Total time derivatives of operators in elementary quantum mechanics
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The use of a total time derivative of operators, that depends on the time evolution of the wave
function as well as on any intrinsic time dependence in the operators, simplifies the formal
development of quantum mechanics and allows its development to more closely follow the
corresponding development of classical mechanics. We illustrate the use of the total time derivative
for a free particle, the linear potential, the harmonic oscillator, and the repulsive inverse square
potential. In these cases, operators whose total time derivative is zero can be found and yield general
properties of wave packets and several useful time-dependent solutions ofligerts equation,
including the propagator. @003 American Association of Physics Teachers.
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[. INTRODUCTION After showing how the formal development of quantum
mechanics and its application to some systems can be sim-
The expectation value of any operat‘&r Changes with p|IfIEd, we will find “invariant operators,” that is, operators
time according tb whose total time derivative is zero. This property is the ap-
g ) propriate generalization of “constant of the motion” to op-
N - I~ s erators that depend on the time. Invariant operators are used
a<A>:<EA> + %([H,AD. 1) here to find general properties and specific examples of the
) _ ) ~evolution of wave packets and to find the energy eigenvalues
The first term on the right-hand side comes from the intrinsicof the harmonic oscillator.
time dependence i\, and the second from the way the
states change with time. It has occasionally been sugdested

that thetotal time derivativeof any operatoA be defined as Il. FORMAL DEVELOPMENT FOR SYSTEMS
d. - 9. i . . DESCRIBED BY A POTENTIAL
aAEA:EA‘f‘ %[H,A]. (1.2)

(The notationX:=Y indicates thaX is defined to béY.) Then

We first consider Hamiltonians of the form

.1
it is always true that H= ﬁbzﬂLV(f). (2.1
E<A>:<EA>, (1.3 In this case all the operators are independent of the time, so
dt dt calculating the total time derivative requires only the com-

mutator with the Hamiltonian. A calculation of these com-

and it can easily be seen that the definition implies that .
mutators gives

d A A A A A A . . ~
gt (AB)=AB+AB (1.4 mi=p and p=-VV, (2.2
and as in classical mechanics.
Ehrenfest’s theorem for the time evolution of expectation
d A a values follows immediately from Eq1.3):
a(f(t)A)zfAHA, (1.5

d d .
which implies that the total derivative obeys the same alge- mdt<r> (p) and d't<|0> (VV). 23
braic rules as ordinary derivatives.

Because this total time derivative is not defined to be an
rate of change of anything, some may prefer to use a differ-
ent symbol for it, for exampleD, instead ofd/dt, but the d . .1 .
latter notation will be used here. The context determines its g7 (F-P)=F-p+f-p= —p?—f-VV. (2.9
meaning; when applied to an operator, its meaning is as in
Eq. (1.2). Its use eliminates much of the tedious calculationThe time derivative of the angular momentum is
of commutators in conventional treatments and allows calcu- q q
lations that closely follow those of classical mechanics. For X _ & o o\ a0 a1 ov A _ 2y oy
many systems it also enables simple methods to be used to dtL dt(rXp) FXpFExp FXVV, 29
obtain the evolution of some wave packets and the propaga- U .
tor. It brings many of the advantages gained by moving td°€cause pxp=0. For a central potential, VV
Heisenberg's picture of the time-evolution while actually re-=r~! (dV/dr)r and thereford. =0, andL is a constant of
maining in the Schidinger picture. the motion.

The virial theorem also follows easily using E@.4) from
e expectation value of
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These calculations are not only simpler, because the comyng 4=0. Invariant operators will be used in this way to

mutators were used only for the equations of motiar®),

roduce different solutions of Schtimger’s equation for

but easier for students because the calculations closely fokaerg] systems.

low the corresponding classical calculations.

Now consider whether eigenstates of an invariant operator

Next consider how the spread of the position and momenyij satisfy Eq. (3.1). The operatorsin Schralinger’s repre-
tum change with time for a free wave packet in one dimensentation involve differentiation by position only, so if

sion. There is no force, sm%=p and p=0. To obtain the
spread in position, we use the operator(%))2. Unlike the

¢(r,t) is a solution ofadp= a ¢, thenf(t) ¢(r,t) also will be
a solution. Thus it is not true that every eigenfunction will

above operators, this operator is time dependent. Up to nowatisfy Schrdinger’s equation. However, ifs(r,t) is an

a has just been a convenient shorthandifor 1[I:|,z”i], but

eigenfunction at a particular timgy, then there will be a

now the intrinsic time dependence will also play a role. Weunique solutiony(r,t) of Schralinger’s equatior(for all t)

use the operator equations of motion to find

d
M = (%= (%))2= (&= () (B = (B)) + (P—(P)) (X— (X)),
(2.6)
2
M2 (R—(%)2=2(p~ (p))2 2.7

If we define (1x)2:=((%—(%))?) and A p)2:=((p—(p))?),
thenAp is constant and
d2
mZP(AX)ZZZ(Ap)Z. (2.8
[Note that d?(A)/dt?=d(d(A)/dt)/dt=d((dA/dt))/dt
=(d?A/dt?), whered?A/dt?> means the result of the action

in Eq. (1.2 applied twice toA.] Therefore,Ax must have
the form

Ax=Axo\1+ (t—tg)% 72, (2.9

where 7=mAXx,/Ap. Hence, for a free wave packet, the

such thaty(r,tg) = &(r,tg) and, from Eq.(3.2), (&—a)y¢
will satisfy Schralinger’s equation and therefore will remain
zero. That isg(r,t) will be both an eigenfunction d (with
constant eigenvalue) and a solution of Schainger’s equa-
tion. Thus, if there is only one eigenfunction &f it must
satisfy Eq.(3.1), apart from a time-dependent factor. If there
are several linearly independent eigenfunctionsapfthen
linear combinations with time-dependent coefficients may be
required to satisfy Eq3.1).

Invariant operators will now be found for some simple
one-dimensional systems.

IV. A FREE PARTICLE

The operator equations of motion amekx=p and p=0.
Classically,mx—pt is constant and similarlynx— pt is in-
variant. A constant can be addedticeven a complex one;
but a real constant just changes the origin of time, and we
take

a:=mXx—p(t—ir) (7 real. (4.1

spreadAx goes through a minimumx, and approaches a Tq find an eigenstate,, of & with eigenvaluen, we first find
linear increase with time at large distances from the MiNithe real values<y, Do such thata=mxy+ipor. Then a

mum.

A similar, but slightly lengthier, calculation can be carried
out for the harmonic oscillator to show the centroid of every
wave packet not only follows the classical oscillation, but its
width oscillates at twice the frequency. For a linear potential ~ 4,:=a—a=m(X—X)—(p—p)(t—i7). (4.2
motion under gravity or a uniform electric figlthe width . . A N
E)ehaves exactl?/ as f):)r the free case. ° Now ¢, will have &,4,=0 and therefore(a,) =0, (%)

A comparison of these calculations with the conventional=X, and{p)=p for an eigenstate . Furthermore
methods will show how much simpler this approach is. aa_é‘r =2i7(p—p),

=mx—p(t—ir) for all time, wherex, p are the solutions of
the classical equations of motion with initial values, p.
Next define

La AT s 4.3
lIl. INVARIANT OPERATORS 28, +8,) =m(X—X) = (pP—P)t,
An operator is “invariant” if its total time derivative is and therefore
zero. This definition includes the usual “constant of the mo- 2m(>‘<—ﬂ=aa(1—it/r)+al(1+it/7-). (4.9
tion,” that is, a time-independent operator that commutesl_| inda. al1=[a.a'1=2% h
with the Hamiltonian. It will be seen below that time- 1€NCce, usinda,.a,]=[a,a’]=2amr, we have
dependent invariant operators are especially interesting. It ig,2((p—p)?)=(a,a’)=(ala,+2amr)=2amr, (4.5)
easy to see that & andb are invariant then so aée+ b, ab, AR =) = (88T (L4 12 72) = 2mr(L 4 {2/ 72
the adjointsa™ andb', and\a if \ is a constant. (%)% = (8a8a)( 7)=2hm( ): 4.6
If an invariant operato& is applied to any solution of ) R ’
Schralinger’s equation Thus, for any eigenstate @f,
A Y a1 Ap=VAami2r and Ax= A r/2my1+1t?/7?, 4.7
:I _7 - - . . -
v ot @D consistent with Eq(2.9). Note that the minimum value of the
. . l . . . . .
it will produce another solution, because uncertainty prpductA_xAp is sh; so at its minimum this
eigenfunction is a minimum uncertainty wave packet.
S D PO TP B It is easy to find the form of the wave functiof,(x,t).
(H hop|ay=|Ha-ihZr—aH jy=—ihay 32 o0 a,,=0, we have
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d i m(X—X
a—f:%[ﬁ —n “8 .
and hence
i _ m(x=Xx)?
Ya(X,1)=exp| 9(t) +PX+ 2= | 4.9
where 9(t) can be determined by substituting,(x,t) into 4/ R T

Schralinger’s equation. This substitution gives o E— : -

d=L4#/(t—i1)—E, (4.10
i Fig. 1. The free evolution of the step function. The graph shiat? where
whereE:=3p“/m, and therefore ¢(x) is initially the step function. The shape is valid for all times0; all
. _)2 that changes is the scale on tkaxis. The values ok shown are fort
- = im(x—x =m/7h.
el(prEt)/ﬁ ex — . 4.1
2h(t—i7) .13

llla(x!t): .
t—i7
Equation(4.11) represents the moving Gaussian wave func
tion found in most texts, but here its expectation value
(%),(p),Ax,Ap) are known without any further integration.
The eigenfunctiony,(x,t), with p=0 and r=0, must

husC(y)+iS(y) satisfies the free Schldinger equation if

Y=\mimhtx, and ¢:=3+3(1-I)[C(y)+iS()] is the
time evolution of the step function and also satisfifsp

: - =0. [If xy:=p¢, thendy=0, so thaty="f(t), wherey is
when appropriately normalizede the propagator for the .
f(ree partFi)cF:)Ie.pThe gropagator%s just thg ep\)/o?ution of the thex propagator, and therefgre P(x,)=(1/R)F(t)
function, and the eigenfunctiofwith eigenvaluexj of x is ~ <J ¥(X',)dx’.] Figure 1 showg¢?|. Many other invari-
8(x—X). Therefore, the eigenfunction 6f- pt/m must ap-  &nts can be made from powers, sums, and producisaofd
proach 8(x—x) ast—0. Thus the propagatoK(x,x’,t), p. These can pe used to 9reate a vast vquety of solutions of
such that ']Ehetr:‘reehSchrdmger equation, but they will not be pursued

urther here.

fm KX, 1) (X", tg)dX' = (X, tg+1) (4.12

V. UNIFORM BUT TIME-VARYING FORCE

for any wave functiony(x,t), can differ only by a constant

factor from The Hamiltonian is

. 1
1 im H=-—p2— &)X, (5.1
\If(x,x’,t)::Tex %(x—x’) : (4.13 2m
t which could represent a charged particle in a time-varying
To determine the factor, use the integral electric field. The operator equations of motion aré=p,
x , o , p=&(t) which differ from the free case only in thatvaries
L}'(Xax 1) (X' X" tp)dx with time, but is still independent 6 and p. Thus, all we
need to do is change the invariaatby adding a suitable
=\2mih/imP(x,x",t;+1,), (4.14  time-varying multiple of the unit operator:
which is easily calculated by direct integration. Because the  a:=mX—p(t—i7)+o(t). (5.2
propagator must propagate itself, it must Bgx,x’,t) A_ . .
— W (X' 1)/ 2 A, Thena=—&(t)(t—i7)+ o, so that

Other invariants For the free particlep is also invariant )= t v _inetdt
(but independent of). Thus the spatial derivative of any o(t)= 0( I7)E(7)dt’.
solution of the free Schainger equation is also a solution, ) o . . .
as are all higher derivatives as follows directly from Sehro ~ T0 generalize this invariant to refer to an arbitrary trajec-
dinger’s equation. A similar property holds for indefinite spa-tory, we define
tial integrals and time derivatives and integrals of any solu- 3 .—m(x—%)—(p—p)(t—ir)=a—a, (5.4)
tion of the free Schrdinger equation. The spatial derivatives )
of the propagator are the evolutions of the derivatives of thavherex, p satisfy the classical equations of motiolx=p
& function, and can be relatétb Hermite polynomials using and p=£(t) to ensure thaf, is invariant. Herea=mx

(5.3

(d/dg)ne—XZZ(_l)nH (g)e—XZ (4.15 —p(t—i7)+o(t) and the real and imaginary parts of the
" ' ' constanta give the classical motion
The integral of thes function is a step function and the .
integral pf the propagator can be expressed in terms of the ﬁzﬁﬁf tHdt,
Fresnel integrals 0

, t (5.5
C(y)+iS(y)=f0 exp(3imz%)dz (4.16 m7=m>_<o+ﬁot+fo(t—t’)g(t’)dt’.
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As before(a,)=0 gives(p)=p and(X)=x. Thus(X), (p)
exactly follow the classical trajectory. The widtidsx, Ap

which corresponds te=p=0. Similarly,Ap=%/L, so these
states always have the minimum uncertainty product.

are not affected by(t) and therefore evolve exactly as they  The differential equatio, =0 yields

would if no force were acting. The wave function has the

same form as for the free partidleee Eq(4.11)], except that
X, p now follow a trajectory that depends on the figlg).

VI. THE SIMPLE HARMONIC OSCILLATOR

The Hamiltonian is
(6.1

and the operator equations of motion aneX=p, p
=—mw?X. From these equations, we havetrip/mw
=—iw(X+ip/mw), and therefore

a:=e'“(X+ip/mw)/L (6.2

is invariant. The divisoL :=+2A/(mw) is inserted to make
[4,aT]=1, as usual.
Energy eigenstatedJsing this invariant operator allows a

slightly different approach to finding the energy eigenstates. -

When multiplied by expiEt/4), an eigenstate with energy
E satisfies Schidinger's equation and therefore &f is ap-

= exr{%—(ﬁ(t)+ﬁx)—(x—?§2/L2 , (6.9

and J(t) can be found by inserting Eq6.8) into Schral-
inger’s equation. The result is

. 1 1 1
- Ty T2 T 252
3 zhw 2mp + me X, (6.9
so that
9= —hot— IXp. (6.10

These states, which follow the classical oscillation without
change of width, are known as coherent states. The “raising
operator” éz can be applied to these states to obtain dis-
placed excited states that are essentially Hermite—Gaussians
that also follow a classical oscillatidh.

Squeezed state§he operatora in Eq. (6.2) is not the

most general invariant that is linear fnandp. The form

(6.17)

will be invariant if x and v are constants. To set the scale of

b=pa+va’

plied to such an energy eigenstate, it either gives zero or § e also takg b,b]=1, which implies thate* x—v* v

solution of Schrdinger’s equation with its only time depen-
dence in the factor eXp-i(E—fw)t/#i], that is, an eigenstate
with E lower by %w. Similarly &7, which is also invariant,

raises the energy bjiw. Because the energy eigenvalues

must be positive, if we repeatedly applyto any energy
eigenstate, we must eventually reach a ground stateuch
thatay,=0. Thena'ay,=0, and

H=fw(a'a+3), (6.3

so the lowest energy eigenvaluelg= 3% w, and every ei-
genvalue must be of the forrm¢ 3)Z e with n=0,1,2,....

The spatial dependence of the wave functigg(x,t) is
found froméay,=0, which gives

Po(x,t)=e 12 exp —x?/L?). (6.4)

Applying &' repeatedly tayy(x,t) gives the excited states, in
the usual way.

Coherent statesTo deal with an eigenstate &f with ei-
genvaluea, we first find the classical motior, p that has
real initial valuesXy, Py such thata=(Xg+ipg/mw)/L.
Then e'“!(Xx+ip/mw)/L will be constant(and equal toe)
for all time. Now we define

a,=a—a=e[(X*—X) +i(p—p)/mw]/L. (6.5

Then the solutions o0&, =0 will have (4,)=0, and there-
fore (X)=x and (p)=p; that is, the wave packet evolves
with its centroid ak, p following a sinusoidal oscillation. To
find the spread in position, we use

x—x=3L(a,e 't +afeh, (6.6)
and obtain
(x=%)%)=3L%(8,a]). (6.7

Then using[a,,a!1=[4,a"]=1, we getAx=1iL. This re-

=1. In terms ofX andp,

fib=&t)p—m(H)X, (6.12
where
&= %iL(,uei“’t— ve_i“’t),ﬂ'= —ﬁ(,uei‘”t-l- ve /L.
(6.13

Note that¢ and 7 have the dimensions of length and momen-
tum, respectively, and satisfy the classical equations of mo-
tion, mé= 7, 7= —mw?¢, but can be complex. The phase
assigned td is not important, so we take to be real. Then
adding a constant phaskto v is equivalent to shifting the
time by 39/w [because na(t)+ve'?a’(t)=pue'“'a(0)
+pe (et=NaT(0)=eh(t— 19/w)]. Thus, we can also
take v to be real. Instead of the two parametarandv, it is
sometimes convenient to use the “squeezing fact®e u
+v. Then u?>—1?=1 leads tou—v=1/s and s=1. The
coherent states correspondge=1, v=0, ors=1.

Next we introduce

b= (1) (p—P) — m(t) (X —X), (6.14
wherex, p is a classical oscillation and again the solution of
b,#=0 (and therefore any eigenstate ff will follow the
classical motion in the sense tha&)=x and(p)=p. From
Eq. (6.14 and using Im¢ m)=3A, we find

X—X=i(£b,~ b)), p-p=i(#*b,~7b]), (6.19

and therefore, similarly to the derivation of E(6.7), Ax
=|¢ and Ap=|n|. From Eq.(6.13, at t=0, Ax=3L(u
—v)=3L/s, andAp=#s/L. Then 2Ax/L andLAp/# oscil-
late between the two extremes ®and 15, each taking its
maximum value when the other takes its minimum. The dif-

sult is the same as for the ground state energy eigenstatferential equation corresponding bo,¢/=0 is easily solved
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[similarly to Eq.(6.8)] and the squeezed states of the oscil-is the eigenfunction ob that also evolves as a wave func-
lator are also moving Gaussians. tion.

The propagator requirgs=0 to ensure that the eigenfunc-  As pefore, a more general wave function will be obtained
tions of b will be §(x—x) and & will be zero att=0 if s by replacingt by t—i 7. The propagator results from the limit
=, (Afactor of s must be removed frorh,, to keep it finite 70, while for sufficiently larger, the wave function corre-
in this limit.) sponds to a localized “particle” coming toward the origin,

being slowed to a standstill by the repulsive force and then
retreating, as in the classical case. The details of this calcu-

VII. REPULSIVE INVERSE SQUARE POTENTIAL lation, and the exact normalization and calculation(df),
The Hamiltonian is (H), and{a), will be pursued in the Appendix.
R 1 VIIl. RELATION TO THE HEISENBERG PICTURE
H= %b% c/x2. (7.0

For the operatorA, the equivalent in the Heisenberg
Only the repulsive casec>0) will be considered because picturé is A,:=TTAT, whereT is the time-evolution opera-
the attractive case is too singular and requires specighr such thaty(t)=Ty(0) andizdT/dt=AT. It follows
treatmenf Such a potential arises, with=%2€(¢+1)/2m,  that

for the radial part of the wave functiomultiplied by r) for R

a spherically symmetric system in three dimensions, and the = dA; . . g AL

spherical Bessel functions are familiar as the radial part of 1N —g~ =[An Hr]+ihT'—-T. (8.2)
the energy eigenfunctions for the free particle. We will treat .

the general case of arbitray>0 in one dimension. The Thatis,

repulsive hill is impenetrable so there can be no tunneling  4a A dAHA
through the origin. Therefore, onk>0 need be considered, —=T—T".
and we expect the wave function to vanishxas0. dt dt

: : (Note that whered/dt is applied to an operator in Heisen-
berg’s picture, it does not have the special meaning it has

(8.2

The operator equations of motion arex=p, p=2c/x°.

Therefore . L .
when applied to an operator in Schinger’s picture.
d . d 1, > A Thus the total time derivative of any operator is the Sehro
a(Xp): —t(px)z m +2¢/x°=2H (7.2 dinger picture version of the time derivative of its Heisen-
berg picture version, which implies that the operator equa-
and tions of motion will have the same form in the Heisenberg
A=L(Xp+pR)— 2tH (7.3 Eﬁgﬁeﬁjam? have in Schiimger picture using the total
is invariant.(We have used the symmetrized form to keep it The formal development in Sec. Il and the determination
Hermitean). Furthermore, and application of the invariant operators could therefore be
1 d 1 pr(_asented in th_e Heisgnb_erg_picture, but the advantgge of
“m— (%)== (Xp+ px)=a+2tH, (7.4)  using the total time derivative in an elementary course is that
2 dt 2 the Heisenberg picture requires much more mathematical
so that machinery. One must deal with exponentials of operators

R R R and, for Hamiltonians that depend on the time, the determi-
b:=Im¥—ta—t?H=m¥®—3(xp+px)+t?’H (7.5  nation of the explicit form of the transformation is often

: . : . . ite difficult.
is also invariant. It follows tha¢x?) is quadratic irt for any quite difficu

state. IX. DISCUSSION

/Also the eigenfunction ob, with arbitrary eigenvalu, Time-dependent invariant operators that are line&ramd
will give the propagator for the system becauset a0, ' p can be founi for any Hamiltonian that is quadratior
must approach an eigenfunction o, that is, (x* |ineay in % andp, even with arbitrary time dependence in

S B > ar :
—2p/m) apart from a factorThe variablex is just as good  the Hamiltonian. These systems include, for example, har-
asx for this system because we need only consider positivénonic oscillators that are drivef@ time-varying linear term

values ofx.) A in H) or have varying frequency, as well as the cases treated
The solution of the differential equatidnp= B¢ is previously. The case &f = c/x? shows that the method is not
. restricted to quadratic Hamiltonians. However, | have not
¢ =exp(i 3/ Ait) xJ,(N2mBIR7xit), (7.0 found a useful invariant for the important case\6f c/x.

wherev?:=1+2cmv/#2. A discussion of how to find this so- An indication that this potential might be more difficult can
lution is given in the Appendix. The positive value ogives be seen from the corresponding classical system. For all clas-
the regular solution; the negative value also gives a solutiorsic@l one-dimensional potentials, an integral gives the time as
but it is singular atx=0. As before, this eigenfunction re- & function ofx and the energy. In the previous examples, the
quires a time-dependent factor to also satisfy Sdimger’s time (or some functlon of thg timecan be expressed in a
equation. The factor can be found to be @@/t by in- - e (iR B eRt e TR b E00 e S O e
serting in Eq. (7.6) into Schrafinger's equation. Thus found easily. But forV=c/x, the classical result is highly

y=exfi( B+ 3mx®)IKt](VXx/t)J,(\V2mpIH3xIt) (7.7 non-linear in the energy.
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In summary, the use of the total derivative of operators 1 _
Schralinger’s picture of the time evolutionsimplifies the P = exr{ 2 (Bt ;mx2)+B,t
formal development of quantum mechanics and its applica- h P+ 7
tion to particular systems. This approach eliminates many of X
the tedious calculations of commutators that are required in X >——=J,(a*x)J,(ax), (AB)
the usual treatment and allows a development that more ot
closely follows the familiar classical treatment. Furthermore o P AlE2 (i _ .
it makes it easy to use the simple invariant operators that c%ﬁeiﬁ:é;alzmﬁ/h /(t=ir) and B=p;+if;. Now apply
be found for many of the systems often studied in elementary
guantum mechanics to find simple wave packets that illus-[= "2
trate the dynamics of the system and to find the propagatorf0 exp(— zAx%)J,(ax)d,(bx)x dx

APPENDIX: ANALYSIS OF THE WAVE FUNCTION =\"texgd — 2" Y(@%+b?) ]l (ab/n) (A7)
— 2
FOR THE POTENTIAL V=c/x [for Re()>—1] given by Weber in 1868 .We substituteb
=a* and\=2rm/A(t?>+ 7?), and obtain

The equatiorbe= B¢ is, in Schralinger’s representation,
an ordinary differential equatiofODE) in x with t as a pa- % B:
rameter. Its solution, apart from a possible time-dependent f * pdx= mexF{ i
factor, will satisfy Schrdinger’s equation, which is a partial 0 T T
differential equatior(PDE). Butbe= B¢ is not easy to solve To determing/X?) we differentiate Weber's integral in Eq.
even though it is only an ODEThe solution was given in (A7) with respect to\ to obtairf
Eqg. (7.7.] Equation-solving programs such as Maple or ._

Mathematica will probably not solve it because they will not f exp(— ]Ax?)J,(ax)J,(bx)x3 dx

attempt to factor out the required factor ¢k expGimx&/at) 0

to reduce the equation to Bessel's form. =2\ "2 Y (v+1-wW)l (2)+2zl,,1(2)}, (A9)
Surprisingly, one way to obtain the solution is to convert Lo o . )
the equation to a PDE using the requirement that the solutiohere w:=3(a“+b%)/x and z:=ab/\. Equation(A9) im-

also satisfy Schidinger's equation. First writeh:=im3@ plies that

fir

LB

4 (%p — L 20 i = —i - 1 t h | z
L en e AR Ly e el )
x84 2, —t+i— ,3—me2> ¢=0. (A1) andz=| i o
X 1277 2 B|/AT. But Eq.(A5) can be written as
Such first-order, linear PDEs can be solved easily by stan- B:=im%—(t—ir)a—(t>+)H, (A11)

dard methodsgor using equation-solving programsnd it is
easy to verify directly thato=exdi(B8+ 3mxX)/(#it) Jf (x/t)/\/x
satisfies Eq(AL), if f is an arbitrary function ok/t. If we

and therefore, taking the real and imaginary parts of the ex-
pectation value oB, B;=7(a), and

substitute this form ofp into Schfaﬂinger’s equation, we see Im(s2)= B, + (t/7) B+ (124 2)(R). (A12)
that f (u), with u=x/t, must satisfy the ODE
) ) If we compare this form with EqA10), we see that
usf”"—uf’+(cy+cu)f=0, (A2)
3 2 2 4 e ~ h l,+1(2) B¢
wherec; = 3—2cm/A“ andc,=2mpg/A <. Itis not difficult to <H>=2— v+1+z I i (A13)
recognize that Eq(A2) can be converted to Bessel's equa- T 2) T
tion by dividing f(u) by u. Thus The propagatar A more symmetrical form for the eigen-
o=exdi( B+ Imx®)/(Ait)ud,(V2ZmBIAZu) X, (A3)  function ofb, with eigenvalugmx’?, is
wherer?=1-c,=1+2cm/#2. The form of Eq(A3) agrees Lo Vxxh o fim mxx
with Eq. (7.7). P (X,X ,t)——t ex m(x +x"9) (3, ETEk (A14)
Expectation valuesAs before,t can be complex and the , L )
function As shown in Sec. V, this eigenfunction must be the propaga-
tor apart from a factor independent fandt that will now

i B+3Imx| X 2mB  x be determined. The eigenfunction satisfies Sdimger’s
y=expg; —— —J e (A4)  equation and therefore should propagate itself. If we use the

h o t—iT |t—iT he t—ir ) . .

integral in Eq.(A7), we can evaluate the relevant integral to
is the eigenfunction, with eigenvaly® of the invariant op- give
erator o
Bi=Im3¢— H(t—ir) (Xp+PX) + (t—ir)2HY, (AS) fo POX )T X)X

and ¢ satisfies the time-dependent Sdatirger equation for =i LRI (XXt ), (A15)

the potentialV=c/x?.
To calculate expectation values, we first normalize thewhere the relatior ,(iz)=i"J,(z) [for Im(2)>0] has been
wave function using used. Hence the propagatér such that
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fo K(x, X", t) (X" ,tg)dX" = (X, to+1) (A16) 0.2 | (a) T=10
for any wave functionj(x,t), is vty
K(x,x",t)=i "D (m/a) ¥ (x,x',t). (A17) 0.1

The single-hump regimeThe argumentu:=ax of the
Bessel function iny has |u?|=2z\x?. But ¢* ¢ contains a
factor expf3\x?). Hence if| 8| <%, that isz<1, then|y]
will become smallbecause of the exponential fadttwefore

the argument of the Bessel function leaves the region where ~
|u|<1, and therefof®J (u)~(3u)”/T'(»v+1). In this regime 0.2t ,/ \\ (b) r=0.05
the spatial form ofy is x”* Y2 exyf 2imAa~%(t—i7)], and |y vy / \
has just a single hump. If we substitutg(z) ~ (32) /T (v 0.1¢ / \\
+1) into Eq.(A13), we obtain(H)~ 47 *(v+1), and ] L// \\ S
Im(x%) =~ (A (t2+ 7). A18 - : -2 St
2_<><>( ™) _ _( )_ 0 5 10 x 15 20
Equation(A18) can be compared with the classical motion
Fig. 2. Two wave packets for the potenti&k c/x?. In each case the wave
1 X2 2 1
zmx-=Et*+;mc/E. (A19) function is as in Eq(A4); |4?| is plotted withm=%=c=1 and eigenvalue

The first termEt? corresponds as closely as possible to the®=2- In case(@, r=10 and the wave function is shown for-0 (solid)
and fort=20 (dashegl This case is in the “single-hump” regime. In case

quantum ter”(H>t21 while the second term, specifying the (), =0.05 and the wave function is shown for 0 (solid line) and fort
closest approach to the origin,(il%l)rz~ Hh2(v+ 1)2/<|:|> in =2 (dashed ling Fort=0, the maximum value is about 2.5. This case is in
the guantum case This quantity is to be compared Witﬁhe regime where the Bessel function gives rise to multiple maxima.
imd/E noting thatdmc=322(»?—3). The closest approach

in the quantum case has a lower limit fgm(X?) of

g ~ . .
16 2/<H> for .a very Wea.k potentlalq~0) and is always 1Eugen MerzbacherQuantum Mechanigs2nd ed. (Wiley, New York,
greater than in the classical case with the same energy. Thisg7g |, 165,
behavior is due to the existence of a completely repulsivez  p. |andau and E. M. LifshitzQuantum MechanicéPergamon, New
barrier atx=0 (becausay is always zero theje and there- York, 1958, Chap. 9. Also see Ref. 1, p. 337, H(5.13.
fore i is squeezed against this barrier, whereas the classicaFugen MerzbacherQuantum Mechanics3rd ed. (Wiley, New York,
particle will approach the origin arbitrarily closely for suffi- 45’92";3- d49' P’?F'em.s 2ta”d 3-t or auadratic Hamiltonians.” Am. J
ciently smallc. In this regime, the wave packet motion is Pﬁ;s o7 gg‘gf’mg(vlagrg’g‘ operators for quadratic hamiltonians,”Am. J.
Simi_lar to that of the class_ical particle Comin_g tQWQfd the scor 4 recent discussion of the attractive céisethree dimensions see
origin, slowing to a standstill, and then retracing its inward sydney A. Coon and Barry R. Holstein, “Anomalies in quantum mechan-
trajectory; however, there are quantum effects that are greatdcs: The 12 potential,” Am. J. Phys70, 513—-519(2002.
est near the closest approach to the origin. °See Ref. 3, Chap. 14, Sec. 2.

Figure 2 shows two examples of the evolution of this ’G. N. Watson Theory of Bessel Functiongnd ed.(Cambridge University

. - Press, Cambridge, 1944Chap XIlII, Sec. 13.31, p. 395.
wave function; one has<1 and therefore has a single hump 8For relations involving Bessel's functions, see Milton Abramowitz and

while the. other hag>1 and is shown at a time when it has |rene A. StegunHandbook of Mathematical FunctiofsBS, Washington,
two maxima. DC, 1964, Chap. 9.
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