k is very steep in the region where v, takes a small
value as shown in figure 4. Thus, v, is sensitive to the
thickness of the layers that compose the photonic crystal and
the wavelength of injected photons, so that we have to adjust
them precisely. In this paper, we show a plan for the NS gate
with the GaAs/GaAlAs MQW structure as a concrete example.
In our example, we cannot obtain a significant reduction in the
length of the device caused by the slow group velocity in the
photonic crystal, compared with the homogeneous sample of
the Kerr medium. However, the author believes that careful
tuning up of the parameters in the laboratory realizes a feasible
design of the device. Because the adjustment of the physical
quantities is very subtle, we may find another design that is
better than the plan we have shown in this paper.
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Appendix A. The third-order nonlinear
susceptibility and the nonlinear refraction coefficient

In this section, we explain the relation between O (the third-
order nonlinear susceptibility) and n, (the nonlinear refraction
coefficient), which is obtained by an experiment for a Kerr
medium direct. (Details of this topic can be found in [29].)
Using this relation, we can calculate y ® from an experimental
data of n,.

In general, a nonlinear dielectric polarization of a material
is given by a function of the electric field as

1) @) 3)
Pi=Y XVEi+Y XAEiEc+ Y xSuEjEcEi+. ..
j jk ki

fori, j, k,l € {x, vy, 2z}, (A1)

where x™ represents the tensor of the nth-order nonlinear
susceptibility. Let us assume that an electromagnetic plane
wave propagates in the positive z-direction in the material, so
that the electric field E and the magnetic flux density B lie
in the xy-plane. Letting the x axis and the y-axis be parallel
to E and B, respectively, we can write the electric field as
E = (E,0,0). Moreover, to simplify P defined in (A.1), we
make the following assumptions about x ™:

1
X[(j) =8;x"",
)(,-(jz,g =0 for Vi, j, k,
G ..
Xijkt {O others, (A-2)

and Xl(]") = 0 for n > 4. Moreover, we write x & = x©.
From the above assumptions, we obtain the dielectric
polarization P = (P, 0, 0), where
P=xVE+x9E. (A3)
Thus, the electric flux density is given by D = (D, 0, 0) and
D=eE+P=(o+x"E+xVE, (A4

where ¢ is the dielectric constant of vacuum. We define the
nonlinear dielectric constant of the material as

D
e(E) = =0 +x D+ xOE2 (A.5)

(In general, we regard €(0)[= ey + xV] as the dielectric
constant of the material.)
The refractive index of the matter is given by

€U
€00 '

(A.6)

n —=

where 1o and p are the magnetic permeabilities of vacuum
and the material, respectively.

Assuming |ey + x| > |x P E?| and i ~ o, which is
satisfied for almost all the materials, we can expand n of (A.6)
in powers of x as

n=n0+n’2E2+..., (A.7)
where
(1)
ng=,/1+ X—,
€
3)
’ X

Ny, = . A8
2 2I’l060 ( )

However, because the nonlinear refraction index n is obtained
as a function of the field intensity I = (1/2)/e/wE? in the
experiment, we rewrite (A.7) in the form of

n=mngy+nyl, (A9)

by x® \/E N $®
noeoV €~ ngele’
and ¢ = 1/,/uo€ is the velocity of light in vacuum.

In [26-28], nonlinear optical properties of GaAs/GaAlAs
MQW material are studied. In [27], Miller et al prepare
a sample that consists of 84 periods of 144 A GaAs and
102 A GaAs/Gay 7Aly3As and obtain the nonlinear refraction
coefficient n, ~ 1.2 x 107* (cm?W~!) at wavelength
(~850nm).  Substituting this result of the experiment
into (A.10), we obtain x® = 297 x 10%2esu =
3.67 x 1072! mC V3 (SI unit). (The value of x® is often
represented in cgs-esu unit. We have the convenient relation,
X =8.1 x 1018 x XS(?) .) In the above calculations, we use
the following facts: The dielectric constant of vacuum is given
by €y = 8.85 x 1072 Fm~!. Both the dielectric constants of
GaAs and GaAlAs are given by € = 13.0 x ¢p. The magnetic
permeabilities of GaAs and GaAlAs are given by u >~ o,
where L is the magnetic permeability of vacuum. Thus, we
obtain ny >~ +/13.0. The light velocity in vacuum is given by
c=3.00 x 103ms~!.

The value of |x®| for GaAs/GaAlAs MQW structure
given above is much larger than those of other materials. (For
example, x ® of CS,, which is a typical Kerr medium, is given
by 3.9 x 107 B esu.)

where

(A.10)

Appendix B. The wave equation and the effective
Hamiltonian of the electromagnetic field in the
nonlinear dielectric medium

In this section, we derive the wave equation and the effective
Hamiltonian of the electromagnetic field in the nonlinear
dielectric medium.

First, we consider the wave equation of the electromag-
netic field in the nonlinear dielectric medium. We use this
equation for deriving the photonic band gap in section 3. We
start from Maxwell’s equations in a matter, where there are no
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currents and no charges,

V.-D@x, 1) =0, (B.1)
V.B(x,t) =0, (B.2)
V x H(x,t) — %D(x, 1) =0, (B.3)
V x E(x, 1) + %B(x, 1) = 0. (B.4)

In these four equations, D and B represent the electric and the
magnetic flux densities, and E and H represent the electric and
the magnetic fields, respectively. Moreover, we assume the
following relations:

D(x,t) = ¢Ex,t)+P(x, 1),

B(x,t) = px)H(x,t), (B.5)

where P represents the dielectric polarization, €, represents the
dielectric constant of vacuum, and p represents the magnetic
permeability of the material. Here, we assume p(x) = wuo,
where (1o is the magnetic permeability of vacuum, because
almost all the materials satisfy it. We also assume that the
matter is uniform in the xy-plane.

Let us consider the electromagnetic wave that propagates
in the positive z-direction. We can describe E and B as
functions of z and ¢. Because the matter is uniform in the
xy-plane, we can describe P as a function of z and ¢, as well.

Using (B.1), (B.2), (B.3), (B.4) and the above
assumptions, we can obtain the following relations:

0
—(&E; +P;) =0, (B.6)
0z
ad
—B, =0, B.7)
0z
0 0
8_sz + MOE(E()EX +P) =0, (B.8)
9 B 9 (e0E, + Py) =0 (B.9)
—B, — — (€ | =0, .
b ¢ Mooy Ty
Rl
g(éoEz + P;) =0, (B.10)
9 E 9 B 0 (B.11)
az ot '
a ad
—E.+—B, =0, B.12
9z ar ®-12)
9 B, =0 (B.13)
ar < '
From (B.6) and (B.10), we can take
€E (z,t)+ P,(z,t) = 0. (B.14)
In a similar way, from (B.7) and (B.13), we can take
B.(z,t) =0. (B.15)

Here, we assume that the material is a Kerr medium whose

nonlinear susceptibilities are given by (A.2). Thus, the
dielectric polarization is given by
P =xVQE +xP E} (B.16)

(we assume that x " and x* do not depend on ), and we
obtain

E.(z.t) = 0. (B.17)

Now, E(z,t) and B(z,t) lie in the xy-plane. Letting
the x-axis be parallel with E(z, ), we can write E(z,t) =
(E(z,1),0,0). Thus, from (B.9) and (B.11), we obtain
B(z,t) = (0, B(z,1),0). From (B.8) and (B.12), we obtain
the wave equations for E(z, t) and B(z, 1),

92 92
—FE(z,t) — —E(z,t
52 L@ 1) — moe(@ a5 B D)
32
—MOXG)(Z)ﬁE(Z, 1® =0, (B.18)
8E( 1) = 8B( 1) (B.19)
Fra A PR :

where €(z) = €9+ x P (z) and x @ = x©.

Second, we consider the effective Hamiltonian of the
electromagnetic field in a homogeneous Kerr medium. We
assume that the electromagnetic field propagates in the positive
z-direction, and it is described by (B.18) and (B.19). Because
the material is uniform in all directions, we can regard x(,
XG)’ and € as constants.

In general, the energy of the electromagnetic field confined
in the box of volume Vol is given by

H =

Vol

1
d3x§(D~E+H~B). (B.20)
Because we make the following assumptions now,
E = (E(z,1),0,0), D = (¢E(z,1) + xVE(z,1)*,0,0),
B = (0, B(z,1),0),H = (0, (1/uo)B(z, t), 0), we can rewrite
‘H given in (B.20) as

H=H0+V,

1 1
Ho = / dPx= (eE2 + —Bz>,
Vo 2 Mo

3)
V= / PxX_E
Vol 2

From now on, we perform the quantization of the free
electromagnetic field whose Hamiltonian is given by Hy. We
regard V as a perturbation, and we construct the effective
Hamiltonian of the quantized field by evaluating the first-order
perturbed energy. For the quantization of the free field, we
write E(z,t) and B(z, t) as products:

(B.21)

E(z,1) = —% ;qz(ml(z), (B.22)
1
B(z,1) = 7 XI:CIZ(I)Mf(Z) (B.23)
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The free electric field E(z,t) has to satisfy (B.18) with
x® =0. Assuming the normalization of u;(z) in volume
Vol = S§d and the boundary condition u;(0) = u;(d) = 0,
we obtain

@) = /ZS_ Iz
u(z) = Sd n ]

Substituting (B.22), (B.23), and (B.24) into H,, we obtain

forl = +1,42,.... (B.24)

Ho= Y. H. (B.25)
I=41,42,...
1 .
H = 5<q12 +wlqp), (B.26)
where
1 |l|x
w = | — . (B.27)
o€ d

Let us define a new variable p; = ¢;. Then, we can rewrite
H; as H; = (1/2) (P12 + a)lquz), and we obtain the relations
oH;/0q; = —p; and 0H;/dp; = ¢;. Thus, we can regard
q; and p; as canonical conjugate variables. We perform the
quantization of the field by taking the commutation relation
[q:, pm] = ihd;,. This commutation relation corresponds to
the following relations:

- ( i )
qr = a, +ap),
! 26()1 ! !

. ha)[ 1.
pr=1 T(Cl;
[al,a,rl] = b, and [ay, a,] = [a;,a,rl] = 0. Rewriting H;

with the creation and annihilation operators a; and g, as

T 1
H; = hwy a,a1+§ ,

we accomplish the quantization of the free field.

Next, we derive the effective Hamiltonian of the quantized
field for V as the first-order perturbed energy. We substitute
(B.22), (B.24), and (B.29) into V, and we obtain

(B.28)

—a), (B.29)

(B.30)

V= l)(mi(i)2 Z Dk P1Pm P,
- 2 m n
2 € Sd k,l,m,n=+1,£2,...
Iz mmrz nmwz

B.31
d d d (B3D)

Using the following formula,

3. . kmwz | . .
x [ dxsin —= sin — sin sin ——.
sd d

.. omnuz
d d d

- g(_(sk,l+m+n + Bk,7/+m+n + 8k,lfm+n - Sk,flfmﬂz

+8k,l+m—n - 8k,—l+m—n - (Sk,l—m—n + 8k,—l—m—n)a (B32)
we obtain
(3)
X
V - mgn
osd 2 beppwp
k,,m,n=+x1,%+2,...
X (=48 14m+n + 38kat,man + Skaitmsn,0)- (B.33)

Here, we assume that we inject only photons of a certain
mode [ into the material. Thus, terms that contain a; (k # [)
vanish when we apply them to the state vector. Moreover,
we neglect events where photons of mode k(5 [) are created.
Thus, for example, we ignore the case where three photons of
w; are annihilated and one photon of w3 (= 3ay) is created.
This implies that the effective terms of V' cannot contain a,l'
(k # 1), as well. Hence, the effective potential for photons of
mode [ is given by

3 x® (hoy 2 + 4
-\ — - . B.34
4625d< 2 ) (@ =) (B-34)
From some calculations, we obtain
(a;' —a)t = 6(a;')2a,2 + Sa;'al +1
+a) +a —4@) +a? + (@) Ya +a/a}]l.  (B35)

Here, we concentrate on the terms which conserve the number
of photons. Hence, we can write the effective Hamiltonian as
follows:

1 3 x9 [(hoy 2
H=twaa+=-)+ X (12
“”(“’“’ 2) 4625d( 2 )

x[6(a))’a? +8aa; + 11 = H; + Vi, (B.36)
and
- . 1 3 X% [(hay :
H, =hwl<ala1 + 5) + 12sa\ 2 [8a;al+ 1],
59X}
) = gW(a,) aj. (B.37)

When we estimate the phase rotation induced by Kerr-
nonlinear interaction, \71 makes a main contribution and 7:[1
causes only a background phase rotation. Furthermore, in most
cases, the relation «; > |x©® |ha)l2 /(€*Sd) is satisfied and we
can take H; ~ ‘H;. Hence, we obtain the following effective
Hamiltonian:

H=H;+V, (B.38)
where |
H[ = h(,z)[ (a;a, + E) ,
9 x Vn’w}
V, = gTd’(a,T )2a?. (B.39)
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