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Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of
magnitude, and are widely observed in condensed-matter systems. This article presents the
observations and current understanding of the metal-insulator transition with a pedagogical
introduction to the subject. Especially important are the transitions driven by correlation effects
associated with the electron-electron interaction. The insulating phase caused by the correlation
effects is categorized as the Mott Insulator. Near the transition point the metallic state shows
fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these
metals are frequently quite different from those of ordinary metals, as measured by transport, optical,
and magnetic probes. The review first describes theoretical approaches to the unusual metallic states
and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be
adiabatically connected with the noninteracting picture. Strong-coupling models that do not require
Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory
of the transition. A central issue for this review is the evaluation of these approaches in simple
theoretical systems such as the Hubbard model and t-J models. Another key issue is strong
competition among various orderings as in the interplay of spin and orbital fluctuations.

Experimentally, the unusual properties of the metallic state near the insulating transition have been
most extensively studied in d-electron systems. In particular, there is revived interest in
transition-metal oxides, motivated by the epoch-making findings of high-temperature
superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the
rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru
compounds. The diverse phenomena include strong spin and orbital fluctuations, mass
renormalization effects, incoherence of charge dynamics, and phase transitions under control of key
parameters such as band filling, bandwidth, and dimensionality. These parameters are experimentally
varied by doping, pressure, chemical composition, and magnetic fields. Much of the observed behavior
can be described by the current theory. Open questions and future problems are also extracted from
comparison between experimental results and theoretical achievements. [S0034-6861(98)00103-2]
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I. INTRODUCTION

A. General remarks

The first successful theoretical description of metals,
insulators, and transitions between them is based on
noninteracting or weakly interacting electron systems.
The theory makes a general distinction between metals
and insulators at zero temperature based on the filling of
the electronic bands: For insulators the highest filled
band is completely filled; for metals, it is partially filled.
In other words, the Fermi level lies in a band gap in
insulators while the level is inside a band for metals. In
the noninteracting electron theory, the formation of
band structure is totally due to the periodic lattice struc-
ture of atoms in crystals. This basic distinction between
metals and insulators was proposed and established in
the early years of quantum mechanics (Bethe, 1928;
Sommerfeld, 1928; Bloch, 1929). By the early 1930s, it
was recognized that insulators with a small energy gap
between the highest filled band and lowest empty band
would be semiconductors due to thermal excitation of
the electrons (Wilson, 1931a, 1931b; Fowler, 1933a,
1933b). More than fifteen years later the transistor was
invented by Shockley, Brattain, and Bardeen.

Although this band picture was successful in many re-
spects, de Boer and Verwey (1937) reported that many
transition-metal oxides with a partially filled d-electron
band were nonetheless poor conductors and indeed of-
ten insulators. A typical example in their report was
NiO. Concerning their report, Peierls (1937) pointed out
the importance of the electron-electron correlation:
Strong Coulomb repulsion between electrons could be
the origin of the insulating behavior. According to Mott
(1937), Peierls noted

‘‘it is quite possible that the electrostatic interaction
between the electrons prevents them from moving at
all. At low temperatures the majority of the electrons
are in their proper places in the ions. The minority
which have happened to cross the potential barrier
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find therefore all the other atoms occupied, and in
order to get through the lattice have to spend a long
time in ions already occupied by other electrons.
This needs a considerable addition of energy and so
is extremely improbable at low temperatures.’’

These observations launched the long and continuing
history of the field of strongly correlated electrons, par-
ticularly the effort to understand how partially filled
bands could be insulators and, as the history developed,
how an insulator could become a metal as controllable
parameters were varied. This transition illustrated in
Fig. 1 is called the metal-insulator transition (MIT). The
insulating phase and its fluctuations in metals are indeed
the most outstanding and prominent features of strongly
correlated electrons and have long been central to re-
search in this field.

In the past sixty years, much progress has been made
from both theoretical and experimental sides in under-
standing strongly correlated electrons and MITs. In the-
oretical approaches, Mott (1949, 1956, 1961, 1990) took
the first important step towards understanding how
electron-electron correlations could explain the insulat-
ing state, and we call this state the Mott insulator. He
considered a lattice model with a single electronic or-
bital on each site. Without electron-electron interac-
tions, a single band would be formed from the overlap of
the atomic orbitals in this system, where the band be-
comes full when two electrons, one with spin-up and the
other with spin-down, occupy each site. However, two
electrons sitting on the same site would feel a large Cou-
lomb repulsion, which Mott argued would split the band
in two: The lower band is formed from electrons that
occupied an empty site and the upper one from elec-
trons that occupied a site already taken by another elec-
tron. With one electron per site, the lower band would
be full, and the system an insulator. Although he dis-
cussed the magnetic state afterwards (see, for example,

FIG. 1. Metal-insulator phase diagram based on the Hubbard
model in the plane of U/t and filling n . The shaded area is in
principle metallic but under the strong influence of the metal-
insulator transition, in which carriers are easily localized by
extrinsic forces such as randomness and electron-lattice cou-
pling. Two routes for the MIT (metal-insulator transition) are
shown: the FC-MIT (filling-control MIT) and the BC-MIT
(bandwidth-control MIT).
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Mott, 1990), in his original formulation Mott argued that
the existence of the insulator did not depend on whether
the system was magnetic or not.

Slater (1951), on the other hand, ascribed the origin of
the insulating behavior to magnetic ordering such as the
antiferromagnetic long-range order. Because most Mott
insulators have magnetic ordering at least at zero tem-
perature, the insulator may appear due to a band gap
generated by a superlattice structure of the magnetic pe-
riodicity. In contrast, we have several examples in which
spin excitation has a gap in the Mott insulator without
magnetic order. One might argue that this is not com-
patible with Slater’s band picture. However, in this case,
both charge and spin gaps exist similarly to the band
insulator. This could give an adiabatic continuity be-
tween the Mott insulator and the band insulator, which
we discuss in Sec. II.B.

In addition to the Mott insulating phase itself, a more
difficult and challenging subject has been to describe
and understand metallic phases near the Mott insulator.
In this regime fluctuations of spin, charge, and orbital
correlations are strong and sometimes critically en-
hanced toward the MIT, if the transition is continuous
or weakly first order. The metallic phase with such
strong fluctuations near the Mott insulator is now often
called the anomalous metallic phase. A typical anoma-
lous fluctuation is responsible for mass enhancement in
V2O3, where the specific-heat coefficient g and the Pauli
paramagnetic susceptibility x near the MIT show sub-
stantial enhancement from what would be expected
from the noninteracting band theory. To understand this
mass enhancement, the earlier pioneering work on the
MIT by Hubbard (1964a, 1964b) known as the Hubbard
approximation was reexamined and treated with the
Gutzwiller approximation by Brinkmann and Rice
(1970).

Fermi-liquid theory asserts that the ground state and
low-energy excitations can be described by an adiabatic
switching on of the electron-electron interaction. Then,
naively, the carrier number does not change in the adia-
batic process of introducing the electron correlation, as
is celebrated as the Luttinger theorem. Because the
Mott insulator is realized for a partially filled band, this
adiabatic continuation forces the carrier density to re-
main nonzero when one approaches the MIT point in
the framework of Fermi-liquid theory. Then the only
way to approach the MIT in a continuous fashion is the
divergence of the single-quasiparticle mass m* (or more
strictly speaking the vanishing of the renormalization
factor Z) at the MIT point. Therefore mass enhance-
ment as a typical property of metals near the Mott insu-
lator is a natural consequence of Fermi-liquid theory.

If the symmetries of spin and orbital degrees of free-
dom are broken (either spontaneously as in the mag-
netic long-range ordered phase or externally as in the
case of crystal-field splitting), the adiabatic continuity
assumed in the Fermi-liquid theory is not satisfied any
more and there may be no observable mass enhance-
ment. In fact, a MIT with symmetry breaking of spin and
orbital degrees of freedom is realized by the vanishing of
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the single-particle (carrier) number, as in the transition
to a band insulator. For example, this takes place in the
transition from an antiferromagnetic metal to an antifer-
romagnetic Mott insulator, where the folding of the Bril-
louin zone due to the superstructure of the magnetic
periodicity creates a completely filled lower band. Car-
riers are doped into small pockets of Fermi surface
whose Fermi volume vanishes at the MIT.

From this heuristic argument, one can see at least two
distinct routes to the Mott insulator when one ap-
proaches the MIT point from the metallic side, namely,
the mass-diverging type and carrier-number-vanishing
type. The diversity of anomalous features of metallic
phases near both types of MIT is a central subject of this
review. Mass enhancement or carrier-number reduction
as well as more complicated features have indeed been
observed experimentally. The experiments were exam-
ined from various, more or less independently devel-
oped theoretical approaches, as detailed in Sec. II. In
particular, anomalous features of correlated metals near
the Mott insulator appear more clearly when the MIT is
continuous. Theoretically, this continuous MIT has been
a subject of recent intensive studies in which unusual
metallic properties are understood from various critical
fluctuations near the quantum critical point of the MIT.

A prototype of theoretical understanding for the tran-
sition between the Mott insulator and metals was
achieved by using simplified lattice fermion models, in
particular, in the celebrated Hubbard model (Anderson,
1959; Hubbard, 1963, 1964a, 1964b; Kanamori, 1963).
The Hubbard model considers only electrons in a single
band. Its Hamiltonian in a second-quantized form is
given by

HH5Ht1HU2mN , (1.1a)

Ht52t(̂
ij&

~cis
† cjs1H.c.!, (1.1b)

HU5U(
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~ni↑2
1
2 !~ni↓2

1
2 !, (1.1c)
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N[(
is

nis , (1.1d)

where the creation (annihilation) of the single-band
electron at site i with spin s is denoted by cis

† (cis) with
nis being the number operator nis[cis

† cis . In this sim-
plification, various realistic complexities are ignored, as
we shall see in Sec. II.A. However, at the same time,
low-energy and low-temperature properties are often
well described even after this simplification since only a
small number of bands (sometimes just one band) are
crossing the Fermi level and have to do with low-energy
excitations. The parameters of the simplified models in
this case should be taken as effective values derived
from renormalized bands near the Fermi level.

One of the most drastic simplification in the Hubbard
model is to consider only electrons in a single orbit, say
the s orbit. In contrast, the experimental study of the
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MIT in correlated metals has been most thorough and
systematic in d-electron systems, namely, transition-
metal compounds. Many examples will be reviewed in
this article. In d-electron systems, orbital degeneracy is
an important and unavoidable source of complicated be-
havior. For example, under the cubic crystal-field sym-
metry of the lattice, any of the threefold degenerate t2g
bands, dxy , dyz , and dzx as well as twofold degenerate
eg bands, dx22y2 and d3z22r2, can be located near the
Fermi level, depending on transition-metal ion, lattice
structure, composition, dimensionality, and so on. In ad-
dition to strong spin fluctuations, effects of orbital fluc-
tuations and orbital symmetry breaking play important
roles in many d-electron systems, as discussed in Secs.
II.H and IV. The orbital correlations are frequently
strongly coupled with spin correlations through the
usual relativistic spin-orbit coupling as well as through
orbital-dependent exchange interactions and quan-
drupole interactions. An example of this orbital effect
known as the double-exchange mechanism is seen in Mn
oxides (Sec. IV.F), where strong Hund’s-rule coupling
between the eg and t2g orbitals triggers a transition be-
tween the Mott insulator with antiferromagnetic order
and the ferromagnetic metal. Colossal negative magne-
toresistance near the transition to this ferromagnetic
metal phase has been intensively studied recently.

Another aspect of orbital degeneracy is the overlap or
the closeness of the d band and the p band of ligand
atoms which bridge the elements in transition-metal
compounds. For example, as clarified in Secs. II.A and
III.A, in the transition-metal oxides, the oxygen 2ps

level becomes close to that of the partially filled 3d band
near the Fermi level for heavier transition-metal ele-
ments such as Ni and Cu. Then the charge gap of the
Mott insulator cannot be accounted for solely with d
electrons, but p-electron degrees of freedom have also
to be considered. In fact, when we could regard the
Hubbard model as a description of a d band only, the
charge excitation gap is formed between a singly occu-
pied d band (the so-called lower Hubbard band) and a
doubly occupied (with spin up and down) d band (the
so-called upper Hubbard band). However, if the ps level
becomes closer, the character of the minimum charge
excitation gap changes to that of a gap between a singly
occupied d band with fully occupied p band and a singly
occupied d band with a ps hole. This kind of insulator,
which was clarified by Zaanen, Sawatzky, and Allen
(1985), is now called a charge-transfer (CT) insulator as
contrasted to the former case, the Mott-Hubbard (MH)
insulator, which we discuss in detail in Secs. II.A and
III.A, and the distinction is indeed observed in high-
energy spectroscopy. Correspondingly, compounds that
have the MH insulating phase are called MH com-
pounds while those with the CT insulating phase are
called CT compounds. The term ‘‘Mott insulator’’ is
used in this review in a broad sense which covers both
types. Recent achievements in the field of strongly cor-
related electrons, especially in d-electron systems, have
brought us closer to understanding more complicated
situations in which there is an interplay between orbital
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and spin fluctuations and lattice degrees of freedom. Al-
though we focus on the d-electron systems in this article,
other systems also provide many interesting aspects in
terms of strong-correlation effects. For example, organic
systems with p-electron conduction such as BEDT-TTF
compounds show two-dimensional (2D) anisotropy with
an interesting interplay of MIT and transition to super-
conducting state (see, for example, Kanoda, 1997). An-
other example is seen in f-electron systems, where, for
instance, non-Fermi-liquid properties due to orbital de-
generacy effects have been extensively studied.

Most theoretical effort has been concentrated on sim-
plified single-orbital systems such as the Hubbard and
t-J models, in which the interplay of strong quantum
fluctuations and correlation effects has been reexam-
ined. In fact, the single-band model was originally de-
rived, as we mentioned above, to discuss low-energy ex-
citations of renormalized simple bands near the Fermi
level even in the presence of a complicated structure of
high-energy bands far from the Fermi level. This trend
was clearly motivated and greatly accelerated by the dis-
covery of high-Tc cuprate superconductors (Bednorz and
Müller, 1986). In the cuprate superconductors, the low-
energy electronic structure of the copper oxide is rather
well described only by the dx22y2 band separated from
the d3z22r2 and t2g bands. Although the 2ps band is
close to the dx22y2 band, as the copper oxides are typical
CT compounds, the 2ps band is strongly hybridized with
the dx22y2 band and consequently forms a single anti-
bonding band near the Fermi level. This again lends sup-
port for a description by an effective single-band model
(Anderson, 1987; Zhang and Rice, 1988).

Mother compounds of the cuprate superconductors
are typical Mott insulators with antiferromagnetic order
where the Cu atom is in a d9 state with a half-filled
dx22y2 orbital. A small amount of carrier doping to this
Mott insulating state drives the MIT and directly results
in the superconducting transition at low temperatures
for low carrier doping. Because 2D anisotropy is promi-
nent in cuprates due to the layered perovskite structure,
strong quantum fluctuations with suppression of antifer-
romagnetic long-range order are the key aspects. One-
and two-dimensional systems without orbital degeneracy
are the extreme cases to enhance this quantum fluctua-
tion, where high-Tc superconductivity was discovered.
This has strongly motivated studies of the ground state
and low-temperature properties of simple low-
dimensional models such as the 2D Hubbard model be-
yond the level of mean-field approximations, taking ac-
count of strong fluctuations of spin and charge. It is
widely recognized that reliable treatments of normal-
state properties with strong low-dimensional anisotropy
near the MIT are imperative for an understanding of
this type of superconductivity, while low dimensionality
makes various mean-field treatments very questionable
The importance of strong correlation to our understand-
ing of cuprate superconductors was stressed in the early
stage by Anderson (1987).

In fact, the normal state of the cuprate superconduct-
ors shows many unusual properties which are far from
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the standard Fermi-liquid behavior. A typical anoma-
lous property is the temperature dependence of the re-
sistivity, which is linearly proportional to the tempera-
ture T , in contrast with the T2 dependence expected in
the Fermi-liquid theory. The optical conductivity
roughly proportional to the inverse frequency is another
unusual aspect, because it contradicts the well-known
Drude theory. These indicate that the charge dynamics
have a strongly incoherent character. Another example
is the so-called pseudogap behavior observed in the un-
derdoped region near the Mott insulating phase. The
pseudogap is a frequency threshold for the strong exci-
tation of spin and charge modes. We review basic fea-
tures of these unusual properties observed in a number
of experimental probes, such as photoemission, nuclear
magnetic resonance, neutron scattering, transport mea-
surements, and optical measurements, in Sec. IV.C,
while we discuss various theoretical approaches to un-
derstanding them in Sec. II. We concentrate on proper-
ties in the normal state related to the MIT, while the
properties in the superconducting phase are not re-
viewed in this article.

Strong incoherence actually turned out to be a com-
mon property of most transition-metal compounds near
the Mott transition point, as discussed in Sec. IV. We
call these incoherent metals. The incoherent charge dy-
namics as well as other anomalies in spin, charge, and
orbital fluctuations all come from almost localized but
barely itinerant electrons in the critical region of transi-
tion between metals and the Mott insulator. These criti-
cal regions are not easy to understand from either the
metal or the insulator side, but their critical properties
can be analyzed by the techniques for quantum critical
phenomena discussed in Sec. II.

The two important parameters in the Hubbard model
are the electron correlation strength U/t and the band
filling n . The schematic metal-insulator phase diagram
in terms of these parameters is presented in Fig. 1. In the
case of a nondegenerate band, the n50 and n52 fillings
correspond to the band insulator. For the half-filled case
(n51), it is believed that the change of U/t drives the
insulator-to-metal transition (Mott transition) at a criti-
cal value of U/t except in the case of perfect nesting,
where the critical value Uc is zero. This transition at a
finite Uc is called a bandwidth control (BC)-MIT. Mott
argued that the BC-MIT becomes a first-order transition
when we consider the long-range Coulomb force not
contained in the Hubbard model (Mott, 1956, 1990). He
reasoned supposing that the carrier density decreases
with increasing U/t . Then screening of long-range Cou-
lomb forces by other carriers becomes ineffective, which
results in the formation of an electron-hole bound pair
at a finite U . This causes the first-order transition to the
insulating state. Here we note that the validity of Mott’s
argument is still an open question because, as mentioned
above, the Mott transition is not necessarily of the
carrier-number-vanishing type but can be of the mass-
diverging type, in contrast to the transition to the band
insulator. We shall discuss this later in greater detail.
Irrespective of Mott’s argument the coupling to lattice
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degrees of freedom also favors the first-order transition
by discontinuously increasing the transfer amplitude t in
the metallic phase. The coupling of spin and orbital may
also favor the first-order transition in real materials. In
the region adjacent to the n51 insulating line (a thick
line in Fig. 1), the spin-ordered phase is frequently ob-
served, that is, an antiferromagnetic insulating or metal-
lic phase.

The filling at noninteger n usually leads to the metal-
lic phase. The phase of particular interest is that of met-
als near the n51 insulating line which is derived by fill-
ing control (FC) from the parent Mott insulator (n
51). Since the discovery of high-temperature supercon-
ductors, the concept of ‘‘carrier doping’’ or FC in the
parent Mott insulators has been widely recognized as
one of the important aspects of the MIT in the 3d elec-
tron systems. In contrast to the BC-MIT, the above two
mechanisms for a first-order transition are not effective
for the FC-MIT. The reason is that the electron-hole
bound states cannot make an insulator by themselves
due to the absence of carrier compensation. The cou-
pling to the lattice is also ineffective because usually it
does not couple to the electron filling. Therefore the
transition can easily be continuous for an FC-MIT. In a
relatively large-U/t region near the insulating phase of
n50, 1, and 2, however, the compounds occasionally
suffer from the carrier localization effect arising from
the static random potential and/or electron-lattice inter-
action. In addition, at some fractional but commensurate
fillings such as n51/8, 1/3, and 1/2, the compounds
sometimes undergo the charge-ordering phase transition.
We shall see ample examples in Sec. IV.E, associated
with the commensurate charge-density and spin-density
waves. The latter phenomenon is related not only with
the short-ranged electron correlation as represented by
U/t but also with the inter-site Coulomb interaction.
Keeping these phenomena in mind, we shall review in
Sec. III these electronic control parameters and how
they are varied in actual materials.

B. Remarks on theoretical descriptions (Introduction
to Sec. II)

Section II describes different theoretical approaches
for strongly correlated electron systems and their MITs.
A conventional way of describing the correlation effects
is to assume the adiabatic continuity of the paramag-
netic metallic phase with the noninteracting system
based on the Fermi-liquid description. The Mott insulat-
ing phase is interpreted as in the pioneering work of
Slater as a consequence of a charge gap’s opening due to
symmetry breaking of spin or orbit. In the other ap-
proaches, qualitatively different aspects which are
claimed to be inaccessible from the Fermi-liquid-type
approach are stressed. Since the proposals by Mott and
Slater, these two viewpoints have played complementary
roles sometimes in understanding the correlation effects,
even though they provide contradicting scenarios in
many cases, as we discuss in Sec. II in detail. A typical
example of the controversy is seen in recent debates on
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
high-temperature cuprate superconductors. Several at-
tempts have been made, along the lines of Slater’s ap-
proach, to account for the ground state of Mott insula-
tors such as La2CuO4 and other transition-metal oxides
as well as metallic phases, as we shall see in Sec. II.D.
Some recent developments to treat the correlation ef-
fects in the framework of Fermi-liquid theory are re-
viewed in Sec. II.D.1 together with descriptions of the
basic phenomenology of this theory. Effects of fluctua-
tion in spin and charge responses can be taken into ac-
count on the level of the mean-field approximation by
the random-phase approximation (RPA). When the
symmetry is broken, the Hartree-Fock (HF) theory is the
simplest way to describe the ordered state as well as the
phase transition. The basic content of these mean-field
approximations is summarized in Sec. II.D.2. Theoreti-
cal description beyond the mean-field level is the subject
of later sections, Secs. II.E and II.F. To understand the
correlation effect in d-electron systems on a more quan-
titative level, one has to go beyond the tight-binding ap-
proximation implicit in the Hubbard Hamiltonian.
When the correlation effect is not important, the local-
density approximation (LDA) is a useful tool for calcu-
lating the band structure of metals in the ground state.
However, it is well known that the simple LDA is poor
at reproducing the Mott insulating state as well as
anomalous metallic states near the Mott insulator. Re-
finements of the LDA are then an important issue.
These attempts include the local spin-density approxi-
mation (LSDA), generalized (density) gradient approxi-
mation (GGA), the GW approximation, the so-called
LDA1U approximation, and self-interaction correction
(SIC), which are reviewed in Sec. II.D.3. At finite tem-
peratures, a mode-mode coupling theory [the self-
consistent renormalization (SCR) approximation] was
developed in metals to consistently take into account
weak-amplitude spin fluctuations, which are ignored in
the Hartree-Fock calculation (Moriya, 1985). This
theory may be viewed as a self-consistent one-loop ap-
proximation in the weak-correlation approach. It is
briefly reviewed in Sec. II.D.8. The basic assumption of
the approaches initiated by Slater is that the perturba-
tion expansion or the Hartree-Fock approximation and
RPA in terms of spin correlations of electron quasipar-
ticles is valid at least at zero temperature and well de-
scribes metals and the Mott insulator separately. On the
other hand, in the approaches that go back to the origi-
nal idea of Mott, several attempts have been made to
take account of strong-correlation effects through strong
charge correlations in a nonperturbative way. These at-
tempts include the Hubbard approximation (Hubbard,
1964a, 1964b), the Gutzwiller approximation
(Gutzwiller, 1965; Brinkman and Rice, 1970), various
slave-particle approximations (Barnes, 1976, 1977; Cole-
man, 1984), and the infinite-dimensional approach
(Kuramoto and Watanabe, 1987; Metzner and Voll-
hardt, 1989, Müller-Hartmann, 1989). In general, these
approaches do not seriously take account of the wave-
number dependence (or spatial dependence) of the cor-
relation. In addition, they usually neglect effects of spin
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fluctuations. One coherent-potential approximation that
does not assume magnetic order was developed by Hub-
bard (1964a, 1964b) and is summarized in Sec. II.D.4.
This approach first succeeded in substantiating the ap-
pearance of the Mott insulating state along the lines of
the original idea by Mott. Another approach on a basi-
cally mean-field level is the Gutzwiller approximation.
This approximation, first applied to the MIT by Brink-
man and Rice (1970), is discussed in Sec. II.D.5. These
two approaches, by Hubbard and by Brinkman and
Rice, have close connections to recently developed
treatments in infinite dimensions and the slave-particle
approximation. On the metallic side, the Gutzwiller ap-
proximation, the original slave-boson approximation,
and the solution in infinite dimensions give essentially
the same results for the low-energy excitations, indicat-
ing the basic equivalence of these three approximations
for a description of the coherent part. In fact, the
Gutzwiller and slave-particle approximations treat only
the coherent part and neglect the incoherent part. On
the insulating side, the Hubbard approximation and the
infinite-dimensional approach provide similar results,
because the Hubbard approximation considers only the
incoherent excitations. Sections II.D.6 and II.D.7 discuss
the results of the infinite-dimensional and slave-particle
approximations, respectively. The infinite-dimensional
approach is sometimes called the dynamic mean-field
theory and treats the dynamic fluctuation correctly when
spatial fluctuations can be ignored.

Aside from the above more or less biased approaches,
numerical methods have been developed for the pur-
pose of obtaining insights without approximations. A
number of numerical studies are discussed in Sec. II.E.

To discuss this problem further, we should keep the
following point in mind: When we consider the ground
state of metals and insulators separately far away from
the transition point, each of the ground states may in
many cases be correctly expressed by adiabatic continu-
ations of the fixed-point solutions obtained from rather
simple Hartree-Fock approximations or perturbative ex-
pansions in terms of the correlation. However, an ex-
ample is known in 1D interacting systems where the
usual perturbation expansions and Hartree-Fock ap-
proximations clearly break down and the correct ground
state is not reproduced from the weak-coupling ap-
proach. Its correct fixed point is believed to be the
Tomonaga-Luttinger liquid. The analysis of 2D systems
in terms of the Fermi-liquid fixed point is still controver-
sial. In any case, aside from a few exceptional cases such
as the 1D systems and systems under strong magnetic
fields, the single-particle description of electrons is gen-
erally robust. However, even in the cases where the
fixed point is more or less reproduced by the single-
particle picture of electrons, weak-coupling approaches
based on the perturbation expansion and/or Hartree-
Fock-type analysis have serious difficulties in describing
correlated metals.

The first serious problem is in describing excitations.
For example, if one wants to ascribe the insulating na-
ture of the Mott insulator to antiferromagnetic ordering,
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this attempt is immediately faced with the difficulty of
describing properties above the Néel temperature TN ,
because the insulating behavior is robust well above TN
in many cases, such as La2CuO4 and MnO. In fact, in
La2CuO4, the charge excitation gap of the order of 2 eV,
clearly observed in optical measurements above TN , is
two orders of magnitude larger than the energy scale of
TN . To understand this, a formalism to allow the forma-
tion of electron-hole bound states well above TN is nec-
essary. This is similar to the separation of the Bose con-
densation temperature and the energy scale of bound
boson formation as in 4He. An efficient way of describ-
ing phenomena below the electron-hole excitation en-
ergy, namely, the charge excitation gap, is to derive an
effective Hamiltonian of Heisenberg spins, as is dis-
cussed in Sec. II.A. The formation of electron-hole
bound states well above TN is a clear indication of the
breakdown of the single-particle picture. Of course since
the low-energy collective excitations enhance the quan-
tum spin fluctuations even at the level of zero-point os-
cillations, quantitatively reliable description of the
ground state cannot be achieved by the usual single-
particle description with a Hartree-Fock-type approxi-
mation.

The second serious problem is in describing the MIT.
The breakdown of the single-particle description of elec-
trons is most clearly observed when the MIT is continu-
ous because the metallic ground state must be recon-
structed from the low-energy states of the insulator
when the insulator undergoes a continuous transition to
a metal. There, critical fluctuations can only be treated
by taking account of relevant collective excitations and
growth of short-ranged correlations. Continuous MITs
are the subject of extensive work in recent theoretical
and experimental studies.

The critical fluctuation is not observable as a true di-
vergence if the MIT is of first order. Therefore, in this
case, whether interesting anomalous fluctuations in met-
als appear or not relies on whether the first-order tran-
sition is weak or not. Experimental aspects of first-order
transitions are considered in Sec. IV.

As is discussed in Sec. IV, many compounds, such as
some titanium oxides and vanadium oxides with the 3D
perovskite structure, some of the sulfides and selenides,
as well as 2D systems including high-Tc cuprates, appear
to show a continuous MIT. To understand critical fluc-
tuations near the MIT, it is crucial to extract the major
driving force of the transition. One of the driving forces
is the Anderson localization, and another is the correla-
tion effect toward the Mott insulator. One may also ar-
gue the role of the electron-phonon interaction. In real-
istic situations, the effect of randomness, namely, the
Anderson localization, must be seriously considered
when the system is sufficiently close to the transition
point. However, in many cases such as high-Tc cuprates,
several other transition-metal oxides, and 2D 3He, the
strong-correlation effect appears to be the dominant
driving force of the MIT. As a prototype, the nature of
the transition from (to) the Mott insulator in clean sys-
tems, if clarified, provides a good starting point and is
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helpful in establishing new concepts. Theoretical under-
standing of the MIT caused by pure strong-correlation
effects is an important subject of this review.

To understand the continuous MIT, the idea of scaling
was first applied to the Anderson localization problem
in the 1970s (Wegner, 1976; Abrahams, Anderson, Lic-
ciardello, and Ramakrishnan, 1979). As we discuss in
Sec. II.F, it is now established that the scaling concept
and renormalization-group analysis are useful especially
in 2D. The scaling theory was also developed for under-
standing the transition between a Mott insulator and a
superfluid of single-component bosons (see Sec. II.F.12).
In the case of transitions between metals and Mott insu-
lators in pure systems, a scaling theory has also been
formulated recently and several new features of the MIT
clarified (Imada, 1994c, 1995b). We discuss this recent
achievement in Sec. II.F.

The difficulty of quasiparticle descriptions and mean-
field approximations of electrons appear most seriously
in non Fermi liquids. One-dimensional interacting sys-
tems showing the Tomonaga-Luttinger liquid behavior
provide a prototype of non Fermi liquids due to strong-
correlation effects. Its basic properties are summarized
in Sec. II.G.1. To explain several anomalous properties
of high-Tc cuprates, the marginal Fermi-liquid theory
was proposed on phenomenological grounds. It is dis-
cussed in Sec. II.G.2.

Section II.H is devoted to recent attempts to describe
more complicated situations. Transition-metal com-
pounds have rich structures of phases due to spin and
orbital fluctuations. Among them, the interplay of spin
and orbital ordering is the subject of Sec. II.H.1. Due to
the interplay of these two fluctuations, several
d-electron systems have phases of ferromagnetic and an-
tiferromagnetic metals. In particular, Mn and Co com-
pounds show the MIT accompanied by the appearance
of ferromagnetic metals due to strong Hund’s-rule cou-
pling. This is discussed in Sec. II.H.2. Other complexities
such as the effects of charge ordering are also discussed
in Sec. II.H.3.

C. Remarks on material systematics (Introduction
to Sec. III)

In order to study Mott transitions and associated phe-
nomena in real materials, microscopic models such as
the Hubbard model [Eq. (1.1)] and its extended versions
are necessary to formulate and to solve problems. Those
models include parameters that are to be determined so
as to reproduce experimentally measured physical prop-
erties of real systems as closely as possible. For example,
the Hubbard model has the parameters U and t while
the d-p model [Eq. (2.1)] also has «d2«p[D . There are
more parameters when the degeneracy of the d orbitals
has to be taken into account. In order to check the va-
lidity of theoretical ideas through comparison with ex-
periment, however, it is often desirable not only to ad-
just the model parameters but also to have independent
estimates of those parameters a priori. Section III de-
scribes such methods and the results of parameter esti-
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mates. Once we know the parameter values, especially
how they change when the chemical composition of ma-
terials is changed, we are able to predict to some extent
the physical properties of those materials using the pa-
rameter values as an input to theoretical calculations.

The current status of our understanding of the elec-
tronic structures of transition-metal compounds is
heavily based on spectroscopic methods that have been
developed in the last decade. A very useful approach for
strongly correlated transition-metal compounds has
been the configuration-interaction (CI) treatment of
metal-ligand cluster models, in which correlation and
hybridization effects within the local cluster are quite
accurately taken into account. On the other hand, first-
principles calculations have also greatly contributed to
our understanding of electronic structures, especially to
our estimates of the parameter values. In Sec. III.A, the
local description of electronic structure based on the
configuration-interaction picture of a metal-ligand clus-
ter model is described. Basic parameters that character-
ize the electronic structure, namely, the charge-transfer
energy D, the Coulomb repulsion U [see Eq. (1.1)], etc.,
are introduced together with the important concept of
Mott-Hubbard-type versus charge-transfer-type insula-
tors.

In Sec. III.B, methods used to derive those param-
eters are described: They are spectroscopic methods,
first-principles methods, and more classical methods
based on the ionic point-charge model. The spectro-
scopic methods are largely based on the configuration-
interaction cluster model. Systematic variations of the
model parameters have been deduced and employed to
predict physical properties of the transition-metal com-
pounds. The first-principles methods are based on the
local-density approximation. The LDA with certain con-
straints (constrained LDA method) is used to calculate
U and other parameters. Fits of first-principles band
structures to the tight-binding model Hamiltonian give
such parameters as the t and D.

In Sec. III.C we describe how to control the electronic
parameters of the model for real materials systems. Two
fundamental parameters of a strongly correlated elec-
tron system are the one-electron bandwidth W (or hop-
ping interaction t of the conduction particle) and the
band filling n (or doping level). The conventional
method of bandwidth control (BC) is application of ex-
ternal or internal (chemical) pressure. In Sec. III.C.1 we
show some examples of the metal-insulator phase dia-
gram afforded by such bandwidth control. As a typical
example of chemical pressure, we describe the general
relation between the ionic radii of the composing atomic
element (or the so-called tolerance factor) and the
metal-oxygen-metal bond angle in a perovskite-type
structure. The d-electron hopping interaction t is medi-
ated by the oxygen 2p state (supertransfer process) and
hence sensitive to the bond angle. This offers the oppor-
tunity to control W by variation of the perovskite toler-
ance factor. The example of RNiO3, is described in that
section, where R is the rare-earth ion with varying ionic
radius. The band filling or doping level can be controlled
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by modifying the chemical composition, as described in
Sec. III.C.2, such as introducing extra oxygen or its va-
cancies and/or alloying the heterovalent ions other than
on the tradition metal site. The perovskites and their
analogs are again the most typical for such filling control
(FC) and the FC range in the actual pseudocubic and
layered perovskites of 3d transition-metal oxide is de-
picted. The last subsection (III.C.3) is devoted to a de-
scription of some homologous series compounds in
which electronic dimensionality can be controlled to
some extent. The cuprate ladder-type compounds and
the Ruddlesden-Popper series (the so-called layered
perovskite) structures represent the dimensional cross-
over from 1D to 2D and from 2D to 3D, respectively.
These systematics are helpful in connecting the rather
general theoretical descriptions in Sec. II to specific ex-
perimental examples in Sec. IV. They are also useful for
classifying experimental results.

D. Remarks on experimental results of anomalous metals
(Introduction to Sec. IV)

Section IV is devoted to experimentally observed fea-
tures of correlated metals and related MITs in
d-electron systems (mostly oxides), which are mostly de-
rived from the Mott insulators by bandwidth control
(BC) or filling control (FC). As we mentioned above,
other systems, including the organic and f-electron sys-
tems, show similar MIT properties, but we do not cover
them in this article. Concerning the work done before
the mid-1980s, comprehensive reviews on d-electron
compounds have been given in the literature, e.g., the
book written by Mott (1990) himself and one in honor of
the 80th anniversary of Mott’s birth (Edwards and Rao,
1985). The review given here would be biased in favor of
the late advance on the FC-MITs.

In Sec. IV.A, we try to update the experimental un-
derstanding of the BC-MIT systems, V2O3 (IV.A.1), NiS
(IV.A.2), NiS22xSex (IV.A.3) and RNiO3 (IV.A.4). The
first two compounds have long been known as the pro-
totypical systems that show the Mott insulator-to-metal
transition by application of pressure or by chemical sub-
stitution. The MIT induced by some nonstoichiometry
or by Ti doping should rather be considered as FC-MIT,
yet all the features of the MIT in V2O3 are comprehen-
sively described in this section. In the modern view of
the Zaanen-Sawatzky-Allen scheme, the insulating
states of NiS and NiS22xSex should be classified as
charge-transfer insulators with the charge gap between
the filled chalcogen 2p state and Ni 3d upper Hubbard
band, in which the chalcogen 2p state bandwidth or the
hybridization between the two states can be changed by
applying pressure or alloying S site with Se. A similar
BC-MIT has been recently recognized in a series of
RNiO3, R being a rare-earth element from La to Lu,
and the BC acting by the bond distortion of the ortho-
rhombic perovskite. In this case, the nominal valence of
Ni is 31 with 3d7 electron configuration, indicating the
insulating phase with S51/2 in contrast to the former
Ni-based conventional Mott insulators with S51. In Sec.
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IV.A.5, we describe the electron spectroscopy of
Ca12xSrxVO3, in which the bandwidth control can be
similarly achieved by perovskite distortion.

In Sec. IV.B we describe the features of the metallic
state derived from the Ti31- and V31-based Mott-
Hubbard insulators by FC-MIT. R12xAxTiO3 (IV.B.1)
is a relatively new but prototypical Mott-Hubbard sys-
tem, in which both BC and FC have been proven to be
possible. The FC-MIT on the V31-based compound is
also observed in La12xSrxVO3 (IV.B.2) with perovskite
structure, which has long been known but is yet to be
investigated from the modernized view.

Concerning the high-temperature superconducting cu-
prates, there have been numerous publications on their
anomalous metallic properties. They are the most im-
portant example of the FC-MIT. Here, we focus on the
filling dependence of the normal-state properties in pro-
totypical hole-doped superconductors (IV.C.1.
La22xSrxCuO4 and IV.C.3. YBa2Cu3O61y) and electron-
doped ones (IVC.2 R22xCexCuO4).

In Sec. IV.D, we briefly describe the recent attempts
to derive the metallic state via carrier doping or FC in
the quasi-1D cuprate compounds as well as the ther-
mally induced BC-MIT in BaVS3. In particular, the
search for the FC-MIT in the quasi-1D cuprates have
recently been fruitful for one of the spin-ladder com-
pounds, (Sr,Ca)14Cu24O41, and 10 K superconductivity
was found under pressure, a finding which is described
in a little more detail in Sec. IV.D.1.

The part of the Coulomb repulsion between electrons
on different sites occasionally helps the periodic real-
space ordering of the charge carriers in narrow-band
systems, although even without the intersite Coulomb
repulsion, this real-space ordering may be stabilized due
to the kinetic-energy gain (see Sec. II.H.3). These phe-
nomena are called charge ordering in the d-electron ox-
ides and are widely observed for systems with simple
fractional filling. A classic example is the Verwey tran-
sition in magnetite, Fe3O4 (Sec. IV.E.1), with spinel
structure. The resistivity jump at TV'120 K was as-
signed to the onset of the charge ordering, namely a
real-space ordering of the Fe21 and Fe31 on the spinel B
site in the ferrimagnetic state, where the spins on the A
sites (Fe31) and on the B sites (Fe21/Fe31) direct oppo-
sitely. The magnetic phase-transition temperature is 858
K, much higher than TV . Thus we can only consider the
charge degree of freedom decoupled from the spin de-
gree of freedom upon the charge-ordering transition. In
contrast, versatile phenomena take place in the
d-electron oxides arising from simultaneous or strongly
correlated changes of the charge ordering and spin or-
dering. One such example is the case of La12xSrxFeO3
(Sec. IV.E.2) with x52/3, in which the MIT at 220 K is
associated with simultaneous charge ordering and anti-
ferromagnetic spin ordering. In the layered (n51) per-
ovskite La22xSrxNiO4 (Sec. IV.E.3) with x51/3 or 1/2,
the charge-ordered phase shows up at higher tempera-
tures (220–240 K), accompanying the resistivity jump,
and subsequently antiferromagnetic spin ordering takes
place. It is now believed that similar charge-ordering
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phenomena in quasi-2D systems are present in the lay-
ered perovskites of manganites (Sec. IV.E.4) and cu-
prates (Sec. IV.C.1) with specific fillings. In particular,
the cases of the superconducting cuprates
La22xSrxCuO4 and La22xBaxCuO4, with x51/8, are
known as ‘‘the 1/8 problem:’’ The superconductivity dis-
appears singularly at this filling even though 1/8 is near
the optimum doping level (x50.15) at which Tc is maxi-
mum. The phenomenon accompanies a structural
change, as confirmed in La22xBaxCuO4, and perhaps
also spin ordering.

Sec. IV.F is devoted to a review of double-exchange
systems, which are of revived interest due to the large
magnetoresistance and other magnetic-field-induced
phenomena. The ferromagnetic interaction between the
local d-electron spins is mediated by the transfer of the
conduction d electron (double-exchange interaction):
The itinerant carriers are coupled with the local spin via
the strong on-site exchange interaction (Hund’s-rule
coupling). The metallic phase is derived by hole doping
from the parent insulators, e.g., LaMnO3 and LaCoO3.
In the perovskite manganites (Sec. IV.F.1), the strong
Hund’s-rule coupling works between the eg electron and
the t2g local spin (S53/2). The eg electrons are strongly
correlated, which gives rise to various competing inter-
actions with the double-exchange interaction. In particu-
lar, we shall see that competing interactions, such as
electron-lattice (Jahn-Teller), superexchange, and
charge-ordering interactions, cause a variety of
magnetic-field-induced metal-insulator phenomena in
the manganites with controlled bandwidth and filling.
The attempt at dimension control in manganites is re-
viewed, taking examples of layered perovskite structures
(n52; Sec IV.F.2). Hole-doped cobalt oxides with the
perovskite structure (Sec. IV.G.4) are other examples of
double-exchange ferromagnets, although the itinerancy
of the conduction electrons is considerably larger than in
the manganites.

The systems associated with gaps for both charge and
spin are conceptually difficult to distinguish from the
band insulators, as discussed above. However, some
d-electron compounds are considered to be strongly cor-
related insulators with a spin gap and undergo the tran-
sition to correlated metals usually by increasing tem-
perature or by applying pressure (BC-MIT). Some
examples are given in Sec. IV.G. FeSi (Sec. IV.G.1) has
been pointed out to show similarities to a Kondo insu-
lator. The nonmagnetic ground state of VO2 (Sec.
IV.G.2) arises from the dimerization of V sites. Never-
theless, the Cr-doped compound takes the structure of a
homogeneous stack but remains insulating, i.e., is a Mott
insulator. Thus the spin-dimerized state in VO2 may be
viewed as a spin Peierls state and the compound under-
goes an insulator-metal transition with increasing tem-
perature. LaCoO3 (Sec. IV.G.4) undergoes a spin-state
transition and the ground state corresponds to the low-
spin (S50) state. The thermally induced MIT in this
compound has recently been revisited and some uncon-
ventional features arising from electron correlation have
been found. We further consider the recent investigation
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
of the misfit compounds, La1.172xPbxVS3.17 (Sec.
IV.G.5), which are nonmagnetic in the insulating state
(x50.17) where both electron doping and hole doping
are possible. Section IV.H is devoted to other interest-
ing 4d transition-metal oxides, for example Sr2RuO4
(Sec. IV.H.1). This transition-metal oxide, which is iso-
structural with La22xSrxCuO4, was recently found to be
superconducting below 0.9 K and to show a highly an-
isotropic Fermi-liquid behavior.

II. THEORETICAL DESCRIPTION

A. Theoretical models for correlated metals and Mott
insulators in d-electron systems

1. Electronic states of d-electron systems

The atomic orbitals of transition-metal elements are
constructed as eigenstates under the spherical potential
generated by the transition-metal ion. When the solid is
formed, the atomic orbital forms bands due to the peri-
odic potential of atoms. The bandwidth is basically de-
termined from the overlap of two d orbitals on two ad-
jacent transition metals each. The overlap comes from
the tunneling of two adjacent so-called virtual bound
states of d orbitals. Because of the relatively small ra-
dius of the wave function as compared to the lattice con-
stant in crystals, d-electron systems have in general
smaller overlap and hence smaller bandwidths than al-
kaline metals. In transition-metal compounds, the over-
lap is often determined by indirect transfer between d
orbitals through ligand p orbitals. This means that the
bandwidth is determined by the overlap (in other words,
hybridization) of the d wave function at a transition-
metal atom and the p wave function at the adjacent
ligand atom if the ligand atoms make bridges between
two transition-metal atoms. Because of this indirect
transfer through ligand atomic orbitals, the d bandwidth
becomes in general even narrower. Another origin of
the relatively narrow bandwidth in transition-metal
compounds is that 4s and 4p bands are pushed well
above the d band, where screening effects by 4s and 4p
electrons do not work well. This makes the interaction
relatively larger than the bandwidth. In any case, be-
cause of the narrow bandwidth, the tight-binding models
constructed from atomic Wannier orbitals provide a
good starting point. For historic and seminal discussions
on this point, readers are referred, to the textbook ed-
ited by Rado and Suhl (1963), particularly the articles by
Herring (1963) and Anderson (1963a, 1963b).

The bands that are formed are under the strong influ-
ence of anisotropic crystal fields in solids. Because the
3d orbital has the total angular momentum L52, it has
fivefold degeneracy (Lz52,1,0,21,22) for each spin
and hence a total of tenfold degeneracy including spins.
This degeneracy is lifted by the anisotropic crystal field.
In transition-metal compounds, a transition-metal atom
is surrounded by ligand atoms to help in the formation
of a solid through the increase in cohesive energy by
covalent bonds of the two species. Because the ligand
atoms have a strong tendency towards negative valence,
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the crystal field of electrons in the direction of the ligand
atom is higher than in other directions. Figure 2 shows
an example of the crystal field splitting, where the cubic
lattice symmetry leads to a higher energy level of four-
fold degenerate eg (or dg) orbital and sixfold degenerate
lower orbitals, t2g (or d«). When a transition-metal atom
is surrounded by ligand atoms with an octahedron con-
figuration, the eg orbital has anisotropy with larger am-
plitude in the direction of the principle axes, namely,
toward neighboring ligand atoms. The basis of these or-
bitals may be expanded by dx22y2 and d3z22r2 orbitals.
On the other hand, the t2g orbital has anisotropy with
larger amplitude of the wave function toward other di-
rections and may be represented by dxy , dyz , and dzx
orbitals. For other lattice structures with other crystal
symmetries, such as tetragonal or orthorhombic as in the
case of 2D perovskite structure, similar crystal field split-
ting appears. In the case of tetrahedral surroundings of
ligand ions, eg orbitals lie lower than t2g , in contrast to
cubic symmetry or octahedron surroundings. Readers
are referred to Sec. III for more detailed discussions of
each compound.

In general, the relevant electronic orbitals for low-
energy excitations transition-metal compounds with
light transition-metal elements are different from those
with heavy ones. In the compounds with light transition-
metal elements such as Ti, V, Cr, . . . , only a few bands
formed from 3d orbitals are occupied by electrons per
atom. Therefore the t2g orbital (more precisely, the t2g
band under the periodic potential) is the relevant band
for low-energy excitations in the case of the above-
mentioned octahedron structure because the Fermi level
crosses bands mainly formed by t2g orbitals. By contrast,
in transition-metal compounds with heavy transition-
metal elements such as Cu and Ni, the t2g band is fully
occupied far below the Fermi level, and low-energy ex-
citations are expressed within the eg band, which is
formed mainly from eg atomic orbitals. If degenerate t2g
or eg orbitals are filled partially, it generally leads again
to degeneracy of the ground state, which frequently in-
duces the Jahn-Teller effect to lift the degeneracy.

Another important difference between light and
heavy transition-metal compounds is the level of ligand
p orbitals. For example, in the transition-metal oxides,
the levels of the relevant 3d orbitals and oxygen 2ps

orbitals, illustrated in Fig. 3, become closer when the

FIG. 2. Crystal-field splitting of 3d orbitals under cubic, te-
tragonal, and orthorhombic symmetries. The numbers cited
near the levels are the degeneracy including spins.
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transition-metal element is changed from Sc to Cu. This
is mainly because the positive nuclear charge increases
with this change, which makes the chemical potential of
d electrons lower and closer to the p orbital. In fact, in
the high-Tc cuprates, the 2ps orbital has a level close to
the 3dx22y2 orbital of Cu. This tendency, as well as the
larger overlap of the eg wave function with the ligand ps

orbital for geometric reasons, causes a strong hybridiza-
tion of the eg and ligand p bands in the late transition
metals. Therefore, to understand low-energy excitations
on a quantitative level, we have to consider these strong
hybridization effects. In contrast, for light transition-
metal oxides, the oxygen p level becomes far from the
3d orbital and additionally the overlap of t2g and p or-
bitals is weak. Then the oxygen p band is not strongly
hybridized with 3d band at the Fermi level, and the for-
mal valence of oxygen is kept close to O22. (More cor-
rectly speaking, the oxygen p band is nearly full. How-
ever, the real valence of oxygen itself may be larger than
22 because the oxygen p band is hybridized with 3d ,
4s , and 4p orbitals.) Consequently the contribution
from the oxygen p band to the wave function at the
Fermi level may be ignored in the first stage. When the
ligand atoms are replaced with S and Se, in general, the
level of the 2p band becomes higher and can be closer
to the d band. This systematic change can be seen, for
example, in NiO, NiS, and NiSe, as we shall see in Secs.
III.A and IV.A.

The electronic correlation effect is in general large
when two electrons with up and down spins each occupy
the same atomic d orbital of a transition-metal atom.
The Coulomb repulsion energy of two electrons at the
same atomic orbital is determined by the spatial exten-
sion of the orbital. The Coulomb energy thus deter-

FIG. 3. Examples of configurations for transition-metal 3d or-
bitals which are bridged by ligand p orbitals.
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mined is relatively large for the d orbital as compared to
the small bandwidth. Of course, since the Coulomb in-
teraction is long ranged, the interatomic Coulomb inter-
action up to the screening radius also has to be consid-
ered in realistic calculations.

2. Lattice fermion models

Much progress has been made in our theoretical un-
derstanding of d-electron systems through the tight-
binding Hamiltonian. In this section we introduce sev-
eral lattice fermion systems derived from the tight-
binding approximation, for use and further discussion in
later sections.

Considering all the above aspects of electronic wave
functions in d-electron systems, we obtain several sim-
plified tight-binding models. The most celebrated and
simplified model is the Hubbard model (Anderson,
1959; Hubbard, 1963; Kanamori, 1963) defined in Eqs.
(1.1a)–(1.1d). The kinetic-energy operator Ht in (1.1b)
is obtained from the overlap of two atomic Wannier or-
bitals, w is(r) on site i and w js(r) on site j as

t5E dr w is* ~r!
1

2m
¹2w js~r!, (2.1)

where m is the electron mass and the Planck constant \
is set to unity. The on-site term HU in (1.1c) describes
the Coulomb repulsion of two electrons at the same site,
as derived from

U5E dr dr8 w is* ~r!w is~r!
e2

ur2r8u
w i2s* ~r8!w i2s~r8!.

(2.2)

Cleary this Hamiltonian neglects multiband effects, a
simplification that is valid in the strict sense only when
the atom has only one s orbital, as in hydrogen atoms.
When this model is used as a model of d-electron sys-
tems, it implicitly assumes that orbital degeneracy is
lifted by the strong anisotropic crystal field so that rel-
evant low-energy excitations can be described by a
single band near the Fermi level. It also assumes that the
ligand p band in transition-metal compounds is far from
the relevant d band or that they are strongly hybridized
to form an effective single band. This Hamiltonian also
neglects the intersite Coulomb force. The screening ef-
fect makes the long-range part of the Coulomb force
exponentially weak, which justifies neglect of the Cou-
lomb interaction far beyond the screening radius. How-
ever, ignoring the intersite interaction in the short-
ranged part of the Coulomb force is a simplification that
sometimes results in failure to reproduce important fea-
tures, such as the charge-ordering effect, as we shall dis-
cuss in Sec. II.H. In the literature, the electron hopping
term Ht is often restricted to the sum over pairs of
nearest-neighbor sites ^ij&.

In spite of these tremendous simplifications, the Hub-
bard model can reproduce the Mott insulating phase
with basically correct spin correlations and the transition
between Mott insulators and metals. The Mott insulat-
ing phase appears at half-filling where the average elec-
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
tron number ^nis& is controlled at ^nis&51/2. For the
nearest-neighbor Hubbard model on a hypercubic lat-
tice, the band structure of the noninteracting part is de-
scribed as

Ht5(
ks

«0~k !cks
† cks , (2.3a)

«0~k !522t (
v5x ,y ,¯

cos kv , (2.3b)

where we have taken the lattice constant to be unity.
Here, the Fourier transform of the electron operator is
introduced as

cks
† 5(

j
e ik•rjc js

† . (2.4)

The spatial coordinate of the j site is denoted by rj . At
half-filling under electron-hole symmetry, the Fermi
level lies at m5«F50. Because the band is half-filled at
m50, the appearance of the insulating phase is clearly
due to the correlation effect arising from the term HU .

Although both the Mott insulating state and the MIT
(metal-insulator transition) are reproduced in the Hub-
bard model, many aspects on quantitative levels with
rich structure have to be discussed by introducing more
complex and realistic factors. To discuss the charge-
ordering effect, at least the near-neighbor interaction ef-
fect should be considered as

H5HH1HV , (2.5a)

HV5V(̂
ij&

ninj , (2.5b)

ni5(
s

nis . (2.5c)

For light elements of transition metal, such as V and
Ti, the Fermi level is on the t2g bands, which are three-
fold degenerate under the cubic crystal field with pos-
sible weak splitting of this degeneracy under the Jahn-
Teller distortion in the perovskite structure. When the
Fermi level is on the eg bands, as in Ni and Cu com-
pounds, the degeneracy is twofold in the absence of the
Jahn-Teller distortion. If the Jahn-Teller splitting is
weak, we have to consider explicitly three orbitals, dxy ,
dyz , and dzx , for the t2g band and two orbitals, dx22y2

and d3z22r2, for the eg band in addition to the spin de-
generacy. This leads to the degenerate Hubbard model
denoted by

HDH5HDt1HDU1HDV1HDUJ , (2.6a)

HDt52 (̂
ij&

s ,n ,n8

k~ t ij
n ,n8cisn

† cjsn81H.c.!, (2.6b)

HDU5 (
inn8
s ,s8

~12dnn8dss8!Unn8nisnnis8n8 , (2.6c)

HDV5 (
s ,s8

n ,n8^ij&

Vij
nn8nisnnjs8n8 , (2.6d)
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HDUJ52 (
nn8

iss8

J0nn8@~12dnn8!cins
† cins8cin8s8

† cin8s

2~12dnn8!~12dss8!cin8s8
† cin8s

† cinscins8#

(2.6e)

where n and n8 describe orbital degrees of freedom.
HDUJ is the contribution of the intrasite exchange inter-
action with

J0nn85E dr dr8 w i
n~r!w i

n8~r!
e2

ur2r8u
w i

n~r8!w i
n8~r8!, (2.7)

where w is taken to be real. The intersite exchange term
is neglected here for simplicity. The term HDUJ gener-
ates a Hund’s-rule coupling, since two electrons on dif-
ferent atomic orbitals feel higher energy for opposite
spins due to the first term. In this orbitally degenerate
model, in addition to spin correlations, we have to con-
sider orbital correlations that can lead to orbital long-
range order. The term HDU represents the intra-orbital
Coulomb energy Un ,n as well as the interorbital one
Un ,n8 with nÞn8 for the on-site repulsion. The intersite
repulsion is given in HDV .

For the case with orbital degeneracy as in Eq. (2.6a),
the effective Hamiltonian may be derived from the or-
bital exchange coupling in analogy with the spin ex-
change coupling Eq. (2.12) (Castellani et al., 1978a,
1978b, 1978c; Kugel and Khomskii, 1982). However, the
orbital exchange coupling has important differences
from the spin exchange. One such difference is that the
orbital exchange may have large anisotropy.

As in the derivation of the usual superexchange inter-
action for the single-orbital system, we can derive the
strong-coupling Hamiltonian by introducing pseudospin
representation by t i for the orbital degrees of freedom
in addition to the S51/2 operator Si for the spins (t i has
the same representation as the spin-1/2 operators for
doubly degenerate orbitals). More explicitly, t i

†

5cin
† cin8 , t i

25cin8
† cin and t i

z5 1
2 (cin

† cin2cin8
† cin8), re-

spectively, for doubly degenerate orbits. In the simplest
case of twofold degenerate orbitals with a single elec-
tron per site on average, the Hilbert space of the two-
site problem is expanded by four states, as shown in Fig.
4, when the doubly occupied site is excluded due to a
strong intrasite Coulomb interaction. Here we consider
the transfer of two eg orbitals between two sites located
along the x or y directions. The transfers between two
x22y2 orbitals, tx1 , between two 3z22r2 orbitals, tx2 ,
and between x22y2 orbital and 3z22r2 orbital, tx12 , re-
spectively, satisfy tx1.tx12.tx2 while tz2@tz1 and tz12
50 are expected along the z direction. In fact, because
of the anisotropy of the d wave function, these are
scaled by a single parameter as

tx15
3
4

t0 , tx25
1
4

t0 , tx1252ty1252
)

4
t0 ,

tz15tz1250, and tz251.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
Therefore the Hamiltonian becomes highly anisotropic
for t operators. A general form of the exchange Hamil-
tonian in the strong-coupling limit in this case is given by

H5(̂
ij&

@Si•Sj$Js1Jst
z t i

zt j
z12Jst

12~t i
1t j

21t i
2t j

1!

12Jst
11~t i

1t j
11t i

2t j
2!12Jst

zx~t j
11t j

2!

22iJst
zy~t j

12t j
2!1Kts

z t i
z1Kts

x t i
x%

1Jt
xt i

zt j
z12Jt

12~t i
1t j

21t i
2t j

1!12Jt
zxt i

z~t j
11t j

2!

22iJt
zyt i

z~t j
12t j

2!12Jt
11~t i

1t j
11t i

2t j
2!

1Kt
zt i

z1Kt
xt i

x# . (2.8)

Here, the parameters depend on the direction of iW2 jW . It
should be noted that XY-type or Ising-type anisotropy
for the spin exchange easily occurs, and this anisotropy
depends on the pair (i ,j). When the system is away from
the integer filling or the on-site interaction is not large
enough to make the system Mott insulating, the transfer
term has to be considered explicitly. As we saw above,
the transfer itself is also highly anisotropic, depending
on the orbital. For example, the transfer for the x22y2

orbital is in general large in the x and y directions but
small in the z direction. The opposite is true in the 3z2

2r2 orbital. This makes for complicated orbital-
dependent band structure in contrast with the spin de-
pendence. Another complexity is that the orbital ex-
change coupling of the bonds in the x direction is large
for dxy , dzx , or dx22y2 orbitals, while it is small for the
exchange including dyz or d3z22r2 orbital. For the bonds

FIG. 4. Examples of various second-order processes of two-
site systems with the sites i and j . The orbitals are specified by
n and n8. The upper, middle, and lower states are the initial,
intermediate, and final states in the second-order perturbation
expansion in terms of t/U : (a) off-diagonal contribution to the
spin-exchange process for the case without orbital degeneracy;
(b) diagonal contribution for the case without orbital degen-
eracy; (c) twofold orbital degeneracy yielding off-diagonal or-
bital exchange process; (d) same situation as (c) yielding both
orbital and spin exchange.
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in other directions, y and z , different combinations have
large exchange coupling. In addition, orbital ordering
strongly couples with magnetic ordering. The coupling
of orbital and spin degrees of freedom is apparently dif-
ferent from the usual spin-orbit coupling because it is a
nonrelativistic effect. For d-electron systems, the usual
spin-orbit interaction is relatively weak as compared to
rare-earth compounds. In general, in systems with or-
bital degeneracy, we have to consider couplings of or-
bital occupancy to the Jahn-Teller distortion, quadru-
pole interaction, and spin-orbit interaction. Orbital
degeneracy also yields intersite orbital exchange cou-
pling as in Eq. (2.8). These will lead to a rich structure of
physical properties, as is discussed in Sec. II.H.l.

For Mn and Co compounds, the d electrons may oc-
cupy high-spin states because of Hund’s-rule coupling.
In this case, the t2g bands are occupied by three spin-
aligned electrons with additional electrons in the eg
bands ferromagnetically coupled with t2g electrons due
to Hund’s-rule coupling. This circumstance is sometimes
modeled by the double-exchange model (Zener, 1951;
Anderson and Hasegawa, 1955; de Gennes, 1960):

HDE5Ht1HHund , (2.9a)

Ht52t(̂
ij&
s

~cis
† cjs1H.c.!, (2.9b)

HHund52JH(
i

SW i•sW i , (2.9c)

where SW i5(Si
x ,Si

y ,Si
z) is defined from the eg-electron

operator cis as

Si
15Si

x1iSi
y5ci↑

† ci↓ , (2.10a)

Si
25Si

x2iSi
y5ci↓

† ci↑ , (2.10b)

Si
z5

1
2

~ci↑
† ci↑2ci↓

† ci↓!, (2.10c)

whereas sW i represents the localized t2g spin operators. A
strong Hund’s-rule coupling JH larger than t may lead to
a wide region of ferromagnetic metal, as is observed in
Mn and Co compounds. In Co compounds, a subtle bal-
ance of low-spin and high-spin states is realized, as we
shall see later in Sec. IV.G.4. More generally, the inter-
play of the Hund’s-rule coupling and exchange couplings
with strong-correlation effects as well as orbital and
Jahn-Teller fluctuations can lead to complicated phase
diagrams with ferromagnetic and various types of anti-
ferromagnetic phases in metals, as well as in the Mott
insulator, as will be discussed in Secs. II.H.2 and IV.F.1.

In the compounds with heavy transition-metal ele-
ments such as Ni and Cu, t2g bands are fully occupied
with additional eg electrons. In particular, in the high-Tc
cuprates, two-dimensional perovskite structure leads to
highly 2D anisotropy with crystal field splitting of dg
bands to the lower orbit, d3z22r2, and the upper one,
dx22y2, due to the Jahn-Teller distortion for the case of
a CuO6 octahedron. The Mott insulating phase of the
high-Tc cuprates as in La2CuO4 is realized in the Cu d9
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configuration, where three t2g bands as well as the
d3z22r2 band are fully occupied, whereas the dx22y2

band is half filled. This makes the single-band descrip-
tion more or less valid because the low-energy excitation
can be described only through the isolated dx22y2 band.
This is the reason why the Hubbard model can be a
good starting point for discussing physics in the cuprate
superconductors. However, another feature of heavy
transition-metal oxides is the strong hybridization effect
of the d orbital and the oxygen p orbital. Because the
conduction network is constructed from an oxygen 2ps

orbital and a 3dx22y2 orbital in this case, strong cova-
lency pushes the oxygen 2ps orbital closer to the Fermi
level. The d-p model is the full description of these
3dx22y2 and 2ps orbitals in the copper oxides where the
Hamiltonian takes the form

Hdp5Hdpt1HdpU1HdpV , (2.11a)

Hdpt52 (
^ij&s

tpd~dis
† pjs1H.c.!1«d(

i
ndi

1«p(
j

npj , (2.11b)

HdpU5Udd(
i

ndi↑ndi↓1Upp(
i

npi↑npi↓ , (2.11c)

HdpV5Vpd(̂
ij&

npindj . (2.11d)

When the oxygen ps level, «p , is much lower than «d ,
the oxygen p orbital contributes only through virtual
processes. The second-order perturbation in terms of
«d2«p generates the original Hubbard model. This type
of transition-metal oxide in which «d2«p is assumed to
be larger than Udd is called a Mott-Hubbard-type com-
pound. Because of Udd,u«d2«pu, the charge gap in the
Mott insulating phase is mainly determined by Udd .

In contrast, if u«d2«pu is smaller than Udd , the charge
excitation in the Mott insulating phase is mainly deter-
mined by the charge transfer type where an added hole
in the Mott insulator mainly occupies the oxygen ps

band. The difference between these two cases is sche-
matically illustrated in Fig. 5. The importance of the
oxygen ps band in this class of material was first pointed
out by Fujimori and Minami (1984). This type of com-
pound is called a charge-transfer-type or CT compound
(Zaanen, Sawatzky, and Allen, 1985).

The character of low-energy charge excitations
changes from d in the Mott-Hubbard type to strongly
hybridized p and d in the charge-transfer type. How-
ever, it may be affected by an adiabatic change in the
parameter space of D5«d2«p and U , as long as the
insulating phase survives at half-filling of d electrons. At
least in the Mott insulating phase, these two types of
compounds show similar features described by the
Heisenberg model, as is discussed below. In the metallic
phase, one may also expect a similarity when the strong
hybridization of the d and ligand p band forms well
separated bonding, nonbonding, and antibonding bands
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and the Fermi level lies near one of them. However, it
has been argued that some low-energy excitations dis-
play differences between the Mott-Hubbard and CT
types (Emery, 1987; Varma, Schmitt-Rink, and Abra-
hams, 1987). With a decrease in D, the MIT may occur
even at half-filling. This is probably the reason why Ni
compounds become more metallic when one changes
the ligand atom from oxygen, sulfur to selenium.

Low-energy excitations of the Mott insulating phase
in transition-metal compounds are governed by the
Kramers-Anderson superexchange interaction, in which
only collective excitations of spin degrees of freedom
are vital (Kramers, 1934; Anderson, 1963a, 1963b). The
second-order perturbation in terms of t/U in the Hub-
bard model, as in Figs. 4(b) and 4(c), or the fourth-order
perturbation in terms of tpd /u«d2«pu or tpd /Udd in the
d-p model yield the spin-1/2 Heisenberg model at half
band filling of d electrons:

HHeis5J(̂
ij&

Si•Sj , (2.12)

where Si
15Si

x1iSi
y5ci↑

† ci↓ , Si
25Si

x2iSi
y5ci↓

† ci↑ and
Si

z5 1
2 (ni↑2ni↓). Here J is given in the perturbation ex-

pansion as J5 4t2/U for the Hubbard model and

J5
8tpd

4

~ u«d2«pu1Vpd!2~ u«d2«pu1Upp!

1
4tpd

4

~ u«d2«pu1Vpd!2Udd

FIG. 5. Schematic illustration of energy levels for (a) a Mott-
Hubbard insulator and (b) a charge-transfer insulator gener-
ated by the d-site interaction effect.
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for the d-p model. The exchange between two d orbit-
als, 1 and 2, in the presence of the ligand p orbital 3, is
indeed derived from the direct exchange between the d
orbital 1 and the neighboring p orbital 3, which is hy-
bridized with the other d orbital 2 or vice versa. This
generates a ‘‘superexchange’’ between 1 and 2 in the
order shown above (Anderson, 1959). Even for doped
systems, a second-order perturbation in terms of t/U in
the Hubbard model leads to the so-called t-J model
(Chao, Spalek, and Oles, 1977; Hirsch, 1985a; Anderson,
1987),

Ht-J52 (̂
ij&
s

Pd~ t ijc is
† cjs1H.c.!Pd1J(̂

ij&
Si•Sj ,

(2.13)

where Pd is a projection operator to exclude the double
occupancy of particles at the same site. To derive Eq.
(2.13), we neglect the so-called three-site term given by

H t2J8 }(̂
ilj&

cis
† ~Sl!ss8cjs8 (2.14)

from the assumption that the basic physics may be the
same. However, this is a controversial issue, since it ap-
pears to make a substantial difference in spectral prop-
erties (Eskes et al., 1994) and superconducting instability
(Assaad, Imada, and Scalapino, 1997). It was stressed
that the t-J model (2.13) represents an effective Hamil-
tonian of the d-p model (2.11a) by extracting the singlet
nature of a doped p hole and a localized d hole coupled
with it (Zhang and Rice, 1988). Of course, for highly
doped system far away from the Mott insulator, it is
questionable whether Eq. (2.13) with doping-
independent J can be justified as the effective Hamil-
tonian.

B. Variety of metal-insulator transitions
and correlated metals

In order to discuss various aspects of correlated met-
als, insulators, and the MIT observed in d-electron sys-
tems, it is important first to classify and distinguish sev-
eral different types. To understand anomalous features
in recent experiments, we must keep in mind the impor-
tant parameter, dimensionality. We should also keep in
mind that both spin and orbital degrees of freedom play
crucial roles in determining the character of the transi-
tion. Metal-insulator transitions may be broadly classi-
fied according to the presence or the absence of symme-
try breaking in the component degrees of freedom on
both the insulating and the metallic side, because differ-
ent types of broken-symmetry states cannot be adiabati-
cally connected. Here we employ the term ‘‘component’’
to represent both spin and orbital degrees of freedom in
d-electron systems. Symmetry breaking in Mott insula-
tors as well as in metals is due to the multiplicity of the
particle components. For example, for antiferromagnetic
order, the symmetry of multiple spin degrees of freedom
is broken.
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The Mott insulator itself in the usual sense is realiz-
able only in a multicomponent system. This is because
the Mott insulating state is defined when the band is at
integer filling but only partially filled, which is possible
only in multicomponent systems. In this context, the
Mott insulator, in the sense discussed in the Introduc-
tion, is the insulator caused by intrasite Coulomb repul-
sion, as in the Hubbard model. This definition is gener-
alized in the last part of this section to allow intersite
Coulomb repulsion as the origin of generalized Mott in-
sulator. For the moment, we restrict our discussion to
the usual ‘‘intrasite’’ Mott insulator, as in the Hubbard
model. When intrasite repulsion causes the Mott insula-
tor, energetically degenerate multiple states coming
from a multiplicity of components are only partially oc-
cupied by electrons because of strong mutual intrasite
repulsion of electrons. This origin of an insulator does
not exist when the multiplicity of states on a site is lost.

Although a multiplicity of components is necessary to
realize a Mott insulator, it does not uniquely fix the be-
havior of the component degrees of freedom. Namely,
the insulator itself may or may not be a broken-
symmetry state of the component. To be more specific,
consider, for example, the spin degree of freedom as the
component. In the antiferromagnetic or the ferromag-
netic state, the spin-component symmetry is broken and
hence the spin entropy is zero in the ground state, as it
should be. Because of the superexchange interaction,
antiferromagnetic long-range order is the most widely
observed symmetry-broken state in the Mott insulator;
we shall see many examples in Sec. IV.

When continuous symmetry is broken, as in SU(2)
symmetry breaking of the isotropic Heisenberg model,
only the Goldstone mode of the component, such as the
spin wave, survives at low energies accompanied by a
gap in the charge excitation. We show in Sec. II.E.5 that
this low-energy excitation of the Goldstone mode is nei-
ther relevant nor singular at the MIT point. Here the
SU(2) symmetry is defined as the rotational symmetry of
the Pauli matrix Sx , Sy , and Sz .

Another possible symmetry breaking may be caused
by the orbital order. For example, because the t2g orbital
is threefold degenerate in the cubic symmetry, the Mott
insulator may have either staggered orbital order (simi-
lar to antiferromagnetic order in the case of spins) or
uniform orbital order (similar to ferromagnetic order) or
even helical (spiral) and more complicated types of or-
der to lift the orbital degeneracy. In general, the orbital
order can be accompanied by static lattice anomalies,
such as staggered Jahn-Teller-type distortion as dis-
cussed in Sec. II.H.1. From the experimental point of
view, detection of the orbital order is not easy when it
does not strongly couple with the lattice anomaly. When
orbital and magnetic order take place simultaneously or
take place only partially, interesting and rich physics is
expected, as we discuss in Secs. II.H.1 and IV.

When the component order is not broken in the
ground state, it implies that a highly quantum mechani-
cal state like a total singlet state should be the ground
state to satisfy the third thermodynamic law, which as-
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
serts zero entropy as the normal condition of the ground
state. The total singlet ground state of the Mott insulator
is observed in many spin-gapped insulators. Examples
can be seen in spin Peierls insulators such as CuGeO3,
Peierls insulators with dimerization such as in TTF-
TCNQ and DCNQ salts, one-dimensional spin-1 chains
as in NENP, ladder systems (for example
Srn21CunO2n21), two-dimensional systems as in CaV4O9
and the Kondo insulator. The appearance of spin gaps in
these cases may be understood in a unified way from the
geometric structure of the underlying lattice (see, for
example, Hida, 1992; Katoh and Imada, 1993, 1994).
Here, the spin gap Ds is defined as the difference be-
tween ground-state energies for the singlet and the trip-
let state:

Ds[EgS N

2
11,

N

2
21 D2EgS N

2
,
N

2 D , (2.15)

where Eg(N ,M) is the total ground-state energy of N
electrons with up spin and M electrons with down spin.
The charge gap Dc for the hole doping into the singlet
ground state is given by

Dc[
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2 FEgS N
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2
21,

N

2
21 D G . (2.16)

When the spin excitation has a gap and the orbital exci-
tation is not considered, this Mott insulator has both
spin and charge gaps. In this it is actually similar to a
band insulator, in which spin and charge have the same
electron-hole excitation gap. Although the spin gap can
be much smaller than the charge gap due to collective
spin excitations in the above correlated insulators, in this
category of spin gapped insulators, it is hard to draw a
definite boundary between the band insulator and the
Mott insulator. Indeed, they may be adiabatically con-
nected by changes in the parameters when one concen-
trates only on the insulating phase apart from metals.

There is another type of Mott insulator in which nei-
ther symmetry breaking of the components nor a com-
ponent excitation gap exists. Two well-known examples
of this category are the 1D Hubbard model at half-filling
and the 1D Heisenberg model in which the spin excita-
tion is gapless due to algebraic decay of antiferromag-
netic correlation. These examples indicate the absence
of magnetic order because of large quantum fluctuations
inherent in low-dimensional systems. To realize this
type, low dimensionality appears to be necessary.

In terms of a quantum phase transition, this type of
gapless spin unbroken-symmetry insulator appears just
at the lower critical dimension dil of the Mott insulator
for component order, or, in other words, just at the mag-
netic critical point. As we discuss in detail in Sec. II.F,
below the lower critical dimension of the relevant com-
ponent order, d,dil , insulators with a disordered com-
ponent appear while order appears for d.dil . The di-
mension d5dil is marginal with gapless spin and
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unbroken-symmetry behavior. The lower critical dimen-
sion may depend on details of the system under consid-
eration such as lattice structure and number of compo-
nents. For example, if lattice dimerization increases in
the Heisenberg model, the ground state changes from
the antiferromagnetic state to a spin-gapped singlet at a
critical strength of dimerization in 2D (Katoh and
Imada, 1993, 1994). A strongly dimerized lattice in 2D
corresponds to d,dil while, in the case of a uniform
square lattice, dil is below 2.

In metals near the Mott insulator, a similar classifica-
tion scheme is also useful. Here, we define two types of
component order. One is diagonal, where there is a den-
sity wave such as the spin density wave in antiferromag-
netic and ferromagnetic phases or an orbital density
wave. The other is off-diagonal, in which superconduc-
tivity is the case. Above the lower critical dimension of
metal for diagonal component order, dml , a diagonal
component order exists, as in antiferromagnetic metals
and ferromagnetic metals. By contrast, for d<dml , the
diagonal component order disappears due to quantum
fluctuations. dml may depend on the number of compo-
nents. In principle, the insulating state can be realized
through a diagonal component order of an arbitrarily
incommensurate periodicity at the Fermi level, if the
nesting condition is satisfied. This is indeed the case with
the stripe phase in the Hartree-Fock approximation, as
is discussed in Sec. II.D.2 and II.H.3. However, in the
Hartree-Fock approximation dynamic quantum fluctua-
tions are ignored. Usually, in reality, the ordering takes
place only at some specific commensurate filling for a
such large electron density of the order realizable in sol-
ids. Incommensurate order is hardly realized due to
quantum fluctuations. When the quantum fluctuation is
large enough, and the impurity-localization effect and
the effect of anisotropic gap (in other words, discrete
symmetry breaking as in the Ising-like anisotropic case)
are not serious, usually metal appears just adjacent to
the Mott insulator.

If this metal has a diagonal component order, the
most plausible case is the same order with the same pe-
riodicity, like the order in the Mott insulating state. In
this case, a small pocket of the Fermi surface is expected
if the metal is obtained by carrier doping of the Mott
insulator. This may be realized in the antiferromagnetic
metallic state near the Mott insulator. Another impor-
tant case of this class is that of ferromagnetic metals, as
observed in Mn and Co compounds such as
(La,Sr)MnO3. Here the symmetry breaking is quite dif-
ferent between the antiferromagnetic order in the Mott
insulator and the ferromagnetic order in the doped sys-
tem. The appearance of ferromagnetic metals is theo-
retically argued in connection with Nagaoka ferromag-
netism (Nagaoka, 1966), where the ferromagnetism is
proven when a hole is doped into the Hubbard model at
half filling in a special limit of infinite U . Ferromag-
netism is also proven in some special band structures
with a flat dispersion at the Fermi level. In the above
argument the orbital degrees of freedom are ignored. In
some cases, the formation of the ferromagnetic order is
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
tightly connected with the double-exchange mechanism,
which is made possible by the strong Hund’s-rule cou-
pling. Some of theoretical and experimental aspects of
this class are discussed in Secs. II.H.2 and IV.F, respec-
tively.

For the case d<dml , order in the diagonal component
is lost. This class is further divided into three cases. In
the first case, the component excitation has a gap due to
formation of a bound state. A typical example is singlet
Cooper pairing, where the ground state has an off-
diagonal order, namely, superconducting for d>2, while
gap formation only leads to algebraic decay of the pair-
ing correlation at d51 because long-range order is de-
stroyed by quantum fluctuations. A known example of
this class in 1D is the Luther-Emery-type liquid (Luther
and Emery, 1974; Emery, 1979). Although no example is
known to date, the possibility is not excluded in prin-
ciple that the superconducting ground state could domi-
nate or coexist with diagonal component-order in a part
of the region d.dml near the Mott insulator. This class
does not exclude the case of an anisotropic gap with
nodes as in d-wave pairing, where the true excitation
gap is lost.

The second case for d<dml is the formation of a large
Fermi surface consistent with the Luttinger sum rule.
This case is possible, for example, when the Fermi-liquid
state is retained close to the Mott insulating state. Here,
the Fermi liquid is defined as an adiabatically continued
state with the ground state of the noninteracting system,
in which the interaction is gradually switched on. Then
the Fermi surface in momentum space is retained in the
Fermi liquid with the same volume as in a noninteract-
ing system, which is the statement of the Luttinger theo-
rem (Luttinger, 1963). The formation of a large ‘‘Fermi
surface’’ is not necessarily restricted to the Fermi liquid.
In the case of the Tomonaga-Luttinger liquid in 1D, the
Fermi surface is characterized by singularity of the mo-
mentum distribution function, and there is a large Fermi
volume consistent with the Luttinger theorem.

The third case is the formation of small pockets of
Fermi surface. This is basically the same as what hap-
pens in a band insulator upon doping. Therefore no
clear distinction from the doping into the band insulator
is expected.

We summarize three cases of insulators and four cases
of metals near the Mott insulator:
(I-1) insulator with diagonal order of components
(I-2) insulator with disordered component and compo-

nent excitation gap
(I-3) insulator with disordered component and gapless

component excitations
(M-1) metal with diagonal order of components and

small Fermi volume
(M-2) metal or superconducting state with the bound-

state formation dominated by off-diagonal com-
ponent order (frequently with component excita-
tion gap)

(M-3) metal with disordered component and ‘‘large’’
Fermi volume consistent with the Luttinger theo-
rem
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TABLE I. Rough and simplified sketch for types of metal-insulator transitions in overall phase
diagram observed in various compounds. In parentheses, section numbers where discussions may be
found in Sec. IV are given.

Metal \ Insulator I-1
Component order

I-2
Component gap

M-1 V 22yO 3(IV.A.1) La 12xSr xCoO 3

diagonal Ni 22yS 22xSe x(IV.A.2) (IV.G.4)
component-order R12xAxMnO3(IV.F.1)
M-2 high-Tc cuprates (Sr,Ca) 14Cu 24O 41

bound state (IV.C) (IV.D.1)
(superconductor) BEDT-TTF

compounds
M-3 La 12xSr xTiO 3

component disorder (IV.B.1)
(large Fermi RNiO3 La 12xSr xVO 3

volume) (IV.A.3) (IV.B.2)
M-4 Kondo
component insulator
disorder (IV.G)
(small Fermi
volume)
(M-4) metal with disordered component and ‘‘small’’
Fermi volume as in a doped band insulator

In d-electron systems experimentally and also in the-
oretical models, a variety of MITs are observed. Here
we classify them in the form @I-i↔M-j# (i51,2,3, j
51,2,3,4) where a transition from an insulator of the
type I-i to a metal of the type M-j takes place. We list
below both cases of filling control (FC-MIT) and band-
width control (BC-MIT) and summarize examples of the
compounds in Table I.

@I-1↔M-1# : A typical example is the transition be-
tween an antiferromagnetic insulator and an antiferro-
magnetic metal. Examples are seen in V2O32y (BC-MIT
or FC-MIT) and in NiS22xSex (BC-MIT). Although the
Hartree-Fock approximation usually gives this class of
behavior for the MIT, it is important to note that in
systems with strong 2D anisotropy, no example of this
class is known to date. This lends support to the idea
that dml is larger than two for the antiferromagnetic or-
der, at least in single orbital systems. Quantum Monte
Carlo results in 2D for a single band system also support
the absence of antiferromagnetic order in metals. Even
in 3D, all the examples of antiferromagnetic metals
known to date are found when orbital degeneracy exists.
For doped spin-1/2 Mott insulators, antiferromagnetic
order quickly disappears by metallization upon doping
or bandwidth widening, and no antiferromagnetic metals
are scarcely found, as is known in La12xSrxTiO3 (FC-
MIT) and RNiO3 (BC-MIT), although they have orbital
degeneracy. Therefore dml for antiferromagnetic order
without orbital degeneracy can be larger than three, al-
though we do not have a reliable theory. With increasing
component degeneracy due to orbital degrees of free-
dom, dml may become smaller than three. Quite differ-
., Vol. 70, No. 4, October 1998
ent spin orderings can be realized between insulating
and metallic phases in this category. A good example is
the double-exchange system, such as La12xSrxMnO3,
where the Mott insulating state at x50 has a type of
antiferromagnetic order with orbital and Jahn-Teller or-
derings, whereas the metallic phase has ferromagnetic
order. As for the orbital order, this compound has the
character of @I-1↔M-3# , because it is speculated that
the orbital order is lost upon metallization.

@I-1↔M-2# : This is the case of high-Tc cuprates at
low temperatures. Recent studies appear to support that
the superconducting phase directly undergoes transition
to a Mott insulator (Fukuzumi et al., 1996) by the route
of FC-MIT. No normal metallic phase is seen between
superconductor and insulator at zero temperature in the
cuprates. Another example of this type of transition is
that of BEDT-TTF compounds (BC-MIT; for a review,
see Kanoda, 1997).

@I-1↔M-3# : This class can be observed for dml.d
.dil . As we have already discussed, in 3D,
La12xSrxTiO3 (FC-MIT) and RNiO3 may be examples,
although the possible existence of a tiny
antiferromagnetic-metal region cannot be ruled out.
When the effect of orbital degeneracies becomes impor-
tant, even for doped spin-1/2 insulators, rather compli-
cated behavior may appear, as in (Y,Ca)TiO3 (FC-MIT)
where a wide region of orbital ordered insulator is
speculated. In 2D, the second layer registered phase of
3He adsorbed on graphite may also be interpreted as a
Mott insulator (Greywall, 1990; Lusher et al., 1993;
Imada, 1995b). Solidification of 3D 3He has been dis-
cussed before in analogy with the Mott transition in the
Gutzwiller approximation (Vollhardt, 1984). However,
the 3D solid of 3He should not be categorized as a Mott
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insulator, because commensurability with the underlying
periodic potential is crucial for a Mott insulator while it
is absent in 3D 3He. In contrast, the second layer of
adsorbed 3He on graphite indeed undergoes a transition
between a quantum liquid and a Mott insulator. In this
case, the Mott insulator is formed on the van der Waals
periodic potential of the triangular lattice of the 3He
solid in the first layer. The second-layer Mott insulator
appears to be realized at a commensurate density on a
triangular lattice. The anomalous quantum liquid state
of 3He observed upon doping can basically be classified
as belonging to this class, @I-1↔M-3# , though the tran-
sition is of weakly first order (Imada, 1995b). An advan-
tage of the 3He system (FC-MIT) is that one can inves-
tigate a prototype system without orbital degeneracies,
impurity scattering, interlayer coupling, or long-range
Coulomb interactions. Although the Anderson localiza-
tion effect appears to be serious, La1.171xVS3.17 also be-
longs to this class (Nishikawa, Yasui, and Sato, 1994;
Takeda et al., 1994). In this compound there exists a
subtlety related to dimerization and spin gap formation
in the insulating phase, and hence it can also be charac-
terized as @I-2↔M-4# . The 2D Hubbard model clarified
by quantum Monte Carlo calculations appears to belong
to a theoretical model of this class as we shall see in Sec.
II.E. In general, a new universality class of transition is
expected in this category, as we discuss in Sec. II.F.

@I-2↔M-1# : An example is seen in La12xSrxCoO3,
where the low-spin state of LaCoO3 at low temperatures
becomes a ferromagnetic metal under doping.

@I-2↔M-2# : Extensive effort has been made to real-
ize this class of transition experimentally, as in doping of
dimerized, spin-1, or ladder systems (Hiroi and Takano,
1995; McCarron et al., 1988; Siegrist et al., 1988). This is
based on a proposal of the pairing mechanism for doped
spin-gapped systems and theoretical results where the
spin gap remains finite and pairing correlation becomes
dominant when carriers are doped into various spin-
gapped 1D systems such as dimerized systems (Imada,
1991, 1993c), spin-1 systems (Imada, 1993c), the frus-
trated t-J model (Ogata et al., 1991), ladder systems
(Dagotto, Riera, and Scalapina, 1992; Rice et al., 1993,
Tsunetsugu et al., 1994; Dagotto and Rice, 1996). These
apparently different systems are continuously connected
in the parameter space of models (Katoh and Imada,
1995). Although a ladder system LaCuO2.5 was metal-
lized upon doping, the metallic state appears to be real-
ized from the 3D network by changing the geometry of
the ladder network. Therefore it is questionable whether
it can be classified as a doped ladder system. One clear
origin of the difficulty in realizing superconductivity is
the localization effect, which must be serious with 1D
anisotropy. Doping of a spin-gapped Mott insulator in
2D would therefore be desirable. The recent discovery
of a superconducting phase in a spin ladder system
(Sr,Ca)14Cu24O41 by Uehara et al. (1996) may belong to
this category. At the moment, it is not clear enough
whether this superconductivity is realized by carrier
doping of a quasi-1D spin-gapped insulator via the
mechanism described above or by a mechanism like that
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
for the high-Tc cuprates, ascribed to the more general
anomalous character of metals near the Mott insulator,
as discussed in Secs. II.E, II.F, and II.G. We discuss ex-
perimental details of this category in Sec. IV.D.1.

@I-2↔M-4# : This is basically the same as the transi-
tion between a band insulator and a normal metal.
Kondo insulators are also supposed to belong to this
class. For d-electron systems, spin excitation gaps or
low-spin configurations appear in the insulating phase
in, for example, FeSi, TiO2, Ti2O3, and LaCoO3. Re-
cently, it was found that several other systems also show
spin-gapped excitations in the insulating phase. Ex-
amples are spin Peierls compounds such as CuGeO3
(Hase et al., 1993), NaV2O5 (Isobe and Ueda, 1996),
spin-1 chain compounds such as Y2BaNiO5 (Buttrey
et al., 1990), ladder compounds as already discussed
above, CaV4O9 (Taniguchi, et al., 1995) and
La1.171xVS3.17 (Takeda et al., 1994). Carrier doping of
these compounds has not been successful so far, except
in the ladder compounds, and it is not clear whether spin
excitation becomes gapless or not in these cases upon
metallization.

@I-3↔M-3# : Experimentally this class has not been
observed in the strict sense. In theoretical models, ex-
amples are 1D systems such as the 1D Hubbard model.
Although it is not Fermi liquid, the singularity of the
momentum distribution clearly specifies the formation
of ‘‘large Fermi volume’’ in the metallic region.

When the electron density is commensurate to the
number of lattice sites, charge ordering may occur. This
is observed in the cases of Fe3O4, Ti4O7, and several
perovskite oxides (see Sec. IV). This class of charge-
ordering transition has often been called (for example,
by Mott, 1990) the Wigner transition or the Verwey
transition. However, this type of charge ordering usually
takes place only at simple commensurate filling. In the
case of d-electron systems, the Wigner crystal in the
usual sense of an electron gas cannot be realized be-
cause the electron density is too great. The commensu-
rability of the electron filling is crucial for realizing
charge ordering. Although the intersite Coulomb repul-
sion helps the charge ordering, the gain in kinetic energy
could be enough to stabilize the charge-ordered state. In
this sense, a charge-ordered insulator may also be
viewed as a generalized Mott insulator where the elec-
tron density is kept constant at a commensurate value
and it is incompressible. The charge-ordering transition
is discussed in Sec. II.H.3. Another mechanism for
charge ordering is the Peierls transition when the nest-
ing condition is well satisfied. In this case, the periodicity
can be incommensurate to the lattice periodicity.

C. Field-theoretical framework for interacting
fermion systems

In this section, a basic formulation for treating inter-
acting fermions based on the path-integral formalism is
summarized for use in later sections. To show how the
formulation is constructed, we take the Hubbard model
as an example. Since this section discusses only the basic
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formalism needed to understand the content of later sec-
tions, readers are referred to other references (for ex-
ample, Negele and Orland, 1988) for a more complete
and rigorous description.

1. Coherent states

Fermion Fock space can be represented by a basis of
Slater determinants. However, Fock space can alterna-
tively be represented by a basis of coherent states, as we
show below. The coherent states are defined as eigen-
states of the fermion annihilation operator. This is ex-
pressed as

cauc&5cauc& , (2.17)

where ca is the fermion annihilation operator with the
quantum number a, whereas uc& is a coherent state with
the eigenvalue ca . When one operates more than one
annihilation operator to uc&, one gets the commutation
relation for ca from that of ca :

cacg1cgca50. (2.18)

This means that ca’s are not c numbers. Actually, this
commutation relation constitutes the Grassmann alge-
bra.

In order to demonstrate that the basic Grassmann al-
gebra given below is indeed useful and necessary to rep-
resent the Fock space, we first introduce the explicit
form of the coherent state. Because ca’s are not c num-
bers, we are forced to enlarge the original Fock space by
including Grassmann variables ca as coefficients. Any
vector uf& in the generalized Fock space is given by the
linear combination of vectors in the original Fock space
with Grassmann variables as coefficients:

uf&5(
a

cauwa&, (2.19)

where ca is a Grassmann variable with $uwa&% being the
complete set of vectors in the original Fock space. In the
generalized Fock space, the fermion coherent state is
given as

uc&5expF2(
a

caca
† G u0&5)

a
~12caca

† !u0&. (2.20)

For the coherent state uc& defined in Eq. (2.20), it is
necessary to require the commutation relations

cacb
† 1cb

† ca50, (2.21a)

cacb1cbca50. (2.21b)

Since caca
† and cbcb

† commute from Eqs. (2.21a) and
(2.21b), we can show that

cauc&5 )
bÞa

~12cbcb
† !ca~12caca

† !u0&

5 )
bÞa

~12cbcb
† !cau0&

5 )
bÞa

~12cbcb
† !ca~12caca

† !u0&5cauc&,

(2.22)
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where we have used Eq. (2.18).

2. Grassmann algebra

The basic algebra of the Grassmann variable $ca% is
given by Eq. (2.18). In addition, several other relations
are summarized here. From the adjoint state of (2.20),

^cu5^0uexpF2(
a

cac̄aG5^0u)
a

~11c̄aca!, (2.23)

we can define the conjugation of ca as c̄a . From this
definition, it is clear that the conjugation operation fol-
lows:

c̄̄a5ca , (2.24a)

lca5l* c̄a , (2.24b)

cacbcg¯5¯c̄gc̄bc̄a (2.24c)

where l is a complex number with its complex conjugate
l* .

The operation of ca
† can be associated with the deriva-

tive of Grassmann variables as

ca
† uc&5ca

† ~12caca
† ! )

bÞa
~12cbcb

† !u0&

5ca
† )

bÞa
~12cbcb

† !u0&52
]

]ca
~12caca

† !

3 )
bÞa

~12cbcb
† !u0&52

]

]ca
uc&, (2.25)

where the derivative of ca is defined in a natural way as

]

]ca
@a01a1ca1a2c̄a1a3c̄aca#5a12a3c̄a (2.26)

for c number constants a0 , a1 , a2 , and a3 . Note that
(]/]ca) (c̄aca)52(]/]ca) (cac̄a)52c̄a . Equation
(2.25) is indeed easily shown from the definitions (2.20)
and (2.26). One can verify the conjugation of (2.25):

^cuca5
]

]c̄a

^cu. (2.27)

The overlap of two coherent states is shown from Eqs.
(2.20) and (2.27) as

^cuc8&5^0u)
a

~11c̄aca!~12ca8ca
† !u0&

5)
a

~11c̄aca8 !5expF(
a

c̄aca8 G . (2.28)
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The matrix element of a normal-ordered operator
H(ca

† ,ca) between two coherent states immediately fol-
lows from Eq. (2.28) as

^cuH~ca
† ,ca!uc8&5expF(

a
c̄aca8 GH~ c̄a ,ca!. (2.29)

Through Eq. (2.29), operators are represented only by
the Grassmann variables.

To calculate matrix elements of operators as well as
trace summations, it is useful to introduce a definite in-
tegral in terms of ca . Any regular function of ca may
be expanded as

f~ca!5a01a1ca (2.30)

because of ca
2 50. Therefore it is sufficient to define

*dca1 and *dcaca . When we assume the same prop-
erties as those of ordinary integrals from 2` to 1`
over functions which vanish at infinity, it is natural to
define the definite integral so as to satisfy vanishing in-
tegral of a complete differential form:

E dca

]

]ca
f~ca!50. (2.31)

Then, because of 15(]/]ca) ca , we have

E dca15E dc̄a150. (2.32a)

The definite integral of ca can be taken as a constant.
Only for convenience, to avoid annoying coefficients in
later matrix elements, we take this constant to be unity:

E dcaca5E dc̄ac̄a51. (2.32b)

From the definition of the integrals, we obtain the
useful closure relation

E )
a

dc̄a dcaexpF2(
a

c̄acaG uc&^cu51. (2.33)

If we restrict the Hilbert space to single-particle states
with particle number 0 or 1, Eq. (2.33) is proven as

~2.33 !5E dc̄a dcaexp@2c̄aca#

3~12caca
† !u0&^0u~11c̄aca!

5E dc̄adca@~11cac̄a!u0&^0u2caca
† u0&^0u

1u0&^0uc̄aca1cac̄aca
† u0&^0uca#

5@ u0&^0u1ca
† u0&^u0uca#51.
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The generalization of this proof to many-particle states
uc&5Pa(12caca

† )u0& is straightforward.
From Eqs. (2.20), (2.23), and (2.33), the trace of an

operator A is

Tr A5(
i

^w iuAuw i&

5E )
a

dc̄adcaexpF2(
a

c̄acaG
3(

i
^w iuc&^cuAuw i&

5E )
a

dc̄a dcaexpF2(
a

c̄acaG
3(

i
^2cuAuw i&^w iuc&

5E )
a

dc̄a dcaexpF2(
a

c̄acaG^2cuAuc&.

(2.34)

A Gaussian integral of a pair of conjugate Grassmann
variables is

E dc̄a dca e2c̄aaca5E dc̄a dca~12c̄aaca!5a .

(2.35)

Similarly, a Gaussian integral in matrix form is proven
to be

E )
a51

n

dc̄a dcaexp@2c̄aAabcb1 z̄aca1zac̄a#

5~det A !exp@ z̄aAab
21zb# , (2.36)

where z̄a and za are another pair of Grassmann vari-
ables. Using Eqs. (2.29), (2.34), and (2.36), we can cal-
culate the partition function and other functional inte-
grals in the path-integral formalism.

3. Functional integrals, path integrals, and statistical
mechanics of many-fermion systems

In the case of the Hubbard model (1.1a), the matrix
element of the Hamiltonian HH in the coherent state
representation reads from Eq. (2.29) as

HH@c̄ ,c#5Ht1HU2S m1
U

2 DN, (2.37a)

Ht52t(̂
ij&

~ c̄ isc js1c̄ jsc is!, (2.37b)

HU5U(
i

c̄ i↑c̄ i↓c i↓c i↑ , (2.37c)
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N5(
is

c̄ isc is , (2.37d)

which is obtained by replacing cis
† and cis with Grass-

mann variables c̄ is and c is , respectively, after proper
normal ordering. The partition function for a many-
particle system is

Z5Tr e2bH

5E dc̄a dcaexpF2(
a

c̄acaG^2cue2bHuc&.

(2.38)

When one divides e2bH into L imaginary-time slices
(Trotter slices) by keeping the inverse temperature
(Dt)L5b constant and inserts the closure relation Eq.
(2.33) in each interval of slices, using Eqs. (2.28) and
(2.33), one obtains the standard path-integral formalism
in the limit L→` in the form

Z5 lim
L→`

E F)
l51

L

dc̄a
~ l ! dca

~ l !Gexp†2S@c̄ ,c#‡, (2.39a)

S@c̄ ,c#5(
l51

L

(
m51

L

Slm@c̄ ,c# , (2.39b)

Slm@c̄ ,c#5Dt(
a

F c̄a
~ l !ca

~m !Fd lm2d l21,m

Dt G
1H[c̄a

(l) ,ca
(m)]d l21,mG (2.39c)

with ca
(0)52ca

(L) . By defining the functional integra-
tion

D@c̄ ,c#5 lim
L→`

)
l51

L

)
a

dc̄a
~ l !dca

~ l ! , (2.40)

one obtains the partition function

Z5E D@c̄ ,c#e2S[c̄ ,c], (2.41a)

with the action

S@c̄ ,c#5E
0

b

dt(
a

c̄a~t!
]

]t
ca~t!

1E
0

b

dt H@c̄a~t!,ca~t!# (2.41b)

under the constraint ca(0)52ca(b).
The Fourier transforms of the Grassmann variables

are
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c~k !5E drE
0

b

dt e2i~k•r2vnt!c~x !, (2.42a)

c~x !5
1

bV (
k ,vn

ei~k•r2vnt!c~k !, (2.42b)

where x and k are Euclidean four-dimensional vectors
x[(r,t) and k[(k,vn), with vn being the Matsubara
frequency vn[2pT(n1 1

2 ), n50,61,62, . . . . Hereaf-
ter the volume V and the number of sites Ns will have
the same meaning for lattice systems. The Fourier-
transformed form of the action is

S@c̄ ,c#5(
n

F2ivnE dk c̄~k !c~k !1H@c̄~k !,c~k !#G .
(2.43)

4. Green’s functions, self-energy, and spectral functions

The t-dependent thermal Green’s function for sys-
tems with translational symmetry is defined by

G~k,t!52E dr e2ik•r^Tc~r,t!c†~0,0!&, (2.44)

with the time-ordered product T and the thermody-
namic average ^¯&. The spectral representation of
G(k,t) is

G~k,t![(
mn

eb„F2Em~N !…1„Em~N !2En~N21 !1m…t

3^Fm~N !uck
† uFn~N21 !&

3^Fn~N21 !uckuFm~N !& (2.45)

for t.0, and for t,0 the same but with ck
† and

ck exchanged. Here, F is the free energy
F[2(1/b)ln Tr e2bH and $Em(N)% are eigenvalues of
a complete set of eigenstates $Fm(N)% in an N-electron
system with the chemical potential m. Although we do
not explicitly take the summation over N in the grand
canonical ensemble with a fixed m, it is hereafter implic-
itly assumed. Because the spectral representation of G
proves to satisfy G(k,t1b)52G(k,t), it can be ex-
panded in the Fourier series as

G~k,t!5
1
b (

n
G~k,vn!e2ivnt, (2.46)

G~k,vn!5E
0

b

dt G~k,t!eivnt. (2.47)

The thermal Green’s function of the free-fermion sys-
tem is obtained with the help of the Grassmann repre-
sentation as
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G0~j ,t1 ;h ,t2![2
1

Z0

TrFT expF2E
0

b

dt H0Gcj~t1!ch
† ~t2!G

52djh

*D@c̄ ,c#exp†2*dt3 dt4 St3 ,t4
@c̄ ,c#‡cj~t1!c̄h~t2!

*D@c̄ ,c#expF2E dt3 dt4 St3t4
@c̄ ,c#G

52djh

]2

]J* ~t1!]J~t2!

*D@c̄ ,c#exp@2*dt3 dt4 St3t4
@c̄ ,c#1*dtJ* ~t!c~t!1c̄~t!J~t!#

$*D@c̄ ,c#exp†2*dt3 dt4 St3t4
@c̄ ,c#‡%

U
J5J* 50

52djh

]2

]J* ~t1!]J~t2!
expF E dt3 dt4 J* ~t3!†S@c̄ ,c#‡t3t4

21 J~t4!GU
J5J* 50

52djh@S21#t1t2
, (2.48)
where S is the matrix whose (l ,m) component is
Sl ,m@c̄ ,c# . After the Fourier transformation, the ther-
mal Green’s function for the noninteracting Hamil-
tonian H0 is easily obtained from Eqs. (2.43) and (2.48)
as

G0~k,vn!5
1

ivn2«0~k!
, (2.49)

where «0(k) is the dispersion of H0 as in Eq. (2.3b).
The real-time-displaced retarded Green’s function is

defined by

GR~r,t !52iu~ t !^$c~r,t !,c†~0,0!%&, (2.50)

with the anticommutator $A ,B%[AB1BA , the Heavi-
side step function u, and the Heisenberg representation
A(t)5eiHtAe2iHt. The causal Green’s function is simi-
larly defined by

GC~r,t !52i^Tc~r,t !c†~0,0!&. (2.51)

The thermal Green’s function is analytically continued
to a complex variable z ,

G~k,2iz !5E
2`

` A~k,v8!

z2v8
dv8, (2.52)

with the spectral function

A~k,v![(
n ,m

eb„F2Em~N !…~eb~v2m!11 !

3u^Fn~N21 !uckuFm~N !&u2

3d„v2Em~N !1En~N21 !…. (2.53)

At zero temperature the spectral function is reduced to
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A~k,v!5(
n

u^Fn~N21 !uckuFg~N !&u2

3d„v1En~N21 !2Eg~N !…

1(
n

u^Fn~N11 !uck
†uFg~N !&u2

3d„v2En~N11 !1Eg~N !…, (2.54)

where g specifies the ground state. From a comparison
of the spectral representation of GR(k,v) and the ana-
lytic continuation, we find that

GR~k,v!5 lim
d→10

E
2`

` A~k,v8!

v2v81id
dv8

5 lim
d→10

G„i~v1id!… (2.55)

is satisfied, where GR is analytic in the upper half plane
of complex v.

A(k,v) is the imaginary part of the single-particle
Green’s function and therefore contains full information
about the temporal and spatial evolution of a single elec-
tron or a single hole in the interacting many-electron
system. Using the Fourier transform GR(k,v) of the re-
tarded Green’s function (2.50), we find the spectral func-
tion

A~k,v!52
1
p

Im GR~k,v!. (2.56)

This directly follows from Eq. (2.55).
The k-integrated spectral function or the density of

states is defined by

r~v![(
k

A~k,v!. (2.57)

If we integrate A(k,v) with respect to v up to the
chemical potential m, we obtain the electron momentum
distribution function
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n~k!5E
2`

m

dv A~k,v!. (2.58)

If we integrate A(k,v) above and below the chemical
potential, then

E
2`

`

dv A~k,v!51, (2.59)

per energy band.
In a noninteracting system, we derive

GR~k,v!5
1

v2«0~k!2id
,

GC~k,v!5
1

v2«0~k!1id sgn„«0~k!2«F…
.

The Green’s function of an interacting electron sys-
tem GR or G is related to that of the noninteracting
system G0

R(k,v)51/@v2«0(k)2id# , or G0(k,vn)
51/@ ivn2«0(k)# where «0(k) is the energy of a nonin-
teracting Bloch electron, through the Dyson equation

G~k,vn!5G0~k,vn!1G0~k,vn!S~k,vn!G~k,vn!.
(2.60)

Here ((k,vn) is the self-energy into which all of the
interaction effects are squeezed. The solution of the
Dyson equation formally reads

G~k,vn!5
1

ivn2«0~k!2S~k,vn!
. (2.61)

After analytic continuation of the Matsubara frequency
ivn to the real v, the Green’s function is

GR~k,v!5
1

v2«0~k!2S~k,v!
. (2.62)

The pole v5«0(k) for the noninteracting system is
modified to v5«0(k)1((k,v).

For simplicity, we consider the case in which there is
only one energy band in the Brillouin zone. The self-
energy S(k,v) gives the change of «0(k) caused by
electron-electron interaction, electron-phonon interac-
tion, and/or any kind of interaction that cannot be incor-
porated in the noninteracting energy spectrum «0(k). In
this article, we implicitly assume that the self-energy cor-
rection is due to electron-electron interaction. In a non-
interacting system, the spectral function has a d-function
peak at v5«0(k): A(k,v)5d„v2«0(k)…. With interac-
tion,

A~k,v!52
1
p

Im GR~k,v!

5
1
p

2Im S~k,v!

@v2«0~k!2Re S~k,v!#21@2Im S~k,v!#2 .

(2.63)
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Therefore Re S(k,v) and 2Im S(k,v) give, respec-
tively, the energy shift and the broadening of the one-
electron eigenvalue v5«0(k) due to the interaction.

Because the Green’s function GR(k,t) is a linear re-
sponse function to an external perturbation at t50, the
imaginary part and the real part of its Fourier transform
GR(k,v) should satisfy causality, i.e., the Kramers-
Kronig relation:

Re GR~k,v!5
1
p
PE

2`

` Im GR~k,v8!

v2v8
dv8, (2.64)

Im GR~k,v!52
1
p
PE

2`

` Re GR~k,v8!

v2v8
dv8. (2.65)

That is, GR(k,v) has to be an analytic function of v in
the complete upper v half-plane.

Then, S(k,v) should also be analytic in the same v
region and satisfy the Kramers-Kronig relation:

Re S~k,v!5
1
p
PE

2`

` Im S~k,v8!2Im S~k,`!

v2v8
dv8

(2.66)

Im S~k,v!2Im S~k,`!52
1
p
PE

2`

` Re S~k,v8!

v2v8
dv8.

(2.67)

Equations (2.53) and (2.54) for v,m and v.m can
be measured by photoemission and inverse photoemis-
sion spectroscopy, respectively, in the angle-resolved (k-
resolved) mode using single-crystal samples. Here v is
related to the kinetic energy «kin of the emitted (ab-
sorbed) electron through v5«kin2hn , where hn is the
energy of the absorbed (emitted) photon. r(v), given by
Eq. (2.57), is measured by the angle-integrated mode of
photoemission and inverse photoemission experiments.
Here it should be noted that the photoemission and in-
verse photoemission spectra are not identical to the
spectral function A(k,v) due to several experimental
conditions, e.g., the spectral function is modulated by
dipole matrix elements for the optical transitions to
yield measured spectra; finite mean free paths of photo-
electrons violate the conservation of momentum per-
pendicular to the sample surface, K' , making it difficult
to determine (K)' , etc. [see the text book on photoelec-
tron spectroscopy by Hüfner (1995)]. The latter problem
does not exist for quasi-1D or 2D materials, in which the
dispersions of energy bands in one or two directions is
negligibly small and hence the nonconservation of (K)'

does not cause any inconvenience.

D. Fermi-liquid theory and various mean-field approaches:
Single-particle descriptions of correlated metals
and insulators

To understand the fundamental significance of strong-
correlation effects, as well as the difficulties in treating
them, it is helpful first to recollect basic and established
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single-particle theories. This section discusses several
single-particle theories of metals. In particular, the
achievements to date of weak-correlation approaches
and mean-field methods, as well as their limitations and
difficulties, are surveyed in this section in order to un-
derstand the motivation for the strong-correlation ap-
proaches presented in later sections.

1. Fermi-liquid description

In Fermi-liquid theory, adiabatic continuation of the
correct ground state in the interacting system from that
in its noninteracting counterpart is assumed (Landau,
1957a, 1957b, 1958; Anderson, 1984). In this subsection,
we mainly discuss basic statements of the Fermi-liquid
theory. The reader is also referred to references for fur-
ther detail (Pines and Nozières, 1989). In Fermi-liquid
theory, the Green’s function G defined by Eq. (2.61) or
(2.62) has basically the same structure of poles as in a
noninteracting system. The interaction term of the
Hamiltonian may be considered in the perturbation ex-
pansion. The Green’s function can be expressed in a
self-consistent fashion using the self-energy introduced
in Sec. II.C.4, which includes terms in the perturbation
expansion summed to infinite order. If the Fermi-liquid
description is valid, the self-energy S remains finite and
G is characterized by a pole at v5«0(k)1S(k,v). Be-
cause Fermi-liquid theory is meaningful only near the
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
Fermi level, we may restrict our consideration to small v
and k measured from the Fermi surface. Then the real
and imaginary parts of the self-energy can be expanded
as

Re S~k,v!5Re S~k5kF ,v5m!2bkF
~v2m!

2O„~v2m!2
…1a~kF!~k2kF!

1O„~k2kF!2
…, (2.68a)

Im S~k,v!52G~v2m!21O„~v2m!3
…

1z~kF!~k2kF!21O„~k2kF!3
….

(2.68b)

Here we have neglected possible logarithmic correc-
tions. The fact that the interaction term generates only
quadratic or higher-order terms for Im ( in terms of v is
the central assumption of Fermi-liquid theory. In the
Fermi liquid, the quasiparticle decays through excita-
tions of electron-hole pairs across the chemical poten-
tial. The lifetime of the quasiparticle is proportional to
the number of available electron-hole pairs and is there-
fore proportional to (v2m)2 in the v→m limit:
Im S(k,v)}2(v2m)2. Then the real part of the self-
energy should be proportional to 2(v2m)1const in
the vicinity of v5m . The renormalized Green’s function
has the form
GR~k,v!.
ZkF

v2«* ~k2kF!1i„ZkF
G~v2m!22ZkF

z~kF!~k2kF!2
…

, (2.69)
for small v2m and k2kF where

ZkF
51/~11bkF

! (2.70)

is the renormalization factor, whereas

«* ~k2kF!.ZkF
@«0~k!1a~kF!~k2kF!# (2.71)

is the renormalized dispersion. Re S(k5kF ,v5m) can
be absorbed into a constant shift of «0(k), which should
keep the constraint of fixed density. The necessary con-
dition for the validity of the Fermi-liquid description is
«* 2m@Im ((k,v) for small v2m and k2kF , which is
indeed satisfied in this case if ZkF

.0. The renormaliza-
tion factor ZkF

scales basically all the other quantities.
From this Green’s function, other physical quantities are
derived. If the spectral function A(k,v) and the renor-
malization factor Zk(v) [or Re S(k,v)] are known,
Zk(v)21A(k,v) gives the energy distribution function
of quasiparticles with momentum k, in which each qua-
siparticle carries weight 1 instead of Z of the spectral
function. Hence the density of states of quasiparticles
N* (v) is given by

N* ~v!5(
k

Zk~v!21A~k,v!. (2.72)
The renormalization of the quasiparticle density of
states, as compared to that of the noninteracting system
at the Fermi level, is

N* ~m!

r0~m!
5E

k5kF

]k
]«*

dkY E
k5kF

]k
]«0

dk (2.73a)

5
m*

mb
5

mv

mb
•

mk

mb
(2.73b)

where

mb5E
k5kF

]k
]«0

dk, (2.73c)

mv5mb /ZkF
, (2.73d)

and

mk5„vF01a~kF!…21vF0mb , (2.73e)

with the bare Fermi velocity vF05(]«0 /]k) uk5kF
and

the bare band mass mb . We employ the notation mb
instead of m0 to specify the band mass of the noninter-
acting Bloch electrons, although the noninteracting band
dispersion is denoted by «0 . Here, mv and mk are often
called the v mass and the k mass, respectively, with the
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total effective mass m* 5mkmv /mb . The ratio of the
specific-heat coefficient g to that of noninteracting sys-
tem, gb , is also scaled by the effective mass enhance-
ment m* /mb :

g

gb
5

m*

mb
. (2.74)

The charge compressibility k5(1/n2) ]n/]m is scaled as

k5
1
n2

m*

mb

1

11F0
s , (2.75)

where a Landau parameter F0
s is introduced phenom-

enologically as the spin-independent and spatially iso-
tropic part of the quasiparticle interaction. Similarly, the
uniform magnetic susceptibility has the scaling form

xs5
m*

mb

1

11F0
a , (2.76)

where the spin antisymmetric and spatially isotropic part
of the quasiparticle interaction is described by F0

a .
The renormalization factor ZkF

can be interpreted as
follows: From Eqs. (2.54), (2.55), and (2.69), ZkF

is re-
written as

ZkF
5u^Fg~N11 !uckF ,s

† uFg~N !&u2, (2.77)

where ZkF
is interpreted as the overlap between the true

ground state of the (N11)-particle system and the wave
function for a bare single particle at kF is added to the
true N-particle ground state. ZkF

is also given as the
jump of the momentum distribution function ^n(k)&
[^cks

† cks& at T50. The spectral representation

GC~k,v!5 lim
d→10

(
n

u^Fg~N !uckuFn~N11 !&u2

v2En1id

1
u^Fg~N !uck

†uFn~N21 !&u2

v1En2id
(2.78)

leads to

^n~k!&5
1

2pi
lim

t→10
E

2`

`

dv GC~k,v!eivt. (2.79)

Using the renormalized form

GC~k,v!5
Zk

v2«* ~k2kF!1ig sgn~«* 2«F!
, (2.80)

the jump of ^n(k)& at kF , is given by

^n~k!&k5kF2d2^n~k!&k5kF1d

52
i

2p
lim

t→10
E

2`

`

dv eivt

3S Zk

v2«* ~k2kF!2ig
2

Zk

v2«* ~k2kF!1ig D
5Zk . (2.81)

The spectral function defined in Eq. (2.63) becomes
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A~k,v!.2
Zk„«* ~k!…

p

3
Zk„«* ~k!…Im S„k,«* ~k!…

@v2«* ~k!#21@Zk„«* ~k!…Im S~k,v!#2 ,

(2.82)

where ZkF
is generalized to Zk(v)[@1

2] Re S(k,v)/]v#21(,1) to allow v dependence.
Equation (2.82) indicates that the quasiparticle peak at
v5«* (k) has approximately a Lorentzian line shape
with a width of Zk„«* (k)…Im S„k,«* (k)…. It also indi-
cates that the quasiparticle weight is Zk„«* (k)… instead
of one as in the noninteracting case.

In the transport process, it is known that the mass m ,
which appears in the conductivity formula, s}ne2t/m
and the Drude weight D}n/m , is not scaled by the ef-
fective mass m* but by the bare mass m0 for systems
with Galilean invariance. This is because the electron-
electron interaction conserves the total momentum and
hence the current does not change under an adiabatic
switching of the interaction. However, the transport of
electrons in solid is associated with Umklapp scattering
and impurity scattering. In particular, the Drude weight
in perfect crystals may be strongly affected by Umklapp
scattering, which may be regarded as the origin of the
Mott transition in the perturbational framework. This
effect of the discrete lattice, not seen in the Galilean
invariant system, may cause a renormalization of the
transport mass from the bare value to mD* , which may in
general be different from m* and mb . When the elec-
tron correlation is large, electron-electron scattering is
the dominant decoherence process of the electron wave
function. This decoherence process is believed to govern
the electron relaxation time t, although Umklapp scat-
tering is necessary to cause inelastic relaxation. The
quasiparticle-quasiparticle scattering time is given by
1/t 5Zk Im S. Then, in the usual Fermi liquid, the v
dependence Zk Im S}(v2m)2 may be transformed to
temperature dependence by replacing v2m with T be-
cause the thermal excitation has a characteristic energy
scale of T from the Fermi surface. Therefore the resis-
tivity at low temperatures in strongly correlated systems
in general has the temperature dependence

r5AT21r0 , (2.83)

where r0 is the residual resistivity determined from the
impurity scattering process. The temperature depen-
dence (2.83) is widely observed in many d and f electron
compounds at low temperatures. We discuss some
examples, NiS22xSex , NiS, RNiO3, Ca12xSrxVO3,
R12xSxTiO3, R12xAxMnO3, etc., in Sec. IV. However,
we also discuss how T2 dependence is replaced with
other temperature dependences in cases such as the
high-Tc cuprates and NiSSe. The origin of these unusual
properties is one of the important issues to be discussed
in this article. On empirical grounds, it has been sug-
gested that A seems to be proportional to g2 in many
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heavy-fermion compounds, that is, A/g2 seems to be a
universal constant in many cases (Kadowaki and Woods,
1986). This constant is also similar in some perovskite Ti
and V compounds (Ca12xSrxVO3, R12xAxTiO3 etc.; see
Secs. IV.A.5 and IV.B.1). However, this empirical rule is
not satisfied near antiferromagnetic transition, as in
NiS22xSex (Sec. IV.A.2), as well as in the high-Tc cu-
prates.

To derive thermodynamic as well as dynamic proper-
ties based on the Fermi-liquid theory, it is necessary to
include self-consistently the vertex correction in the self-
energy. For this purpose, the Ward-Takahashi identity
provides a useful relation between the self-energy and
the vertex function under spin-rotational invariance
(Koyama and Tachiki, 1986; Yamada and Yosida, 1986;
Kohno and Yamada, 1991). The Ward-Takahashi iden-
tity leads to

]Ss~k,iv!

]~ iv!
5

]Ss~k,iv!

]m
2 (

k8,s8
A~k8,v5m!

3Gss8~k,k8;k8,k! (2.84)

and

]Ss~k,iv!

]~ iv!
5

]Ss~k,iv!

]Hs
2(

k8
A~k8,v5m!

3Gss~k,k8;k8,k! (2.85)

with Hs5gmBHs/2 under a magnetic field H where the
four-point vertex function Gss8 is defined in Fig. 6 and
where all of v are taken zero. We note the identity
]Ss /]m5]Ss /]Hs1]Ss /]H2s . Below we neglect the
wave-number dependence of the self-energy for the time
being. Because

Zk5S 12
]S

]v D 21

(2.86)

is satisfied from Eqs. (2.68a), (2.68b), and (2.70), we ob-
tain

g

gb
512(

ks

]Ss~k,v!

]v U
v5m

. (2.87)

Similarly, the enhancement of the uniform magnetic sus-
ceptibility and charge susceptibility as compared to the
noninteracting band values xb and kb satisfies

FIG. 6. Diagrammatic representation of the four-point vertex
function G(k1 ,k2 ,k3 ,k4).
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x

xb
512~X↑↑2X↑↓!, (2.88)

k

kb
512~X↑↑1X↑↓!, (2.89)

with

X↑↑~k!5
]Ss~k,v5m!

]Hs
U

Hs50

, (2.90)

X↑↓~k!5
]Ss~k,v5m!

]H2s
U

H2s50

. (2.91)

From Eqs. (2.84) and (2.85), X↑↓ can be expressed as

X↑↓~k!5(
k8

A~k8,v5m!G↑↓~k,k8;k8,k!. (2.92)

In this notation, the mass enhancement is basically as-
cribed to the enhancement of (k8G↑↓(k50,k8;k8,k50).
Up to the order of T2 and v2, Im ((k,v) is calculated as

Im ( ~k,v!52
v21~pT !2

2
p (

k8,q
A~k2q,v5m!

3A~k8,v5m!A~k81q,v5m!

3FG↑↓2 ~k,k8;k81q,k2q!

1
1
2

G↑↑A
2 ~k,k8;k81q,k2q!G (2.93)

with the antisymmetrized vertex function

G↑↑A~k1 ,k2 ;k3 ,k4!

5G↑↑~k1 ,k2 ;k3 ,k4!2G↑↑~k1 ,k2 ;k4 ,k3!. (2.94)

Using the damping factor

G̃~k!52Z~k!Im ( ~k,v!, (2.95)

we can express the coherent part of the conductivity as

scoh~v!;e2(
k

A* ~k,v5m!Jk
k2

S i~Ki•k!
Jk

i

v1iG̃~k !
(2.96)

with the sum ( i over the internal product of k and all
the reciprocal lattice vectors Ki coming from Umklapp
scattering. It should be noted that the electron-electron
interaction itself does not generate a nonzero resistivity
because of momentum conservation, and Umklapp scat-
tering is needed to yield a momentum relaxation process
(Yamada and Yosida, 1986). Yamada and Yosida suc-
ceeded in deriving the momentum conservation by tak-
ing account of proper vertex and self-energy corrections
utilizing the Ward-Takahashi identity. This guarantees
zero resistivity in the absence of Umklapp scattering.
Because the inverse of the quasiparticle spectral weight
A* 21, the current Jk , and G̃(k) are all renormalized by
Zk(v), they are canceled in s(v50). Therefore s(v
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50) is basically scaled by @Im ((k,v)#21, which may be
then related to g and x through G↑↓ .

It was argued that if the charge fluctuation could be
assumed to be suppressed as k→0, as compared with
spin fluctuations, we might take

X↑↑.12X↑↓ , (2.97)

which leads to

x

xb
52(

k
X↑↓52(

k,k8
A~k8,v5m!G↑↓~k,k8;k8,k!,

(2.98)

g

gb
5(

k,k8
s8

A~k8,v5m!Gss8~k,k8;k8,k!

5
1
2

x

xb
12(

k,k8
A~k8,v5m!G↑↑~k,k8;k8,k!. (2.99)

Therefore the Wilson ratio is given by

RW5
x

xb

gb

g

5
2

11
4xb

x
(k,k8A~k8,v5m!G↑↑~k,k8;k8,k!

.

(2.100)

If the Wilson ratio is close to two, it gives

(
kk8

A~k8,v5m!G↑↑~k,k8;k8,k!.0. (2.101)

The static susceptibility x(q) is expressed as

x~q!52(
k
E

2`

` dv

2pi
L~k,k1q;0 !G~k,iv!G~k1q,iv!

(2.102)

with the three-point vertex function L illustrated in Fig.
7. The L and four-point vertex functions G are related as

L~k,k1q,0!512T(
n

(
k8

G↑↓~k1q,k8;k,k81q!

3G↑~k81q,ivn!G↓~k8,ivn!. (2.103)

Therefore, if x(q) is strongly peaked around k5Q due

FIG. 7. Diagrammatic representation of the three-point vertex
function L(k1 ,k2 ,k3 ,k4).
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to spin fluctuations, this enhancement must be due to L.
Thus neglecting k and v dependence of L(k,k1Q;iv),
we obtain

x~q1Q!;L~q1Q!xb~q1Q!, (2.104)

where we employed simplified notation L(q);L(k,k
1q;iv) and where xb is the susceptibility without the
vertex correction. From Eq. (2.103), if we neglect k and
k8 dependence of G↑↓(k1q,k8;k,k81q) as denoted by
G↑↓(q), we obtain

x~Q1q!;xb
2~Q1q!G↑↓~Q1q!. (2.105)

When the strong peak structure of x(Q1q,v) can be
approximated as

x~Q1q,v!;
1

2iv1Ds~K21q2!
xb~Q1q,0!, (2.106)

we have

x~Q1q,v50 !

xb~Q1q,v50 !
;xb~Q1q,v50 !G↑↓~Q1q!

;
1

Ds~K21q2!
. (2.107)

This type of susceptibility is justified for an order param-
eter that is not a conserved quantity of the Hamiltonian
and that is coupled to metallic and gapless Stoner exci-
tations. Because of the coupling to the Stoner excitation
Eq. (2.106) contains an v-linear term in the denomina-
tor, which comes from the overdamped nature of the
spin fluctuation. The antiferromagnetic transition at Q
Þ0 may indeed belong to this class, as we discuss in Sec.
II.D.9. Then the NMR relaxation rate is given as

~T1T !21; lim
v→0

(
k

f~k!
Im x~k,v50 !

v
;(

k
f~k!G↑↓

2 ~k!,

(2.108)

while from Eqs. (2.93), (2.95), and (2.96), neglecting
G↑↑ , we obtain

s~v!}
1

2iv1G̃
, (2.109)

G̃;Im ( }@v21~pT !2#(
k

G↑↓
2 ~k!. (2.110)

Therefore, when we assume weak k dependence of xb ,
the basic scaling of these two quantities is determined
from

J[(
k

@G↑↓~k!#2}E dk
kd21

~K21k2!2 }Kd24. (2.111)

This leads to

~T1T !21}A}Kd24 (2.112)

for the resistivity coefficient A defined by r5AT2. Here
we have neglected q dependences of the nuclear form
factor f(q) by assuming weak q dependence. As we see
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from Eqs. (2.99) and (2.107) the specific-heat coefficient
g and the local susceptibility x for the singular part fol-
low the scaling

g}x}E dq
qd21

K21q2 }H 1/K for 1D
2ln K for 2D
2AK for 3D.

(2.113)

When the susceptibility can be described by a Curie-
Weiss law

x~Q!;
C

T1Q
(2.114)

where C is the Curie-Weiss constant and Q the Curie-
Weiss temperature, then Eq. (2.107) implies K}(T
1Q)1/2, leading to

~T1T !21}A}~T1Q!d/2 22. (2.115)

Similarly, we obtain for the singular part

g}x} H 2ln~T1Q! for 2D
2AT1Q for 3D. (2.116)

We note that, aside from the singular part given in Eq.
(2.116), the leading term is a constant for 3D. These
comprise the basic framework of the antiferromagnetic
spin-fluctuation theory based on the Fermi-liquid
theory, as we discuss in detail in Secs. II.D.8 and II.D.9.
In three dimensions, at the critical point Q50 of the
magnetic transition, it leads to

~T1T !21}T21/2, (2.117)

r}T3/2, (2.118)

g}x}const2AT (2.119)

while in two dimensions at Q50 it leads to

T1
21}const, (2.120)

r}T , (2.121)

and

g}x}2ln T , (2.122)

as is known in the self-consistent renormalization theory
(Ueda, 1977; Moriya, 1985; Moriya, Takahashi, and
Ueda, 1990). In particular, at the antiferromagnetic tran-
sition point in some 3D metals such as b-Mn,
NiS22xSex , and Ni12xCoxS2 this behavior is indeed ob-
served (Watanabe, Môri, and Mitsui, 1976; Katayama,
Akimoto, and Asayama, 1977; Miyasaka et al., 1997). In
2D, it was claimed that Eqs. (2.120) and (2.121) repro-
duce the anomalous behavior in the high-Tc cuprates, as
we discuss in Sec. IV.C.1.

As is evident from the above arguments, spin-
fluctuation theory alone fails to reproduce physical
properties near the Mott transition point if the MIT is of
the continuous type. This is because the above treatment
of spin fluctuations takes into account only the coherent
part of the charge excitations. We also discuss in Secs.
II.E.3 and II.F why the neglect of charge fluctuation,
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
assumed above through vanishing charge compressibility
k;0, is not justified in metals near the Mott insulator.

Let us consider the resistivity and the frequency-
dependent conductivity by considering the dependence
on the renormalization factor Z explicitly. As we dis-
cussed above, the optical conductivity given by Eqs.
(2.109) and (2.96) can be rewritten from the fact that
A* 21, Jk , and G̃(k) are all scaled by the renormaliza-
tion factor Z(v):

Re s~v!}
G̃~v!nZ~v!

v21G̃~v!2
(2.123)

with

G̃~v!;Z~v!Im S}E dz Z~z !Im x~q ,z !

3Im xb~Q ,v2z !@nB~z !2nB~z2v!#

}
Z~v!

nDs
G~v! (2.124)

in the Born approximation at T!v . Here xb is the sus-
ceptibility of the noninteracting band electrons while the
Bose distribution nB is defined by nB(z)51/(ebz21);
G(v) is proportional to v2 in a simple Fermi liquid,
while it may have v dependence G(v)}vd/2 in a wide
range of v if the spin-fluctuation effect is important.
This dependence is easily understood when we replace
the T dependence of G̃ discussed above with v depen-
dence. Note that the temperature dependence of G̃ is
obtained from Eqs. (2.110), (2.111), (2.114), and (2.107)
as G̃;T2Kd24;Td/2 at T.v and Q;0. Then the v-
integrated conductivity, that is, the Drude weight D
5*0

`scoh(v)dv , can be sensitively dependent on the
doping concentration near the Mott insulator only
through the renormalization factor Z in the region with-
out magnetic order when a singular k-dependent mass
mk is absent. This is because the spin-diffusion constant
Ds is not critically dependent on the doping concentra-
tion and n must remain finite near the Mott insulator in
the Fermi-liquid theory due to the Luttinger theorem. In
fact, because the spin-diffusion constant Ds should be
connected with the overdamped mode of the spin wave,
it should remain finite near the antiferromagnetic Mott
insulator. Therefore, the Drude weight decreases to van-
ish toward the Mott transition only when Z21 is criti-
cally enhanced at small v. In this case, the total Drude
weight derived from Eq. (2.123) depends on the doping
concentration d mainly in the form D}Z . This necessar-
ily leads to critical enhancement of g through Eqs.
(2.73a)–(2.73e) and (2.74) provided that the k mass is
not critically suppressed. At least for the paramagnetic
metal region, the reduction of D near the Mott insulator
transition is necessarily accompanied by enhancement of
g in the Fermi-liquid description if mk does not have
singular k dependence. As we discuss in Sec. IV, such
behavior in D and g contrasts with that observed in
high-Tc cuprates because D decreases while g is not en-
hanced. In the region where antiferromagnetic order ex-
ists, of course, D can be reduced to zero without the
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enhancement of g because small pockets of the Fermi
surface can be arbitrarily small. This, however, is not the
case in the high-Tc cuprates. In contrast to the Drude
weight, the resistivity depends mainly on d through Im S
while the dependence on Z is canceled. Therefore criti-
cal enhancement of A has to be ascribed to Im S. It was
argued that if Z were not reduced and the k dependence
of G↑↓ could be neglected, the Kadowaki-Woods rela-
tion would result from g}G↑↓ and A}G↑↓

2 .
Aside from all the above phenomenological and

rather sketchy arguments, as far as the authors know, no
theoretical studies have been attempted in this Fermi-
liquid description with a self-consistent treatment of spin
and charge fluctuations to discuss the paramagnetic re-
gion near the Mott insulator. This remains for further
studies. In particular, the k dependence of the self-
energy has to be considered seriously near a Mott insu-
lator with magnetic order, while all the above arguments
basically neglect this dependence. In Sec. II.F, we dis-
cuss how the singular k dependence of the self-energy
should be considered to satisfy the scaling relation of the
Mott transition.

The shift of the electron chemical potential m as a
function of electron concentration n defines the charge
susceptibility xc through xc

21[]m/]n , as discussed
above. This quantity can be measured by photoemission
spectroscopy as a shift of the Fermi level as a function of
band filling n . Experimentally, the energies of photo-
electrons are usually referenced to the electron chemical
potential of the spectrometer, which is in electrical con-
tact with the sample. A chemical potential shift would
therefore cause a uniform shift of all the core-level and
valence-band spectra if there were no interaction be-
tween electrons.

Now we consider the spectral weight transfer caused
by the change Dn , referring to Fig. 8 (Ino et al., 1997a,
1997b). As the electron concentration increases by Dn ,
spectral weight Dn should be transferred from above to
below the chemical potential, a condition imposed by

FIG. 8. Schematic representation of the chemical potential
shift Dm induced by a change Dn in the electron concentration
n and spectral weight transfer near the chemical potential in
an isotropic Fermi liquid. N* (v) is the quasiparticle density
and r(v) is the (spectral) density of states. Note that r(v)
5ZN* (v) near the chemical potential.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
the sum rule, Eq. (2.58). If the line shape of the spectral
function r(v) did not change with the increase of elec-
tron concentration Dn , the spectral weight that could be
transferred from above to below the chemical potential
would be r(m)Dm85ZN* (m)Dm8 [Eq. (2.126)], which
is less than Dn5N* (m)Dm8 by the renormalization fac-
tor Z , and would violate the sum rule. The rest of the
spectral weight (12Z)Dn is necessarily transferred
from well above the chemical potential to well below it
through a change in the line shape of r(v). It is there-
fore concluded that, if there is electron correlation, i.e.,
if Z5@12] Re S/]vuv5m#21,1, a change in the band fill-
ing necessarily leads to a change in the line shape of the
spectral function.

Here it should be noted that carrier doping in real
compounds such as transition-metal oxides has to be
carried out under the condition of charge neutrality be-
cause of the presence of the long-range Coulomb inter-
action in real systems. That is, in the case of perovskite-
type transition-metal oxides, in order to dope the system
with electrons (holes), one must usually replace A-site
metal ions by ions with higher (lower) valencies or oxy-
gen vacancies (excess oxygens). Therefore the ‘‘particle’’
in the definition of the chemical potential, the derivative
of the Gibbs free energy with respect to the particle
number, is not the bare electron or hole but an electron
or hole whose long-range Coulomb interaction is
screened by the positive background charges of the sub-
stituted ions or oxygen defects. This implies that micro-
scopic models which neglect the long-range Coulomb in-
teraction, such as the Hubbard model, may be relevant
for analysis of the chemical potential shift and the
charge susceptibility, although the long-range Coulomb
interaction should influence the dynamic (spectroscopic)
behaviors through S(k,v).

Below we discuss in some detail a phenomenological
way of analyzing experimentally observed line shapes of
spectral weight. We discuss the case in which the self-
energy is local and hence a(k)50, and ZkF

5Z indepen-
dent of the direction of kF . In this case, D* [1/ZG ,
called the quasiparticle coherence energy, defines the
energy scale below which (uv2mu!D* ) the quasiparti-
cle is well defined. The quasiparticle dispersion is given
by v2m5Z@«0(k)2m# : The band is uniformly nar-
rowed by the renormalization factor Z(,1), meaning
that the density of states (per unit energy) of the
quasiparticles, or equivalently the effective mass m* of
the conduction electrons, is enhanced by the factor
1/Z(.1) compared with the noninteracting case. Thus
the mass enhancement factor m* /mb , where mb is the
noninteracting conduction-band mass at the chemical
potential, is equivalent to 1/Z .

The quasiparticle peak carries spectral weight Z , and
the remaining spectral weight 12Z is distributed as an
‘‘incoherent’’ background mostly at higher energies, i.e.,
at larger uv2mu, as schematically shown in Fig. 9. It
should be noted that the k-integrated spectral function
r(v) at v;m is not affected by the local self-energy cor-
rection, i.e., r(m)5Nb(m), where Nb(v) is the density
of states of the noninteracting band, because the mass



1069Imada, Fujimori, and Tokura: Metal-insulator transitions
enhancement factor 1/Z is canceled out by the quasipar-
ticle spectral weight Z . Therefore one can claim that if
r(m) is different from Nb(m) there must be k depen-
dence in the self-energy, i.e., the self-energy should be
nonlocal. This is the case not only for a Fermi liquid but
also for a non-Fermi liquid. Therefore, as shown in Fig.
9, if Z is k independent throughout the quasiparticle
band, the quasiparticle band in the spectral function
r(v) is narrowed by a factor Z with the peak height
unchanged, resulting in the loss of spectral weight 1
2Z from the coherent quasiparticle band region. The
lost spectral weight 12Z is distributed as incoherent
weight at higher uv2mu.

Although the original Fermi-liquid theory assumes a
structureless incoherent part and neglects its contribu-
tion to low-energy excitations, recent studies described
below in Secs. II.D.4, II.D.6, II.E, II.F, and II.G have
clarified the importance of the growing weight of inco-
herent contributions. Based on the Fermi-liquid descrip-
tion, a phenomenological treatment of coherent and in-
coherent parts on an equal footing has been given
(Kawabata, 1975; Kuramoto and Miyake, 1990; Miyake
and Narikiyo, 1994a, 1994b; Narikiyo and Miyake, 1994;
Narikiyo, 1996; Okuno, Narikiyo, and Miyake, 1997).
This approach may be justified when the incoherent part
described by ‘‘upper’’ and ‘‘lower’’ Hubbard bands give
serious renormalization to the quasiparticle coherent
part.

In discussing Eq. (2.72) above, we ignored the k de-
pendence of the self-energy for simplicity. However, the
effect of electron correlation is not restricted to each
atomic site but is generally extended over many atomic
sites, necessitating a k-dependent self-energy. The de-
gree of nonlocality of the self-energy generally increases
as the range of interaction increases. Nevertheless, even
the on-site Coulomb interaction included in the Hub-
bard model leads to some k dependence in the self-
energy through the intersite hybridization term. In par-
ticular, in cases where there is a nesting feature in the
Fermi surface, the self-energy should show an anomaly
for k around the nesting wave vector. Because of this,
the k dependence of the self-energy is more pronounced
for low (one or two) dimensions, since the nesting con-
dition is more easily satisfied. The effect of antiferro-
magnetic fluctuation on the spectral function arising
from Fermi-surface nesting was discussed for the 2D
Hubbard model originally by Kampf and Schrieffer

FIG. 9. Spectral function r(v) for a constant renormalization
factor Z . Nb(v) is the band density of states, mb is the band
mass, and mk is the k mass.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
(1990) and more recently by Langer et al. (1995) and
Deisz et al. (1996).

The density of states at the chemical potential r(m) is
modified from the noninteracting value Nb(m) as

r~m!/Nb~m!5mk /mb , (2.125)

which means that k dependence of the self-energy is
necessary to have r(m)ÞNb(m) (Greef, Glyde, and
Clements, 1992). The ratio between the density of states
r(m) and the density of states of quasiparticles N* (m)
5(m* /mb) Nb(m) is given by Z (Allen et al., 1985),

r~m!5ZN* ~m!. (2.126)

That is, the density of states at the chemical potential is
reduced from the quasiparticle density of states by the
quasiparticle residue Z . This is a special case of the re-
lationship between the spectral function and the energy
distribution function of quasiparticles, Eq. (2.72).

In the limit of large dimensionality or large lattice
connectivity, the k dependence of the self-energy is lost
because the fluctuation of the neighboring sites is aver-
aged out and the central atom feels only the average
field from the neighboring sites without fluctuation. This
is described in greater detail in Sec. II.D.6. In that case,
the spectral weight at the chemical potential, r(m), is not
influenced by electron correlation. It is also expected
that the k dependence of the self-energy will become
less important for a large orbital degeneracy (Kuramoto
and Watanabe, 1987).

In the definition of the k dependence of the self-
energy, one must define the reference mean-field state
to which the self-energy correction is applied. Such a
mean-field state is either the band structure calculated
using the local-(spin-)density approximation (LDA or
LSDA) or that calculated using the Hartree-Fock ap-
proximation. In the Hartree-Fock approximation, the
nonlocality of the exchange interaction is properly dealt
with and the nonlocality of the electron-electron inter-
action is already included on the mean-field level (and
not beyond the mean-field level) in the one-electron en-
ergy «0(k), so that S(k,m);0. In the L(S)DA, on the
other hand, the exchange potential is approximated by a
local potential. That is, the potential at a spatial point r
is a function of the electron (and spin) densities at this r,
i.e., Vs(r)5fs@n↑(r),n↓(r)# . Therefore S(k,m) may be
substantially different from zero, meaning that S(k,m)
will have to be taken into account if one analyzes pho-
toemission spectra starting from the LDA band struc-
ture.

For the free-electron gas, the LDA gives «0(k) almost
identical to the noninteracting dispersion «0(k)
5\2k2/2me , while the Hartree-Fock approximation
yields

«0~k!5
\2k2

2me
2

2e2

p
kFS 1

2
1

12x2

4x
lnU 11x

12x U D ,

(2.127)

where x[k/kF (Ashcroft and Mermin, 1976). There-
fore, if one starts from the LDA, S(kF ,m)2S(0,m)
52e2kF /p , meaning that the occupied bandwidth is in-
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creased by ;2e2kF /p compared to the LDA band
structure due to the effect of nonlocal exchange. In fact,
the screening effect, which is completely neglected in the
Hartree-Fock approximation and can be treated in the
RPA, will reduce the S(kF ,m)2S(0,m) to some extent,
but such a screening effect would be weak when the
electron density is low, as is the case in most of the
metallic transition-metal oxides. Since kF5(3n/8p)1/3

;1/2r̄ , where r̄ is the average distance between nearest
electrons, S(kF ,m)2S(0,m);e2/p r̄ . That is, the total
bandwidth is increased by ;S(kF ,m)2S(0,m);e2/ r̄
due to the exchange contribution from the long-range
Coulomb interaction. If we consider that the long-range
Coulomb interaction is screened by the electric polariza-
tion of constituent ions, represented by the optical di-
electric constant «` , which is ;3 –5 in oxides, the band
widening becomes ;e2/«`r̄;0.5 eV (Morikawa et al.,
1996). Equation (2.127) means that for small kF the sec-
ond term (exchange energy }kF) dominates the first
term (kinetic energy }kF

2 ), i.e., for large r̄ . Therefore
the nonlocal exchange is important in systems with low
carrier density. In ordinary metals and alloys, the carrier
density is high enough (kF is large) that the kinetic en-
ergy dominates Eq. (2.127) and the nonlocal exchange
contribution is negligible, explaining why the LDA
works well in ordinary metals and alloys. The increase of
the bandwidth due to nonlocal exchange is also found
using a tight-binding Hamiltonian if one treats the inter-
site Coulomb interaction in the Hartree-Fock approxi-
mation: It contributes through 2Vij^ci

†cj& to the transfer
integral t ij , where Vij is the intersite Coulomb energy,
thereby effectively increasing ut iju.

2. Hartree-Fock approximation and RPA
for phase transitions

The Hubbard Hamiltonian (1.1a) is rewritten as

H5HK1HU , (2.128a)
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HK5(
s

(
ij

c is
† $Kij2@m1~22y !U/4#d ij%cjs ,

(2.128b)

HU5
U

4 (
i

@y~ci↑
† ci↑1ci↓

† ci↓21 !2

12~22y !ci↑
† ci↓

† ci↓ci↑# , (2.128c)

where Kij is 2t for the pair (i ,j) summed in Eq. (2.37b).
Here y is an arbitrary constant and we have omitted a
constant term U/4. For this Hamiltonian, the partition
function (2.41a) can be expressed in the path integral of
a noninteracting system through the Stratonovich-
Hubbard (SH) transformation. Several formally differ-
ent but equivalent representations through different SH
transformations are possible. In a simple and ordinary
mean-field approximation, one can introduce only D̃s by
taking y50 to discuss magnetic ordering. Below we
show a general choice of SH transformations in which
both D̃c and D̃s are introduced to represent possible
charge and spin fluctuations separately. We use the iden-
tity

15E DD̃si*DD̃si expF2
22y

2U (
i

~2D̃si* 2Uci↑
† ci↓!

3~2D̃si2Uci↓
† ci↑!G , (2.129a)

and

15E dD̃ciexpF2
y

4U (
i

„4D̃ci2iU~ci↑
† ci↑1ci↓

† ci↓21 !…

3„4D̃ci2iU~ci↑
† c↑1ci↓

† ci↓21 !…G , (2.129b)

for complex c-number D̃si and real variable D̃ci . Then
we can rewrite the partition function in the coherent-
state representation using the Grassmann variables,
Z5E D@c̄ ,c#DD̃si~t!DD̃si* ~t!DD̃ci~t!expS 2E
0

b

dtF(
i

c̄ is

]

]t
c is2(

ij
c̄ is~Kij2md ij!c js

1
2
U

~22y !(
i

D̃si* ~t!D̃si~t!1
4y

U (
i

D̃ci~t!22~22y !(
i

@D̃si* ~t!c̄ i↓c i↑1D̃si~t!c̄ i↑c i↓#

22iy(
i

D̃ci~t!~ c̄ i↑c i↑1c̄ i↓c i↓21 !G D . (2.130)
The variables D̃s and D̃c are called Stratonovich fields or
Stratonovich variables. The normalization constants in
Eqs. (2.129a) and (2.129b) are absorbed in DD̃c and
DD̃s*DD̃s . Although this is an identical transformation, a
Stratonovich transformation of this type readily takes
account of magnetic symmetry breaking, as we shall see
below. The partition function may also be expressed
only through D̃si without introducing D̃ci by using Eqs.
(2.129a) and (2.37a)–(2.37d). These different choices
should give the same result if the integration over the
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SH variables D is rigorously performed. However, ap-
proximations like the mean-field approximation lead in
general to different results.

In the Fourier-transformed form, the partition func-
tion is further rewritten by using the spinor notation

C̄[~c̄↑ ,c̄↓!, (2.131a)

C[S c↑
c↓

D , (2.131b)

in the form

Z5E D@C̄ ,C#DD̃s* DD̃sDD̃c e2S, (2.132a)

S5C̄QC1
2~22y !

U
D̃s* D̃s1

4y

U
D̃c

212iyD̃c ,

(2.132b)

Q5S Q↑↑1Q↑↑8 Q↑↓

Q↓↑ Q↓↓1Q↓↓8
D , (2.132c)

with

Q↑↑~k ,k8!5dkk8~2ivn1«0~k!2m!, (2.133a)

Q↓↓~k ,k8!5dkk8~2ivn1«0~k!2m!, (2.133b)

Q↑↓~k ,k8!52~22y !D̃s~k2k8!, (2.133c)

Q↓↑~k ,k8!52~22y !D̃s* ~k2k8!, (2.133d)

Q↑↑8 ~k ,k8!5Q↓↓8 ~k ,k8!522iyD̃c~k2k8!, (2.133e)

where k[(k,ivn). In Eqs. (2.132a), (2.132b), and
(2.132c), the products C̄QC and D̃* D̃ are abbreviated
forms of the matrix products

C̄QC[
1

~bV ! (
k,k8

(
n ,n8

C̄~k,vn!Q~k,vn ;k8,vn8!

3C~k8,vn8!

and

D̃* D̃[
1

bV (
k

(
n

D̃* ~k,vn!D̃~k,vn!,

respectively. The noninteracting dispersion «0(k) is the
Fourier transform of K.

After Fourier transformation, D̃c(k)5D̃c* (2k) is sat-
isfied. Therefore the functional integration over D̃c(k)
may be written as

DD̃c[)
k

dD̃c~k !5dDc~k50,vn50 !

3)
k

)
vn.0

dD̃c* ~k,vn!dD̃c~k,vn!.

After integrating the Grassmann variables C and C̄ ,
we are led to

Z~D̃ ![E DD̃s* DD̃sDD̃c ZQ~D̃ !e2SD, (2.134a)
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ZQ~D̃ ![E DCDC̄ e2C̄QC

5det Q5exp@ ln det Q01ln det~11Q0
21Q1!#

5exp@2Tr ln~2G0!1Tr ln~12G0Q1!# ,

(2.134b)

SD[
2~22y !

U
D̃s* D̃s1

4y

U
D̃c

212iyD̃c , (2.134c)

where Tr ln A5ln det A is used. In Eq. (2.132c), the ma-
trix Q is decomposed to

Q5Q01Q1 , (2.135a)

Q0[S Q↑↑~k ,k8!, 0

0, Q↓↓~k ,k8!
D , (2.135b)

Q1[S Q↑↑8 ~k ,k8! Q↑↓~k ,k8!

Q↓↑~k ,k8! Q↓↓8 ~k ,k8!
D . (2.135c)

The noninteracting Green’s function is defined as

G05S G0↑ 0

0 G0↓
D , (2.136a)

G0s~k ,k8!5dkk8„ivn2j0~k!…21, (2.136b)

j0[«0~k!2m . (2.136c)

D̃ or D̃* -dependent terms of S have the form

2~22y !

U (
k

D̃s* ~k !D̃s~k !1
4y

U (
k

vn.0

D̃c* ~k !D̃c~k !

1
4y

U
D̃c~0 !212iyD̃c~0 !2Tr ln@12G0Q1# . (2.137)

The mean-field (Hartree-Fock) approximation of the
magnetic ordering is based on several approximations.
The first important assumption is that only static fluctua-
tions of D̃s or D̃c are important, so that D̃c ,s(k,vn) at
vnÞ0 may be ignored. This static approximation dis-
cards dynamic fluctuations though they are crucial in un-
derstanding anomalous features of metals near the Mott
insulator. Another approximation in the Hartree-Fock
theory is that it determines the static values D̃c(vn50)
and D̃s(vn50) by the saddle-point approximation.
More precisely, it is obtained by replacing the functional
integral of e2S over D̃ and D̃* with the saddle-point
estimation of e2S at D(0) and D* (0) obtained from
]S/]D* 50. So far, we have discussed possible spin and
charge fluctuations by introducing D̃c and D̃s . Hereafter,
for simplicity, we take Dc(0)[yD̃c(0) and Ds(0)[(2
2y)D̃s(K) with the staggered antiferromagnetic order-
ing wave vector k5K. The condition of extremum is
explicitly written as

]S

]Ds*
5

2Ds

U
1TrF ~12G0Q1!21G0

]Q1

]Ds* ~0 !G50

(2.138a)
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and

]S

]Dc*
5

4Dc

U
1Tr~12G0Q1!21G0

]Q1

]Dc~0 !
12i50. (2.138b)

Equation (2.138a) is nothing but the self-consistent equation for magnetic ordering at the wave vector K, which may
be rewritten as

Ds~0 !

U
5

1
bV (

k,vn

Ds~0 !

~2ivn1«02m!~2ivn2«02m!2uDs~0 !u2 (2.139)
or

Ds~0 !

U
5

1
bV (

k,vn

Ds~0 !

~2ivn1A«0~k!21uDs~0 !u22m!

3
1

~ ivn2A«0~k!21uDs~0 !u22m!
. (2.140)

where we have assumed «0(k1K)52«0(k) as in the
case of the antiferromagnetic order of the nearest-
neighbor Hubbard model. The extension to more gen-
eral cases is straightforward. The quasiparticle excitation
from this broken-symmetry state is given by the disper-
sion
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
E~k!56A«0~k!21uDs~0 !u22m . (2.141)

The saddle-point solution of Dc(0) for Eq. (2.138b)
gives

Dc~0 !5
Ui

4
~^n&21 ! (2.142)

where ^n& is the average electron density. The single-
particle Green’s function in the Hartree-Fock approxi-
mation is
Gss8~k,vn ;k8,vn8![2Q215
21

@2ivn1«0~k!2m#@2ivn2«0~k!2m#2uDs~0 !u2

3S ~2ivn2«02m!dk,k8dn ,n8 , Ds~0 !dk8,k1Kdn ,n8

Ds~0 !dk8,k1Kdn ,n8 , ~2ivn1«02m!dk,k8dn ,n8
D ,
where

G[S G↑↑ G↓↑
G↑↓ G↓↓

D . (2.143)

After the Bogoliubov transformation

G5S g↑~k !

g↓~k !
D5US c↑~k !

c↓~k ! D (2.144a)

with

U5S u~k !, v~k !

2v~k !, u~k !
D , (2.144b)

and

u~k !25
1
2 S 11

«0~k !

E~k ! D , (2.144c)

v~k !25
1
2 S 12

«0~k !

E~k ! D , (2.144d)

the action (2.132b) in the Hartree-Fock approximation
is diagonalized, using the quasiparticles g, into the form
Sg5ḠQgG1
2
U

uDs~0 !u22
U

4
~n21 !~^n&21 ! (2.145a)

Qg5S Qg↑↑ 0

0 Qg↓↓
D , (2.145b)

Qgss5dkk8„2ivn2m1sE~k!…. (2.145c)

The Green’s function for the quasiparticle is therefore

Ggss8~k ,k8![2^gs~k !gs~k8!&

5dss8dkk8

1
ivn1m2sE~k!

. (2.146)

We next discuss how the random-phase approxima-
tion is given by the Gaussian approximation for D̃s . The
dynamic spin susceptibility defined by
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x~q ,vm!5
1
4 ^TS1~q ,vm!S2~q ,vm!& (2.147)

5
1

4bVZ
E DD̃s* DD̃s

3e2SD
]2

]D̃s* ~q ,vm!]D̃s~q ,vm!
ZQ~D̃ ! (2.148)

5
1

2bVU S 2
U

^D̃s* ~q ,vm!D̃s~q ,vm!&2bV D
(2.149)

is obtained from Eqs. (2.134a)–(2.134c) after partial in-
tegration. In the paramagnetic phase, up to second order
in Q1 for Eq. (2.134), we obtain

ZQ~D̃ !.exp@2Tr ln~2G0!2Tr G0Q1

2Tr G0Q1G0Q1# . (2.150)

The term linearly proportional to Q1 (the second term)
vanishes and the last term is

Tr G0Q1G0Q158(
q,m

xb~q,vm!D̃s* ~q,vm!D̃s~q,vm!,

(2.151)

where xb(q,vm) is the spin susceptibility at U50.
Therefore, combined with the term SD in Eq. (2.134),
^D̃s* D̃s& is estimated as

^D̃s* ~q,vm!D̃s~q,vm!&5
U

2
bV

1
122Uxb~q,vm!

,

(2.152)

which leads to

x~q,vm!5
xb~q,vm!

122Uxb~q,vm!
. (2.153)

This is nothing but the RPA result. The Hartree-Fock
phase diagram calculated by using the above procedure
is shown in Fig. 10 for the 3D nearest-neighbor Hubbard
model (Penn, 1966) and in Fig. 11 for the 2D Hubbard
model (Hirsch, 1985b). Here it is assumed that the or-
dering vector K is either antiferromagnetic [K5(p ,p)
or (p,p,p)] or ferromagnetic [K5(0,0) or (0,0,0)] with
the lattice constant unity. The characteristic feature is a
rather wide region of antiferromagnetic and ferromag-
netic metals near the Mott insulator, n51. We discuss
more complicated types of spin or charge orderings in
Sec. II.H.3 and IV.

So far we have restricted our choice of the
Stratonovich-Hubbard transformation with Ds corre-
sponding to the decoupling of ci↑

† ci↓
† ci↓ci↑ into ci↑

† ci↓ and
ci↓

† ci↑ as in Eq. (2.129a). However, this transformation
makes possible symmetry breaking only in the xy plane
of the spin space. To retain the SU(2) symmetry even

after the SH transformation, a vector SH field D̃W s may be
introduced (C. Herring, 1952; Capellmann, 1974, 1979;
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
Korenman, Murray, and Prange, 1977a, 1977b, 1977c;
Schulz, 1990c), in which case the partition function Z
given in Eq. (2.130) is rewritten as

FIG. 10. Hartree-Fock phase diagram of three-dimensional
nearest-neighbor Hubbard model in the plane of U and a half
of filling ^n& (Penn, 1966). Here the ordinate C0 /E9 represents
U/2t in our notation. ANTI, antiferromagnetic; PARA, para-
magnetic; FERRO, ferromagnetic; S. FERRI, spiral ferrimag-
netic; and S.S.SDW, spiral spin-density-wave phases.

FIG. 11. Hartree-Fock phase diagram of two-dimensional
nearest-neighbor Hubbard model in the plane of U/t and fill-
ing ^n&[r (Hirsch, 1985a, 1985b). P, A, and F represent para-
magnetic, antiferromagnetic, and ferromagnetic phases, re-
spectively. The possibility of incommensurate order is not
considered here.



1074 Imada, Fujimori, and Tokura: Metal-insulator transitions
Z5E D@c̄ ,c#DD̃W si~t!DD̃W si* ~t!DD̃ci~t!

3expF2E
0

b

dtS (
i

c̄ is

]

]t
c is

2(
ij

c̄ is~Kij2md ij!c js

1
2~22y !

3U (
i

D̃W si* ~t!•D̃W si~t!

2
~22y !

3 (
i

~D̃W si* •c̄ isSss8c is8

1D̃W si~t!•c̄ isSs8sc is8!1
4y

U (
i

D̃ci~t!2

22iy(
i

D̃ci~t!~ c̄ i↑c i↑1c̄ i↓c i↓21 ! D G (2.154)

where D̃W s•Sss8 is an internal product with

~Sss8!x5ds↑ds8↓1ids↓ds↑ , (2.155a)

~Sss8!y5ds↑ds8↓2ids↓ds↑ , (2.155b)

~Sss8!z5
1
2

~ds↑ds8↑2ds↓ds8↓!. (2.155c)

Here we note that Dci is real while D̃W si is a complex

three-dimensional vector. In particular, D̃W si is rewritten
as

D̃W si5Ds0eiu inW i (2.156)

where Ds0 is a scalar for the amplitude of this Hartree-
Fock field while u i is the phase and nW is the unit vector

to specify the direction of D̃W s in the 3D spin space. In the
magnetically ordered phase, Ds0 has a finite amplitude,
so that the excitation of this amplitude mode has a finite
gap. In contrast, u i and nW i represent the gapless excita-
tion mode. Therefore low-energy excitations are ex-
hausted by the excitations through u and nW . Even when
there is no symmetry breaking, provided that the corre-
lation length is sufficiently long, the low-energy excita-
tion can be described only through u and nW . This is in-
deed the case for low-dimensional systems below the
mean-field transition temperature TMF where quantum
fluctuations destroy the symmetry breaking while the
amplitude itself is developed below TMF . The low-
energy action described by u and nW frequently contains
topological terms that cause singular and nonlinear ex-
citations in the continuum limit (for example, for 1D;
Haldane, 1983a, 1983b). Except in the 1D case, the role
of these topological terms, such as the Berry phase term,
has not been fully clarified yet. We discuss the low-
energy effective Hamiltonian for this case later.

The Hartree-Fock approximation is a self-consistent
approach which satisfies microscopic conservation laws
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
for particle number, energy, and momentum. Some
higher-order diagrams were also considered in addition
to the Hartree-Fock diagram so as to retain the above
conservation laws (Bickers and Scalapino, 1989; Bickers
and White, 1991), which may be viewed as an attempt to
include perturbatively fluctuation effects that are ig-
nored in the Hartree-Fock approximation. This is called
the fluctuation exchange (FLEX) approximation.

3. Local-density approximation and its refinement

In a number of ways, as we see in this article, theoret-
ical understanding of strongly correlated systems has
been made possible through studies on effective lattice
Hamiltonians derived from the tight-binding approxima-
tion for a small number of bands near the Fermi level.
Although the simplification to effective tight-binding
Hamiltonians is useful to elucidate many universal fea-
tures of correlation effects, detailed experimental data
such as those from photoemission often have to be ana-
lyzed from a more original Hamiltonian which contains
more or less all the electronic orbitals in the continuum
space under the periodic potential of the real lattice.
This is because high-energy spectroscopy reflects the in-
dividual character of the compounds. Electronic struc-
ture calculations starting from atoms and electrons with
their mutual Coulomb interactions in the continuum
space are sometimes called first-principles calculations
or ab initio calculations. The expected role of these first-
principles calculations is not restricted to quantitative
analyses of high-energy spectroscopy and the structural
stability of lattices but is also extended to derive or jus-
tify starting effective Hamiltonians of simplified lattice
fermion models for each compound and to bridge the
gap between high- and low-energy physics. For example,
band-structure calculations provide a generally accepted
way of determining parameters of effective lattice mod-
els if carefully examined. It is also expected that the
phase of the ground state will be correctly reproduced
without introducing any parameter fitting. In fact, we
describe below several treatments that have been suc-
cessful in reproducing correct ground states of
transition-metal compounds.

As it stands, ‘‘first-principles’’ calculation does not
mean a rigorous, practical way of determining electronic
structure, contrary to what one might imagine from its
terminology. Basically, three types of approximations
have been employed to make the ‘‘first principles’’ cal-
culation tractable in practice.

One is the configuration-interaction (CI) method, in
which small clusters under the atomic potential with all
the relevant electronic orbitals are solved by the diago-
nalization of a Hamiltonian matrix. This method is exact
but applicable only for small clusters, typically a few unit
cells. Therefore it frequently underestimates the effect
of electronic kinetic energy and coherence. We further
discuss details of the configuration-interaction method
in Sec. III.A.1. This method has a computational simi-
larity to the exact diagonalization method reviewed in
Sec. II.E.
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The second type of approximation is the Hartree-
Fock approximation, which is one of the best ways to
approximate a true many-body fermion state by a single
Slater determinant. By taking a single Slater determi-
nant as a variational state of the many-body Hamil-
tonian

H52(
i

\2

2me
D i1(

i
Vlat~ri!1(̂

ij&

e2

uri2rju
,

(2.157)

one determines the single-particle state c l(ri) from the
minimization of energy by solving the self-consistent
equation

F2
\2

2m
D1Vlat~r!1(

l8
E dr8

e2

ur2r8u
uc l8~r8!u2Gc l~r!

2(
l8

8F E dr
e2

ur2r8u
c l8

* ~r8!c l~r8!Gc l8~r!

5« lc l~r!. (2.158)

Here, l and l8 specify quantum numbers including or-
bital degrees of freedom, and the sum (8 is taken only
over l8, which has the same spin as that of l . The atomic
periodic potential of the lattice is denoted as an external
one by Vlat . The electron-electron Coulomb interaction
is considered through the third term, the Hartree term,
and the fourth (last) term, the exchange term. The ex-
change term can be rewritten as

Vex
l ~r!c l~r!, (2.159)

Vex
l ~r!5E dr8 rex

l ~r,r8!
e2

ur2r8u
(2.160)

with

rex
l ~r,r8!52

c l* ~r!c l~r8!( l8
8 c l8

* ~r8!c l8~r!

uc l~r!u2 (2.161)

where the exchange interaction is expressed as if it were
a static Coulomb term. A computational difficulty of the
Hartree-Fock approximation is that the exchange poten-
tial Vex

l (r) depends on the solution c l(r) itself, and dif-
ferent exchange potentials must be taken for each quan-
tum number l while the number of states l to be
considered increases linearly with the system size. It
should be noted that the Hartree-Fock approximation
does not take into account correlations between elec-
trons with different spins and hence an up-spin electron
behaves independently of the down-spin electrons if
there is no symmetry breaking of spins such as the spin-
density wave state as in Sec. II.D.2. To take into account
short-ranged correlation effects of opposite-spin elec-
trons, which is important in strongly correlated systems,
one has to go beyond the Hartree-Fock approximation.

The third approximation is the local-density approxi-
mation, which gives a basic starting point for widely
used band-structure calculations. The local-density ap-
proximation is based on the density-functional theory of
Hohenberg, Kohn, and Sham (Hohenberg and Kohn,
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
1964; Kohn and Sham, 1965). A general and exact state-
ment of the density-functional theory is that the true
ground-state energy is obtained by two steps: First, one
finds the many-body state C@n(r)# that minimizes the
expectation value of the total many-body Hamiltonian,
Eg@n(r)# , under given single-particle density n(r). Sec-
ond one minimizes Eg@n(r)# as a functional of n(r). An
important point is the existence of the energy functional
Eg@n(r)# . Of course these two steps are difficult to per-
form in practice. A basic underlying assumption in prac-
tical applications of the Kohn-Sham theory is that
Eg@n(r)# can be calculated by starting from single-
particle states given by a single Slater determinant that
reproduces n(r), with this single-particle state being ob-
tained as a solution of the Schrödinger equation

S 2
\2

2m
D1V~r! Dc l~r!5« lc l~r! (2.162)

with V(r) chosen to give

n~r!5(
l

uc l~r!u2. (2.163)

We discuss this procedure in greater detail below. In the
original many-body problem, the ground-state energy is
obtained through minimization of the energy expecta-
tion value

E@n~r!#5^C@n~r!#uHK1Hext1HUuC@n~r!#&
(2.164)

with respect to variations of both C@n(r)# and the den-
sity functional n(r), where C@n(r)# is a many-body
wave function C(r1 ,r2 ,. . . ,rN) that satisfies

E dr2 dr3 ,. . . ,drNuC@n~r!#u25n~r1!. (2.165)

The kinetic energy, interaction energy, and external
atomic potential are denoted as HK , HU , and Hext , re-
spectively. After minimization with respect to C with
fixed n(r), the minimum in terms of n(r) is obtained
from

dEg@n~r!#

dn~r!
50, (2.166)

where Eg@n(r)# is the minimized value with respect to
C. An important point here is that, in this step, the
ground-state energy is calculated only from the energy
functional Eg@n(r)# without any detailed knowledge of
the many-body wave function. Of course, the functional
form of Eg is not easy to obtain.

When we can assume that the first minimization pro-
cedure to obtain Eg@n(r)# may be performed within the
single Slater determinant under an appropriate fictitious
external potential V(r), the minimization may be per-
formed from the minimization of the energy functional,

E@n~r!#5EK@n~r!#1E dr Vlat~r!n~r!

1
e2

2 E dr dr8
n~r!n~r8!

ur2r8u
1E dr Vex~r!n~r!,

(2.167)
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with

Vex~r![E dr8 rex~r,r8!
e2

ur2r8u
, (2.168)

rex~r,r8![(
l

uc l~r!u2

n~r!
rex

l ~r,r8!. (2.169)

Here, the first term of Eq. (2.167), EK , is the kinetic-
energy term written as a functional of n(r). For ex-
ample, EK is given from Eq. (2.162) as

EK5(
l

@« l2^c luV~r!uc l&# . (2.170)

The sum over l in Eq. (2.170) is taken to fill the lowest N
levels of « l for an N-particle system.

However, the assumption that Eg@n(r)# may be ob-
tained within the single Slater determinant is in general
not justified in correlated systems. Therefore we leave
the form of Vex(r) unknown and just define it as the
difference between the true ground-state energy and the
contribution from the first three terms in Eq. (2.167).
The point is that Vex(r) is still represented by a func-
tional of n(r). We also note, however, that there exists
no proof that V(r) always exists, though its existence is
necessary in this procedure, and in this approach it is
assumed to exist. The minimization of Eq. (2.167) in
terms of the functional n(r) gives the condition

2
dEK

dn~r!
5Vlat~r!1e2E dr8

n~r8!

ur2r8u

1
d

dn~r!
E dr Vex~r!n~r!. (2.171)

The ground-state energy is obtained by solving the
Kohn-Sham equations (2.162), (2.163), and (2.171) self-
consistently, if we know the functional dependence of
Vex(r) on $n(r)%. In general, the exchange potential
Vex(r) depends on n(r8) for rÞr8 in a nonlocal fashion.
The local-density approximation (LDA) assumes that
Vex(r) is determined only by n(r8) at r85r. This as-
sumption may be justified when effects of spatial varia-
tions of the electron density may be neglected in the
exchange potential, so that Vex(r) is calculated from the
uniform electron gas with density n(r). This condition
for justification is explicitly given as

¹n~r!

kF~r!n~r!
!1 (2.172)

provided that the Fermi wave number kF can be de-
scribed as a local variable under the same assumption of
slow modulation of the electron density.

Because we have left Vex(r) just as the difference of
the true ground-state energy and the contribution from
the first three terms in Eq. (2.167), it has to be calculated
from other explicit calculations taking account of the
correlation effects honestly. This is usually done by us-
ing the quantum Monte Carlo result (Ceperley and Al-
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der, 1980) of the ground-state energy for a uniform elec-
tron gas with density n(r) (Perdew and Zunger, 1981).
From the difference between the Monte Carlo result
and the corresponding energy for the first three terms of
Eq. (2.167), Vex is estimated.

The practical difficulties of applying the density-
functional procedure to strongly correlated systems can
be appreciated from the difficulty of calculating Vex(r),
into which all the many-body effects are squeezed. The
assumption that Vex(r) is determined from the local
density n(r) is in general not satisfied in strongly corre-
lated systems.

Failure of the LDA calculation is widely observed in
the Mott insulating phase of many transition-metal com-
pounds as well as in phases of correlated metals near the
Mott insulator. MnO, NiO, NiS, YBa2Cu3O6, and
La2CuO4 are well known examples of the LDA’s inabil-
ity to reproduce the insulating (or semiconducting)
phase (Terakura, Oguchi, Williams, and Küller, 1984;
Pickett, 1989; Singh and Pickett, 1991).

To improve the LDA, several different approaches
have been taken. The local spin-density approximation
(LSDA) explicitly introduces the spin-dependent elec-
tron densities n↑(r) and n↓(r) separately, to allow for
possible spin-density waves or antiferromagnetic states
(von Barth and Hedin, 1972; Perdew and Zunger, 1981).
Instead of Eq. (2.167), the exchange-correlation energy
*drVex(r)n(r) is replaced with *dr@n↑(r)
1n↓(r)#Vex@n↑(r),n↓(r)# in the LSDA, where Vex is
taken as a functional of both n↑(r) and n↓(r). Corre-
spondingly, the Kohn-Sham equations (2.162), (2.163),
(2.170), and (2.171), which need to be solved self-
consistently, are replaced with spin-dependent forms,

S 2
\2

2m
D1Vs~r! Dc ls~r!5« lsc ls~r!, (2.173)

ns~r!5(
l

uc ls~r!u2, (2.174)

n~r!5(
s

ns~r!, (2.175)

EK5(
ls

~« ls2^c lsuVs~r!uc ls&!, (2.176)

2
dEK

dns~r!
5Vlat~r!1e2E dr8

n~r8!

ur2r8u

1
d

dns~r!
E dr Vex~r!n~r!. (2.177)

In the LSDA, Vex(r) is assumed to be determined only
from the local spin densities n↑(r8) and n↓(r8) at r85r,
and usually Vex is given from the energy difference be-
tween the quantum Monte Carlo result and the single-
particle solution as in the LDA. For example, the LSDA
succeeds in reproducing the presence of the band gap at
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the Fermi level for MnO by allowing antiferromagnetic
order (Terakura, Oguchi, Williams, and Küller, 1984). It
also succeeds in reproducing the antiferromagnetic insu-
lating state of LaMO3 (M5Cr,Mn,Fe,Ni) (Sarma et al.,
1995).

However, the LSDA fails to reproduce the antiferro-
magnetic ground state of many strongly correlated com-
pounds such as NiS, La2CuO4, YBa2Cu3O6, LaTiO3,
and LaVO3. Even in MnO, strongly insulating behavior
observed well above the Néel temperature implies that
the charge-gap structure is not a direct consequence of
antiferromagnetic order, although antiferromagnetic or-
der is needed to open a gap in the LSDA calculation.

The LDA band-structure calculation makes a drastic
approximation in that the exchange-correlation energy
Vex(r) is determined only from the local electron den-
sity n(r). When the electron density n(r) has a strong
spatial dependence, this approximation breaks down.
This is indeed the case for strongly fluctuating spin and
charge degrees of freedom in correlated metals. To im-
prove this local-density approximation, the gradient ex-
pansion of n(r) may be considered to take into account
the nonlocal dependence of Vex(r) on n(r8), where r8
Þr. Langreth and Mehl (1983), Perdew and Wang
(1986), Perdew (1986), and Becke (1988) developed a
way of including the gradient expansion of n(r) in the
exchange energy by keeping the constraint of negative
density of the exchange hole everywhere in space with a
total deficit of exactly one electron. This is called the
generalized gradient approximation (GGA) method. It
was applied to reproduce the bcc ferromagnetic phase of
Fe by Bagno, Jepsen, and Gunnarson (1989). Recently
this method was applied to the transition-metal com-
pounds FeO, CoO, FeF2, and CoF2 with partial im-
provements of the LDA results. It was also applied to
transition-metal oxides with 3D perovskite structure,
LaVO3, LaTiO3, and YVO3 (Sawada, Hamada, Tera-
kura, and Asada, 1996). It showed improvements in re-
producing the band gap in LaVO3, but the ground state
was not correct for YVO3 and LaTiO3.

A serious problem in LDA and LSDA calculations is
that the self-interaction is not canceled between the con-
tributions from the Coulomb term and the exchange in-
teraction term because of the drastic approximation in
the exchange-interaction term. This produces a physi-
cally unrealistic self-interaction, which makes the ap-
proximation poor for strongly correlated systems. Per-
dew and Zunger (1981) proposed imposing a constraint
to remove the self-interaction. This method of self-
interaction correction (SIC) was applied to the Hubbard
model as well as to models of transition-metal oxides
with quantitative improvement of the band gap and the
magnetic moment for MnO, FeO, CoO, NiO, and CuO
(Svane and Gunnarsson, 1988a, 1988b, 1990).

In principle, the Kohn-Sham equation provides the
procedure to calculate exactly the ground state at the
Fermi level. However, it does not guarantee that excita-
tions will be well reproduced. A possible way of improv-
ing estimates for the excitation spectrum is to combine
the Kohn-Sham equation with a standard technique for
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many-body systems by introducing the self-energy cor-
rection to the single-particle Green’s function obtained
from LDA-type calculations. This attempt is called the
‘‘GW’’ approximation (Hedin and Lundqvist, 1969). It
was applied to NiO (Aryasetiawan, 1992), although sys-
tematic studies on transition-metal compounds are not
available so far (for a review, see Aryasetiawan and
Gunnarsson, 1997). Effects of local three-body scatter-
ing on the self-energy correction have also been exam-
ined (Igarashi, 1983).

To counter the general tendency to underestimate the
band gap of the Mott insulator in LDA-type calcula-
tions, a combination of the LDA and a Hartree-Fock-
type approximation called the LDA1U method was
proposed (Anisimov, Zaanen, and Andersen, 1991). The
Coulomb interaction for double occupancy of the same
site as in the Hubbard model requires a large energy U
if the eigenstate is localized as compared to extended
states. This is not correctly taken into account in the
LDA calculation, which estimates the exchange interac-
tion using information from the uniform electron gas,
which is appropriate only for extended wave functions.
In the LDA1U approach the contribution of the inter-
action proportional to U is added to the LDA energy in
an ad hoc way when the orbital is supposed to be local-
ized. The method thus combines arbitrariness in specify-
ing the localized orbital with a drastic approximation in
the treatment of the U term (for example, the Hartree-
Fock approximation was used.) The LDA1U method
has the same difficulty as the other many-body ap-
proaches in the tight-binding Hamiltonian because it
does not necessarily provide a reliable way of treating U
term, while, in a sense, all the important effects of strong
correlation are relegated to this term. Another problem
of this method is that the estimate of U may depend on
the choice of the basis (Pickett et al., 1996). Different
choices of local atomic orbitals such as the linear muffin-
tin orbital (LMTO) and linear combination of atomic
orbitals (LCAO) give different U because the definition
of the orbital becomes ambiguous whenever there is
strong hybridization.

To take account of frequency-dependent fluctuations
ignored in the LDA method, Anisimov et al. combined
the LDA method with the dynamic mean-field approxi-
mation (the d5` method described in Sec. II.D.6;
Anisimov et al., 1997). They treated strongly correlated
bands by the dynamic mean-field approximation and de-
scribed other itinerant bands by the LDA with a linear
muffin-tin orbital basis. Recently, the exchange-
correlation energy functional was calculated as the sum
of the exact exchange energy and a correlation energy
given from the RPA without introducing the local-
density approximation (Kotani, 1997).

As we have seen above, in this decade substantial
progress has been achieved in the band-structure calcu-
lation of transition-metal compounds. However, it is still
not sufficient to reproduce the Mott insulator correctly
in strongly correlated materials such as La2CuO4 and
YBa2Cu3O6. A more serious problem lies in the descrip-
tion of the metallic state near the Mott insulator, where
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spin and charge fluctuations play crucial roles even in
the ground state, while the band-structure calculation
has difficulty in including such fluctuation effects. For
example, the continuous MIT should be described by
the continuous reduction of coherent excitation when
approaching the insulator, while the available ap-
proaches mentioned in this subsection fail to describe
important contributions from the increasing weight of
incoherent part.

4. Hubbard approximation

To gain insight into the original suggestion by Mott,
Hubbard (1963) developed the coherent-potential ap-
proximation (CPA), which is combined with a Hartree-
Fock-type approximation to address the problem of the
metal-insulator transition. The CPA is a technique de-
veloped to treat the effects of random potentials (see,
for example, Lloyd and Best, 1975), which Hubbard had
already developed before its widespread application
(see also Kawabata, 1972). In the Hubbard approxima-
tion, the Stratonovich-Hubbard transformation, using
only the charge fluctuations D̃ci(t) in Eq. (2.130), is em-
ployed to obtain a static approximation represented by
the Stratonovich-Hubbard field; the static field is re-
garded as a random potential in the CPA. Below some
details of the Hubbard approximation are given.

In the CPA, the t dependence of D̃c(r ,t) is neglected
in the same way as in the Hartree-Fock approximation.
After integrating out the Grassmann variables, one re-
places D̃c(r ,t) with the t-independent constants Dc(r),
which is called the static approximation. In contrast to
the Hartree-Fock approximation, Dc(r) is assumed to
take more than one value D̃c

(l) (l51,2,.. .) in a random
way from site to site. In fact, in the Hubbard approxi-
mation, two values 0 and Ui/4 are assumed for D̃c .
These two values are obtained from the saddle-point so-
lution (2.142) if we take either ^n&51 or ^n&52. These
two values can intuitively be understood because an
electron at a doubly occupied site feels a static interac-
tion potential U while its potential is absent for a singly
occupied site if all the other electrons are frozen so that
dynamic effects can be neglected. (As we shall see later
in this subsection, in the CPA, dynamic effects are par-
tially taken into account in another way by introducing
afterwards an v-dependent self-energy S as determined
variationally in the single-particle excitation spectrum.)
As in Eq. (2.130) the partition function is first assumed
to have the form

Z5(
l

Zl , (2.178a)

Zl5Pl)
s

E DcsDc̄sexpF2E dxc̄s~x !
]

]t
cs~x !

2E dx c̄s~x !~K2m!cs~x !

14iD̃c
~ l !~n↑~x !1n↓~x !21 !2

4
U

D̃c
~ l !2G , (2.178b)
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
where the spatial (or wave-number) dependence of the
self-energy is neglected. The probability to have the
value D̃c

(l) is denoted by Pl . Originally, Pl was deter-
mined from the Gaussian approximation obtained from
exp@2SD# with SD in Eq. (2.134c). However, in the Hub-
bard approximation, as we describe below, Pl is taken
rather differently, in order to consider nonlinear fluctua-
tions ignored in the Gaussian approximation. We shall
see in Sec. II.D.6 that S is not dependent on wave num-
ber in infinite dimensions, although, in general, it is
wave-number dependent in finite dimensions. Although
S(t) is exactly calculated in infinite dimensions in Sec.
II.D.6, the Hubbard approximation calculates it only ap-
proximately as follows: The partition function (2.178a) is
rewritten in the same manner as Eq. (2.134),

Zl5Plexp@2Tr ln~2G0!1Tr ln~12G0Q1l!#
(2.179)

with

Q1l524iS D̃c
~ l ! 0

0 D̃c
~ l !D . (2.180)

This may be rewritten as

Zl5Plexp$2Tr@ ln~2G !2ln„12G~Q1l2S!…#%,
(2.181)

where the Green’s function G has the form

G21~k,vn!5G0
21~k,vn!2S~vn!, (2.182)

with v-dependent self-energy S. Now the on-site
Green’s function Gloc(vn) is defined as

Gloc~vn!5(
k

G~k,vn!. (2.183)

Then, to include locally tractable and averaged effects in
the second term of Eq. (2.181), we rewrite it as

Zl5Plexp@2Tr$ln~2G !2ln@12Gloc~Q1l2S!#

2ln@12~G2Gloc!Tl#%# , (2.184)

where Tl is a t matrix,

Tl5~Q1l2S!@12Gloc~Q1l2S!#21. (2.185)

The CPA is regarded as the lowest-order expansion of
the t matrix, since it neglects the last term in (2.184).
Since it determines S in a variational way, the condition
for determining S is ]Z/]S50. This leads to

(
l

ZlTrH S Gloc
2 2

]Gloc

]S DTlJ 50, (2.186)

from which we obtain the self-consistent equation for
the self-energy,
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S5(
l

ZlQ1l$12Gloc~Q1l2S!%21Y (
l

Zl$12Gloc~Q1l2S!%21. (2.187)
In the case of the Hubbard approximation for the
nearest-neighbor Hubbard model at half filling, Q11
50, Q125U , P151/2, and P251/2, where the number
of l’s is taken as two. When S is determined by solving
Eq. (2.187), Z is obtained from Eq. (2.184) by putting
Tl50. The procedure of the Hubbard approximation is
summarized as follows:
(1) Take a variational form of G and S.
(2) Calculate Gloc using Eq. (2.183) and Zl using Eq.
(2.184).
(3) Calculate S from Eq. (2.187) by substituting the
present form of S, Gloc , and Zl in the right-hand side.
(4) Using the form of S obtained in step (3), calculate G
from Eq. (2.182).
(5) From the form of G and S determined in steps (3)
and (4), repeat the process from step (2) again until the
iteration converges.

Because an electron feels the static potential of 0 or U
in the static approximation, it is rather obvious that it
succeeds in splitting the band into the so-called upper
and lower Hubbard bands for the Mott insulating phase,
as shown in the bottom of Fig. 13 for large U , while it
merges to a singly connected band for small U , as shown
in the top panel of Fig. 13.

We shall see in Sec. II.D.6 that the solution in infinite
dimensions is similar for the insulating phase, i.e., for
large U . This is because dynamic charge fluctuations ne-
glected in the Hubbard approximation are irrelevant in
the insulating phase. We shall also see in Sec. II.D.6 that
S can be determined rigorously in infinite dimensions by
introducing dynamic mean fields instead of static charge-
Stratonovich variables. In the metallic phase, neglect of
the dynamic charge fluctuations in the Hubbard approxi-
mation is not at all justified.

A related problem in the Hubbard approximation is
that spin fluctuations are not taken into account because
it starts from the Stratonovich-Hubbard transformation,
in which there is decomposition only in the charge den-
sity. In Sec. II.D.8, we discuss a similar type of CPA
developed for the case of decomposition into spin den-
sity fluctuations. A crucial drawback of the Hubbard ap-
proximation in the metallic phase is that the Fermi vol-
ume is small for small doping away from the Mott
insulator, which does not satisfy the Luttinger require-
ment of large Fermi volume for the Fermi-liquid de-
scription.

5. Gutzwiller approximation

The Gutzwiller approximation (Gutzwiller, 1965) was
first applied to the MIT problem by Brinkman and Rice
(1970). This approach is based on two stages of approxi-
mation. We discuss the case of the Hubbard model [Eqs.
(1.1a)–(1.1d)] here. First, it employs a variational wave
function of the form
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uC&5)
j

~12gnj↑nj↓!uF&, (2.188)

where F is a single-particle state represented by a Slater
determinant and g is a variational parameter to take
into account the reduction of double occupancy of elec-
trons at the same site. The free-fermion determinant was
originally taken as the Slater determinant. It may be
generalized to cases with other types of single Slater de-
terminant where some symmetry is broken, as in the
spin-density wave state or in the superconducting state.
The ground-state energy

Eg5^CuHuC&/^CuC& (2.189)

is estimated from optimization of the parameter g and
the choice of a single Slater determinant. This estimate
satisfies the variational principle and hence gives the up-
per bound of the ground-state energy.

Then an additional approximation is introduced to es-
timate the ground state. When one assumes the number
of doubly occupied sites D , the interaction energy is
exactly given by ^CuHUuC&/^CuC&5DU . However, the
kinetic energy ^CuHtuC&/^CuC& is difficult to estimate
analytically. By neglecting the spin and charge short-
ranged correlation, one can calculate the energy as a
function of D and g for a given system size N and num-
ber of up spins N↑ and down spins N↓ . With «̄s

5^FuHtuF&, the optimization in terms of g at half filling
gives

Eg

N
5q~ «̄↑1 «̄↓!1Ud , (2.190)

where d[D/N and q58d(122d). From minimization
with respect to d , we obtain

Eg

N
52u~ «̄↑1 «̄↓!u~12U/Uc!2 (2.191)

with Uc58u«̄↑1 «̄↓u at U,Uc , while at U.Uc , the in-
sulating state with g51 is stabilized with Eg50. As the
MIT point U5Uc is approached, the renormalization
factor Z5q5m/m* is renormalized to zero as q51
2(U/Uc)2. For details of the derivation, readers are re-
ferred to Vollhardt (1984). In the Gutzwiller approxima-
tion, the uniform magnetic susceptibility xs , the charge
susceptibility xc , and the effective mass m* follow

xs}~12U/Uc!21, (2.192)

m* /mb}~12U/Uc!21, (2.193)

xc}~12U/Uc!, (2.194)

in the metallic region U,Uc . The MIT scenario of the
Gutzwiller approximation is described by mass diver-
gence within the Fermi liquid. The Gutzwiller approxi-
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mation ignores the wave-number dependence of the
self-energy as well as the incoherent part of the excita-
tions.

Away from half filling, for the doping concentration d
(i.e., n↑[N↑ /N5n↓[N↓ /N5 1

2 2d), Eg is given by

Eg

N
5q~ «̄↑1 «̄↓!1Ud (2.195)

with

q5
~1/21d2d !~A22d1d1Ad !2

1/42d2 . (2.196)

This is minimized at d5rd with r5@(g12)y21#/2 and
y5@2(g12)12Ag214g11#/@g(g14)# where g
54(U/Uc21). At U.Uc , we obtain

Eg

N
5~ «̄↑1 «̄↓!~r111y !„4d18~11r !d2

…2Urd1O~d3!

(2.197)

for d!1. Therefore the FC-MIT takes place at U.Uc at
d50 with a change in d. At U.Uc , q has the form q
5q1d1q2d2 with

q1}~U2Uc!21/2 (2.198)

near U5Uc . The charge susceptibility

xc5F 1
N

~]2Eg /]d2!G21

remains finite at dÞ0 and limd→10xc5p/@16( «̄↑1 «̄↓)#
with p5g2/@(11g)22Ag214g11# for U.Uc . At U
5Uc , the charge susceptibility has an exponent given by
xc}d2/3. The above mean-field exponents are not the
same as the exponent in 1D and 2D, as is discussed in
Sec. II.E and Sec. II.F.

The second step of the Gutzwiller approximation does
not satisfy the variational principle. Alternatively, the
energy of this Gutzwiller wave function may be esti-
mated numerically from Eq. (2.189) by Monte Carlo
sampling (Yokoyama and Shiba, 1987a, 1987b) without
introducing the second step of the Gutzwiller approxi-
mation. This Monte Carlo method satisfies the varia-
tional principle and gives the upper bound of the
ground-state energy. Variational Monte Carlo results
correctly predict the absence of MIT in the 1D Hubbard
model at half filling, that is, the insulating state for all
U.0.

As we see below in Sec. II.D.6, the Gutzwiller ap-
proximation reproduces to some extent the coherent
part of the spectral weight, while it fails to treat the
incoherent part, in contrast to the Hubbard approxima-
tion.

6. Infinite-dimensional approach

In a simple model of phase transitions such as the
Ising model for the ferromagnetic transition, the univer-
sality class and critical exponents are correctly repro-
duced by the mean-field theory when the system is
above the upper critical dimension dc . For sufficiently
large dimensional systems, fluctuations are in general
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suppressed and hence the mean-field approximation be-
comes valid. In fermionic systems with metallic spin and
charge excitations, however, the situation is much more
complicated because dynamic quantum fluctuations are
important even in large dimensions. In infinite dimen-
sions, the number of spatial dimension is infinite, so spa-
tial fluctuations are suppressed, while the number of
temporal dimension is always one with an inherent
quantum dynamics. Therefore the mean-field theory
must be constructed in a dynamic way to describe me-
tallic states in large dimensions. In the dynamic mean-
field theory, the spatial degrees of freedom are replaced
with a single-site problem, while dynamic fluctuations
must be fully taken into account. In the path-integral
approach, the ‘‘mean field’’ determined self-consistently
should be dynamically fluctuating in the temporal direc-
tion.

To understand how the dynamical fluctuation is ex-
actly taken into account in infinite dimensions, it is im-
portant to notice that the self-energy of the single-
particle Green’s function has no wave-number
dependence and hence is site diagonal (Müller-
Hartman, 1989). By using the site-diagonal self-energy,
one can obtain a set of self-consistent equations for the
exact solution of the Green’s function in infinite dimen-
sions. The MIT has been extensively studied with the
help of numerical or perturbational solutions of the self-
consistent equations. Below we first define the Hubbard
model in infinite dimensions. Next the self-energy of the
Green’s function is shown to be site diagonal. The self-
consistent equations are derived and several different
ways of solving them are discussed. Consequences ob-
tained from the results are then discussed. For more de-
tailed discussions of the infinite-dimensional approach,
readers are referred to the review article of Georges,
Kotliar, Krauth, and Rozenberg (1996).

In infinite dimensions, the Hubbard model defined in
Eqs. (1.1a)–(1.1d) with nearest-neighbor hopping char-
acterized by the dispersion in Eqs. (2.3a)–(2.3b) has the
same form. The dispersion of Eq. (2.3b) in d dimensions
is explicitly written as

«0~k !522t(
j51

d

cos kj (2.199)

for a simple hypercubic lattice. For d→` , we have to
take a proper limit to yield a nontrivial model (Metzner
and Vollhardt, 1989), because the on-site interaction
term (1.1c) is still well defined in d5` while the kinetic-
energy term Ht has to be rescaled. This is easily under-
stood from the density of states r(E) in the noninteract-
ing limit U50, which has the form

r~E !5 lim
d→`

1
2t~pd !1/2 exp@2~E/2tAd !2# . (2.200)

in the case of a hypercubic lattice. This density of states
is derived from the equivalence between r(E) and the
probability distribution function of the x coordinate of a
random walker in 2D after d steps of length 2t each with
a uniform and random choice of direction in the 2D
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plane (x ,y). Equation (2.200) is simply the solution of
the diffusion equation for d→` as it should be in the
case of a long time limit of the random walk. To take the
limit with a finite density of states, one must scale t as
t5t* /2Ad with a finite t* . Therefore the bare t is scaled
to zero as d increases.

As we see in Eq. (2.200), the density of states for a
simple hypercubic lattice has a Gaussian distribution of
width t* . A drawback of this density of states is that the
MIT does not take place at finite U in the strict sense,
because the exponential but finite tail of the density of
states blocks charge-gap formation at any finite U . To
get around this difficulty, van Dongen (1991) considered
replacing the simple hypercubic lattice by the Bethe lat-
tice, where the density of states has a semicircular form:

r~E !5
2

pt*
A12~E/t* !2. (2.201)

In an explicit calculation of the Green’s function and
the self-energy described below, we use only the density
of states as input, while the calculation does not depend
on more detailed knowledge of the actual lattice struc-
ture. This indicates that, in d5` , lattice structure, con-
nectivity for the hopping transfer, and a measure of the
distance are all irrelevant. In other words, spatial corre-
lations are completely ignored in d5` .

When t is scaled as t}1/Ad , one can show that the
intersite self-energy of the Green’s function S ij(v) (i
Þj) is a higher order of the 1/d expansion than on-site
self-energy S ii(v) (Müller-Hartman, 1989). In the dia-
grammatic expansion of the self-energy as in Fig. 12, the
lowest order is a part of the on-site term S ii , which
contains one bare Green’s function G0ii . In contrast, the
lowest-order term of the intersite self-energy is second
order in U with three bare Green’s functions, as in Fig.
12. The intersite bare Green’s function G0ij is scaled as

G0ij;t uRi2Rju,

where uRi2Rju is the Manhattan distance of the i and j
sites. Then the lowest-order term of S ij for the nearest-
neighbor pair (i ,j) is at most scaled by t3. Therefore the
self-energy which contains the i site has contributions
from the on-site term S ii;O(1), the nearest-neighbor
term S ij;(number of nearest neighbors)3t3;dt3,
and the next-nearest-neighbor term S ij;(number of
next-nearest neighbors )3t6;d2t6

¯ . Because of t
;1/Ad , these are reduced to Son-site;O(1),
Snearest-neighbor;1/Ad , Snext-nearest-neighbor;1/d etc. In the

FIG. 12. The lowest-order diagrams of the intersite self-
energy. The interaction is denoted by a black dotted line, while
G0 is given by a full curve. The sites are denoted by i and j .
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limit d→` , we see that the intersite terms vanish as
compared to S ii . This heuristic argument can be ex-
tended to all the higher-order terms in U , which guar-
antees that all the intersite terms of the self-energy can
be neglected in d5` .

We rewrite the functional integral of the Hubbard
model introduced in Eqs. (2.41a) and (2.41b) with
(2.37a)–(2.37d) as

Z5E DC̄DC exp@2S# , (2.202a)

S5E
0

b

dt (
i ,j ,s

F c̄ is~t!S d ij

]

]t
1t ij2md ijDc js~t!G1SU ,

(2.202b)

SU5(
i

SUi5(
i
E

0

b

dtHUi~t!, (2.202c)

HUi~t!5Uc̄ i↑~t!c̄ i↓~t!c i↓~t!c i↑~t!. (2.202d)

Here C is a vector which depends upon site i (or wave
number k), imaginary time t (or the Matsubara fre-
quency vn), and spin s. The matrix product, such as the
C̄AC used below, follows the same notation as that
from Eqs. (2.131a)–(2.131b) through (2.134a)–(2.134c).
The nointeracting Green’s function at U50 is defined as

G0ij[S d ij

]

]t
1t ij1md ijD 21

, (2.203)

which is transformed in Fourier space as

G0~k,v!5
1

ivn2«0~k!1m
. (2.204)

When we use G0 , the action has the form

S5SG0
1SU , (2.205a)

SG0
[2Tr C̄G0

21C , (2.205b)

where Tr[*0
b dt ( i . The Green’s function G at UÞ0 is

formally given by introducing the self-energy S as

G215G0
212S , (2.206)

from which the action is rewritten as

S5SG2SS1SU , (2.207a)

SS5Tr C̄ŜC . (2.207b)

Here, in the real-space and imaginary-time representa-
tion, Ŝ is a diagonal matrix given by sI with the identity
matrix I , since S is site diagonal in d5` . Then the par-
tition function may be given as

Z5E DC̄DC exp@2SG1SS2SU#

5ZG^exp@SS2SU#&G (2.208a)

with

ZG[E DC̄DC exp@2SG# , (2.208b)
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^¯&G[
1

ZG
E DC̄DC exp@2SG#¯ . (2.208c)

Because S and U are site diagonal, for an N-site system,
the average over G may be replaced with the average
over the on-site Green’s function Gii[Gloc after inte-
gration over c̄ j and c j with jÞi first, as

ZG^exp@SS2SU#&G5ZGloc
^exp@SSi2SUi#&Gloc

,
(2.209)

where

SSi5E
0

b

dt8dt c̄ i~t!S~t2t8!c i~t8!. (2.210)

Here, ^¯&Gloc
is defined by a local average,

^¯&Gloc
5E Dc̄ iDc i^exp@c̄ iGii

21c i#¯&/ZGloc
,

(2.211a)

ZGloc
5E Dc̄ iDc iexp@c̄ iGii

21c i# , (2.211b)

and we have used the identity

exp@c̄ iGii
21c i#5E )

jÞi
dc̄ jdc jexp@2S# .

The on-site Green’s function is related to its Fourier
transform as

Gii~t!5
1

Nb (
vn

(
k

G~k,ivn!e2ivnt. (2.212)

Then from Eqs. (2.208a)–(2.208c) and (2.209), the par-
tition function has the form

Z5E Dc̄ iDc i

3expF2E
0

b

dt8dt$2c̄ i~t!G̃21~t2t8!c i~t8!

1HUi%G (2.213)

with

G̃21~t![Gii
21~t!2S~t!. (2.214)

In dynamic mean-field theory, G̃21 plays a role corre-
sponding to the Weiss mean field in the usual mean-field
theory. Now the problem is reduced to solving a single-
site problem (2.213), where G and S are exactly ob-
tained in a self-consistent fashion as follows:

(1) Calculate the Green’s function Gii from the single-
site partition function (2.213) by assuming a trial form of
G̃ . This is possible because Eq. (2.213) is a single-site
problem. We discuss several different ways of solving
Eq. (2.213) later.

(2) From the obtained result Gii in step (1) and the
assumed G̃ , obtain S(t) from Eq. (2.214).

(3) From the Fourier transform S(vn) derived from
S(t) in step (2), calculate the on-site Green’s function
from
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Gii~vn!5(
k

1
ivn2«0~k!2S~vn!

5E de
r~e!

ivn2e2S
. (2.215)

(4) From Gii(vn) and S(vn) obtained in step (3),

calculate G̃(t) from Eq. (2.214).

(5) Use G̃(t) obtained in step (4) as the input to solve
Eq. (2.213) and repeat the process from step (1) again
until the iteration converges so that self-consistency is
satisfied.

From this iteration, the single-site problem with dy-
namical fluctuations is solved exactly. The lattice struc-
ture enters the procedure only through the density of
states in Eq. (2.215). The basic idea of this self-
consistent procedure was first proposed by Kuramoto
and Watanabe (1987) for the periodic Anderson model
and extended to the Falikov-Kimball model by Brandt
and Mielsch (1989). This self-consistent procedure may
be compared with the coherent-potential approximation
employed in the Hubbard approximation and the self-
consistent renormalization approximation. While they
are similar, an important difference of the d5` ap-
proach from the Hubbard approximation and the self-
consistent renormalization approximation is that the
mean field is dynamic and the dynamic fluctuations are
taken into account exactly in v dependence of S.

It is difficult to solve Eq. (2.213) in an analytical way.
Several different numerical ways for solving Eq. (2.213)
have been proposed. One is the quantum Monte Carlo
method (Jarrell, 1992; Rozenberg, Zhang, and Kotliar,
1992), in which a single-site problem with dynamically
fluctuating G̃ is solved numerically in the path-integral
formalism following the algorithm for the impurity
Anderson model developed by Hirsch and Fye (1986).
Although this is a numerically exact procedure, within
statistical errors, it is rather difficult to apply in the low-
temperature region. Another approach is the perturba-
tion expansion in which Eq. (2.213) is solved perturba-
tively in terms of U (Georges and Kotliar, 1992). This is
called the iterative perturbation method. Among several
different approaches, the most precise way of estimating
physical quantities in the low-energy scale seems to be
the numerical renormalization-group method (Sakai and
Kuramoto, 1994). The MIT of the Hubbard model in d
5` has been extensively studied using these
procedures.1 Other strongly correlated models, such as
the degenerate Hubbard models, the periodic Anderson
model, the d-p model, and the double-exchange model
have also been studied (Jarrell, Akhlaghpour, and Prus-

1Studies of d5` include those of Georges and Kotliar, 1992;
Georges and Krauth, 1992; Jarrell, 1992; Rozenberg, Zhang,
and Kotliar, 1992; Jarrell and Pruschke, 1993; Pruschke, Cox,
and Jarrell, 1993; Zhang, Rozenberg, and Kotliar, 1993; Caf-
farell and Krauth, 1994; Jarrell and Pruschke, 1994; Sakai and
Kuramoto, 1994; Moeller et al., 1995.
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chke, 1993; Si and Kotliar, 1993; Furukawa, 1995a,
1995b, 1995c; Kajueter and Kotliar, 1996; Rozenberg,
1996a; Mutou and Hirashima, 1996; Mutou, Takahashi,
and Hirashima, 1997)

Here basic results for the d5` Hubbard model are
summarized below. We first discuss the case of the BC-
MIT. In the metallic phase, the Fermi-liquid state with
Luttinger sum rule is realized in the solution in d5` if
one considers only the paramagnetic phase (Georges
and Kotliar, 1992). A remarkable property of the solu-
tion in d5` is seen in the density of states r(v) as illus-
trated in Fig. 13. At half filling it has basically the same
structure as the Hubbard approximation in the insulat-
ing region U.Uc , where the Fermi level lies in the
Hubbard gap sandwiched between the upper and lower
Hubbard bands. The reason why the Hubbard approxi-
mation can treat the dynamics more or less properly has
been discussed in Sec. II.D.4. In the metallic phase U
,Uc but near Uc , a resonance peak appears around the
Fermi level in addition to the upper and lower Hubbard
bands. The peak height is kept constant in the metallic
region, while the width of the peak becomes smaller and
smaller as the MIT point U5Uc is approached. The
peak at the Fermi level eventually disappears with a
vanishing width at U5Uc . This is associated with a van-
ishing renormalization factor Z and hence a diverging
effective mass m* . In the metallic phase this critical di-
vergence of m* is essentially the same as what happens
in the Gutzwiller approximation (Brinkman and Rice,
1970), that is, Z21, m* and the specific-heat coefficient
g are enhanced in proportion to uU2Ucu21 while the
compressibility k decreases until it vanishes at the tran-
sition point. The Drude weight is also proportional to
uU2Ucu in the d5` approach. The magnetic suscepti-

FIG. 13. Density of states r(v)52Im G by the d5` ap-
proach at T50 for the half-filled Hubbard model at U/t* 51,
2, 2.5, 3, and 4 from top to bottom. The calculation is done by
iterative perturbation in terms of U . The bottom one
(U/t* 54) is an insulator. From Georges, Kotliar, Krauth, and
Rozenberg, 1996.
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bility xs is enhanced but approaches a constant ;1/J at
the transition, in contrast with the divergence in the
Gutzwiller approximation. Here J is the energy scale of
the exchange interaction. This difference comes from
the fact that xs has contributions from the incoherent
part, namely, upper and lower Hubbard bands, while the
incoherent contribution is ignored in the Gutzwiller ap-
proximation. Even for the filling-control MIT, results in
d5` show behavior similar to that of the Gutzwiller
approximation where Z21, m* , and g are also enhanced
while k remains finite. As we shall see in Secs. II.E and
II.F, k appears to diverge at the transition point in 2D in
contrast to the d5` result.

Comparisons of the spectral weight and the density of
state with experimental data on Ca12xSrxVO3,
La12xSrxTiO3, and other compounds are made in later
sections. A controversy exists concerning the BC-MIT.
The coherence peak at the Fermi level seems to disap-
pear when the metal-insulator transition in
Ca12xSrxVO3 and other series of compounds such as
VO2, LaTiO3, and YTiO3 takes place with the incoher-
ent upper and lower Hubbard band kept more or less
unchanged, yet the optical conductivity shows that the
charge gap closes continuously at the transition. The d
5` results are consistent with the former but appear to
contradict the optical data, as will be discussed in Sec.
IV. Although the mass enhancement in d5` is similar
to that in some experimental systems such as
La12xSrxTiO3, in the d5` result, the Wilson ratio RW
[xs /g vanishes at the transition while experimentally it
remains constant around 2 in La12xSrxTiO3, as is dis-
cussed in Sec. IV.B.1. However, quantitatively this dis-
crepancy is not remarkable.

The solution in d5` seems to combine two ap-
proaches, the Hubbard approximation and the
Gutzwiller approximation, in a natural way. In the insu-
lating phase, the Hubbard approximation provides simi-
lar results, whereas, in the metallic phase, many of prop-
erties have similarities with the Gutzwiller
approximation This merging of the Gutzwiller and Hub-
bard approximations was pointed out in an early work of
Kawabata (1975). He showed that the inelasticity of
quasiparticle scattering is crucial for realization of a
sharp Fermi surface, which is not considered in the Hub-
bard approximation. The d5` approach further makes
it possible to discuss dynamics and excitations such as
spectral weight. Thus one of the mean-field pictures of
the MIT, when combined with the d5` results, has be-
come clearer.

The original solution in d5` contains only a para-
magnetic phase with complete ignorance of the antifer-
romagnetic order. However, by introducing two sublat-
tices A and B, one can reproduce the antiferromagnetic
order even in d5` (Jarrell, 1992; Jarrell and Pruschke,
1993). The solution in this case indicates an antiferro-
magnetic order which persists not only in the insulating
phase but also in a wide region of metals similarly to the
simple Hartree-Fock-RPA results. Therefore the MIT
observed by excluding magnetic order is usually inter-
rupted and masked by the appearance of the magnetic
transition in reality at d5` . It was pointed out that the
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original MIT in the paramagnetic phase could be more
or less recovered by introducing frustrations because the
magnetic order could be suppressed by the frustration
(Georges and Krauth, 1993; Rozenberg, Kotliar, and
Zhang, 1994).

The phase diagram of metals and insulators in the
plane of U and temperature T shown in Fig. 14 was
argued to be similar to that of V2O3 under pressure or
doping (Rozenberg, Kotliar, and Zhang, 1994). Al-
though the first-order transition appears to take place in
d5` at finite temperatures even with the transfer t be-
ing fixed, in the experimental situation observed in the
case of V2O3, the change in the lattice parameter at the
transition may also be an origin of the strong first-order
transition where discontinuous reduction of the lattice
constant may stabilize the metallic state through the in-
crease in the bandwidth. In the d5` approach, the first-
order transition at TÞ0 is replaced with a continuous
transition at T50 (Moeller et al., 1995).

At half filling, when a two-sublattice structure is intro-
duced, the antiferromagnetic transition temperature TN
as a function of U shows a peak at a moderate U (see
Fig. 15), whose structure is similar to the SCR result as
well as to the quantum Monte Carlo results in 3D (Scal-
ettar et al., 1989), although temperature and energy
scales have an ambiguity in d5` due to the rescaling of
t to t* . It is clear that 2D systems show quite different
behavior because TN should always be zero. Away from
half filling, TN still shows similar behavior to RPA re-
sults with a wide region of antiferromagnetic metal. A
serious problem in d5` with antiferromagnetic order is
that the short-ranged spin fluctuation inherent in lower-
dimensional systems is completely ignored.

As we shall see in Sec. II.F the scenarios of the MIT in
d5` have some similarity, such as the mass divergence,
to the low-dimensional case while they are rather differ-
ent from the predictions of the scaling theory in many
respects, such as the critical exponents themselves and
the role of antiferromagnetic correlations. If we com-

FIG. 14. Phase diagram of the d5` Hubbard model at half
filling in the plane of temperature T/t* and interaction U/t* in
the case where the magnetic order is entirely suppressed by
frustration. The solid curve is the first-order transition line
with the critical point at the black square. The region sur-
rounded by dotted curve shows the coexistence of metal and
insulator, while the transition at T50 is a continuous transi-
tion. From Georges, Kotliar, Krauth, and Rozenberg, 1996.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
pare the results in d5` with those in realistic low-
dimensional systems including 3D, the region of the an-
tiferromagnetic ordered phase may extend beyond those
for d52 and 3. In the case without orbital degeneracy,
the antiferromagnetic order can be remarkably sup-
pressed due to quantum fluctuations in finite dimen-
sions, while it requires some other origin, such as frus-
tration, to suppress magnetic order in d5` . In the limit
d5` , each exchange coupling is scaled to vanish, and
hence we do not expect spin-glass-like order. However,
in this case we have nonzero entropy at T50. Another
more important difference between low-dimensional
systems and d5` occurs in the paramagnetic metallic
phase due to difference in the universality class of the
MIT as well as the absence of magnetic short-range cor-
relations in d5` . For example the Drude weight D ap-
pears to scale linearly with d for the FC-MIT at d5` ,
while it can be suppressed as D}dp, p.1 in the scaling
theory. The d5` approach may be justified only above
the upper critical dimension dc , as we shall discuss in
Sec. II.F. Although some attempts have been made to
calculate 1/d corrections to compare with the Gutzwiller
results in finite dimensions (Schiller and Ingersent,
1995), as it stands, the convergence properties of the 1/d
expansions are not clear. To make connections to finite-
dimensional results, it would be desirable to develop a
systematic approach in terms of the 1/d expansion. In
the Mott insulating phase, the Heisenberg spin model
has been treated by an approach similar to that in this
section (Kuramoto and Fukushima, 1998). The expan-
sion can be calculated up to the order of 1/d (or up to
the order of 1/zn where zn is the number of nearest
neighbors), because the polarization function remains
site diagonal up to this order in the quantum spin model.
This approximation goes beyond the one-loop level and
corresponds to the spherical approximation known in
spin systems.

7. Slave-particle approximation

In strongly correlated systems, the strong-coupling
limit is frequently a good starting point for understand-
ing the basic physics. The strong-coupling limit is de-
fined in the single-band model as the limit where double
occupation of the same orbital is strictly prohibited. The
t-J model (2.13) offers an example of this limit. To

FIG. 15. U dependence in the d5` Hubband model. (a) An-
tiferromagnetic transition temperature as a function of U : s,
d5` Hubbard model; L, d53 at half-filling. (b) U depen-
dence of the square of the local moment m2. From Jarrell and
Pruschke, 1993.
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implement this local constraint, the slave-particle
method has been developed. As an example, we discuss
the case of the slave-boson method (Barnes, 1976, 1977;
Coleman, 1984; Baskaran, Zou, and Anderson, 1987; Af-
fleck and Marston, 1988; Kotliar and Liu, 1988; Su-
zumura, Hasegawa, and Fukuyama, 1988) where the
electron operator cis is decoupled as

cis5f isbi
† . (2.216)

Here f is is a fermion operator called a spinon, which
carries spin degrees of freedom, while a boson operator
bi

† called a holon represents a charged hole. The local
constraint prohibiting double occupancy is represented
as

(
s

f is
† f is1bi

†bi51 (2.217)

at all the sites i .
Another way of decoupling is to assign fermion statis-

tics for charge degrees of freedom and boson statistics
for spins. Aside from minor differences, this reduces to
the spin-wave theory at half filling where the spins are
represented by Schwinger bosons. This formalism is
called the slave-fermion method (Arovas and Auerbach,
1988; Yoshioka, 1989a, 1989b). The advantage of the
slave-fermion method is that it is easier to implement
antiferromagnetic order at half filling than with the
slave-boson method. Away from half filling, however,
the mean-field solution of the slave-fermion method
generally predicts a wide region of incommensurate an-
tiferromagnetic order, in contrast with the rapid disap-
pearance of magnetic order believed to occur in 2D. A
related formalism was also developed in the spin-
fermion model in a rotating reference frame of antifer-
romagnetic correlations (Kübert and Muramatsu, 1996).
We do not discuss the details of the slave-fermion ap-
proximation here.

In the slave-boson method, the t-J model defined in
Eq. (2.13) is represented using these operators as

H52t(̂
i ,j&
s

bifis
† f jsbj

†2
J

2 (̂
ij&

ss8

@f is
† f js8

† f js8f is

1f is
† f js8

† f jsf js8# . (2.218)

When the local constraint (2.217) is rigorously enforced,
(2.218) is equivalent to the original t-J model. However,
in practical treatments, as we shall see below, this local
constraint is in many cases replaced by a global, aver-
aged one. In addition to this approximation, various
types of mean-field decoupling have been attempted to
discuss the phase diagram of this Hamiltonian, including
flux phase, commensurate flux phase, dimer phase, and
the so-called resonating valence bond (RVB) state. As a
typical example, here we discuss the case of RVB decou-
pling. The uniform RVB state introduces three order
parameters for mean-field decoupling:

x ij5J(
s

^f is
† f js& (2.219)
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and

D ij5^bibj
†& (2.220)

to decouple the transfer term proportional to t , whereas

Dij5^f i↑f j↓2f i↓f j↑& (2.221)

and x ij for decoupling of the exchange term propor-
tional to J . By using the mean-field approximation
^bi

†bj&}d to replace the local constraint with an aver-
aged one, we can reduce the transfer term to

Ht52td(
s

^ij&

f is
† f js . (2.222)

This leads to an approximation that is similar to the
Gutzwiller result but not strictly identical, in which the
bandwidth becomes narrow in proportion to the doping
concentration d and hence the mass is enhanced criti-
cally. It should be noted that the holon degrees of free-
dom are frozen in the approximation ^bi

†bj&5constant
and a Fermi liquid of spinons is realized. When we fur-
ther decouple the exchange term by using the RVB or-
der parameter x ij , the bandwidth becomes proportional
to D ij1x ij , which is proportional to J even in the limit
of d→0. When the charge degrees of freedom are re-
tained in a dynamical manner, with the assumption that
x ij is frozen below the mean-field temperature for x ij ,
the transfer term may be rewritten as

Ht52t(
s

^ij&

x ijbi
†bj . (2.223)

Then, if x ij is assumed to be a mean-field constant x̄ , it
leads to Bose condensation, ^bi&Þ0, below the transition
temperature when a weak interaction of the bosons is
assumed. On the other hand, if the Bose condensation of
bi takes place, by neglecting the strict local constraint,
the Fermi-liquid state of f i is realized again with finite
mean-field order parameters for x ij and ^bi&. This gives
a bandwidth proportional to t^bi&

21(J/2)^x ij&. When
we neglect J , we obtain a bandwidth proportional to
^bi&

2}d again, as in the Gutzwiller approximation.
Therefore, at T50, this mean-field framework always
leads to the same level of approximations as the
Gutzwiller approximation for the MIT. As discussed in
Secs. II.D.6 and II.F, this approximation of course gives
only mean-field exponents with no information on the
incoherent part of the charge excitation.

In the large-N limit, where the SU(2) symmetry of the
original spin-1/2 models is generalized to SU(N) with
arbitrary integer N , this mean-field solution becomes ex-
act in any dimension and the incoherent part disappears
in the leading order of 1/N (see the reviews of Newns
and Read, 1987; Kotliar, 1993; see also Jichu, Matsuura,
and Kuroda, 1989).

Mean-field solutions of the slave-particle formalism
give various phases such as the dimer phase, flux phase,
and RVB phase. When the dimer and flux phases are
suppressed, the metallic state at T50 is the Fermi liq-
uid, and the MIT near d→0 in this framework is char-
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acterized by Z}d and D}d where Z is the renormaliza-
tion factor and D is the Drude weight. The specific-heat
coefficient g is given by g}1/(d1aJ/t) with a constant a
of order unity (Grilli and Kotliar, 1990). The effective
mass m* is enhanced but remains finite, m* ;(t/J)mb in
the limit d→0.

Above the Bose condensation temperature of bi ,
when using the Hamiltonian (2.218) as a starting point,
one must treat the dynamic fluctuation of x ij with
strongly coupled spinons and holons if one wishes to go
beyond the mean-field approximation. A gauge-field ap-
proach (Ioffe and Larkin, 1989; Ioffe and Kotliar, 1990;
Nagaosa and Lee, 1990; Lee and Nagaosa, 1992) can in
principle treat this fluctuation, where the local constraint
and the fluctuation of x ij are represented by a gauge
field coupled to both spinon and holon. This may be
implemented through the fluctuation of u which is simi-
lar to Eq. (2.156) but actually uses the Stratonovich-
Hubbard field to decouple Eq. (2.218), where the cou-
pling of holon to spinon is represented by chirality
fluctuations of u. Recently this approach was extended
to reproduce the SU(2) symmetry at half filling. The p-
flux state at half filling is connected to the RVB phase
upon doping (Wen and Lee, 1996).

In the gauge-field approach, it has been claimed that
the linear-T resistivity is reproduced from the dynamics
of holes (slave bosons) strongly coupled to the gauge
field. So far, in this gauge-field theory, the T-linear re-
sistivity has been ascribed to the incoherence of slave
bosons due to low boson concentration together with
the speculated retraceable nature of bosons under the
coupling to the dynamic gauge field. However, the gauge
fluctuation has been considered mostly within the
Gaussian approximation without a self-consistent treat-
ment. Self-consistent treatment of holons and spinons
coupled by the gauge field has not been attempted so
far, and it is not clear whether the above claims will be
confirmed by a self-consistent treatment. In fact, the en-
ergy scale of the dynamic fluctuation of spinons is only
J , which yields incoherent charge dynamics only on the
same energy scale through the spinon-holon coupling by
the gauge field. This appears to contradict the experi-
mental and numerical observations to be described in
Secs. II.E.1 and IV.C, where s(v)}1/v extends to the
order of the bare bandwidth in the absence of the char-
acteristic crossover energy scale. The energy scale for
the appearance of incoherence is of the order of the
Mott gap and much larger than J near the Mott insula-
tor. In Secs. II.E.1 and II.F, we shall see that the inco-
herence may be ascribed to different origins near the
MIT.

The description of the MIT d→0 by the slave-particle
approach including the gauge-field method is rather
primitive in many other respects: First, it does not prop-
erly take account of the growth of (short-ranged) anti-
ferromagnetic correlation, which plays an important role
in the incoherent dynamics. [The RPA level of antifer-
romagnetic correlation was additionally considered
within a uniform RVB treatment (Tanamoto, Kohno,
and Fukuyama, 1992)]. Secondly, at T50, as mentioned
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
above, this approach gives only a simple mean-field re-
sult similar to that of a Gutzwiller-type approximation,
due to Bose condensation of bi . In the limit T→0, this
treatment ignores the incoherent part of the excitations
although the incoherence becomes important near the
Mott transition even at T50. This incoherence is con-
sidered in the above scenario only partially via gauge-
field fluctuations at finite temperatures. It is also difficult
in this approach to explain the small amplitude of RH
observed in the high-Tc cuprates at high temperatures
(see Secs. II.E.1 and IV.C). Diverging compressibility at
T50 near d50 (see Secs. II.E.3 and IV.C.1) is also dif-
ficult to explain in this scheme. All these problems are of
fundamental importance and contribute to the failure of
this approach in treating the Mott transition in finite
dimensions in a manner similar to the Gutzwiller ap-
proximation.

One of many serious difficulties of the slave-particle
model is that it is not clear whether the gauge-field cou-
pling is weak enough to justify the original spin-charge
separation. Without a weak enough coupling, spinons
and holons recombine to the original electrons, which
would invalidate the model. Because this approach is
based on a very strong statement, namely, an explicit
spin-charge separation, it is highly desirable to find di-
rect evidence for or against it. From a theoretical point
of view, the 2D Hubbard model at low concentration
has been extensively investigated and, although it is still
controversial (see for example, Narikiyo, 1997; Castel-
lani et al., 1998), the conclusion appears to be that the
Fermi-liquid state is stable and hence the spin-charge
separation does not take place. In general, in 2D, the
Fermi liquid is destroyed only when there is a singular
interaction between quasiparticles.

When we take into account the J term, below the
mean-field temperature of Dij , the spin degrees of free-
dom may have a pseudogap structure on the mean-field
level. It was claimed that this may be relevant to the
pseudogap anomaly observed in the high-Tc cuprates
(Kotliar and Liu, 1988; Suzumura, Hasegawa, and Fuku-
yama, 1988). The basic mechanism could be closely re-
lated to superconducting pairing due to antiferromag-
netic fluctuations. However, the formation of
pseudogaps above the superconducting transition tem-
perature Tc , expected at low doping in this framework,
is rather difficult to explain from antiferromagnetic spin-
fluctuation theory, while it may have an interesting con-
nection to the pairing mechanism for doped spin-gap
Mott insulators. Pseudogap formation may be just a con-
sequence of the preformed singlet pair (fluctuations) of
electrons due to some pairing force, for example, and is
not necessarily the consequence of this particular for-
malism of spin-charge separation. Indeed, on general
grounds, it is natural to have a separation of Tc and the
pseudogap formation temperature TPG at low doping, as
we shall discuss in Secs. II.F and IV.C. The critical tem-
perature must go to zero as d→0 because the coherence
temperature Tcoh should go to zero when the system
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approaches the continuous MIT point, while TPG may
remain finite due to a finite pairing energy even close to
the MI transition point.

Although the slave-particle approach provides in prin-
ciple an attractive way to describe the problem if the
local constraint is reliably implemented and the fluctua-
tion around the starting mean-field solution is properly
estimated, its practical realization is rather difficult and
the approximations employed so far are unfortunately
not well controlled. As in all the mean-field theories, the
way of decoupling the original Hamiltonian by assuming
order parameters in the mean-field treatment of the con-
straint (2.217) is not unique and we can argue many pos-
sibilities. Mean-field results give a criterion for local sta-
bility of the solution while it is hard to show global
stability. It is also hard to estimate fluctuation effects in
a controlled way. Generally speaking, in low-
dimensional systems, this is a serious problem because
of large quantum fluctuations. In fact, if the dimension-
ality is below the upper critical dimension, phase transi-
tions must be described beyond the mean-field theories.
The slave-particle approximation does not reproduce
the large dynamic exponent z54 observed in 2D nu-
merical studies, discussed in Secs. II.E and II.F, because
of the neglect of strong wave-number dependence.
Therefore it does not reproduce important physical
quantities associated with the MIT in 2D. For qualita-
tively correct descriptions of the problem, the slave-
particle approach is useful for limited use on a mean-
field level, but it is important to consider the overall
consistency of the obtained results with those of other
theoretical approaches and with experimental indica-
tions.

8. Self-consistent renormalization approximation
and two-particle self-consistent approximation

When electron correlation effects become stronger, in
general, spin fluctuations have to be considered seri-
ously. In the Hubbard approximation and Gutzwiller ap-
proximation, as well as in the infinite-dimensional ap-
proach, wave-number- and frequency-dependent spin
fluctuations are not taken into account. Although the
RPA, discussed in Sec. II.D.2, provides a formalism to
deal with spin fluctuations perturbatively, its validity is
restricted to cases of sufficiently weak spin fluctuations,
as is easily understood from its derivation. It describes
magnetic transitions only at the mean-field level with
uncontrolled treatment of fluctuations. To consider
wave-number-dependent spin fluctuation of any ampli-
tude, large or small, and especially to improve the RPA
and the Hartree-Fock approximations at finite tempera-
tures, the self-consistent renormalization (SCR) ap-
proximation was developed by Moriya (1985). In the
SCR theory, as we see below, wave-number-dependent
spin fluctuations of large amplitude can be taken into
account more completely, while dynamic fluctuations
are more or less neglected because of the static approxi-
mation employed to treat the strong-correlation regime.
In the original terminology of SCR, it was a mode-
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coupling theory developed for weak ferromagnetic or
antiferromagnetic systems with small-amplitude spin
fluctuations within the Gaussian approximation. In addi-
tion to the RPA diagrams of bubbles, within the one-
loop approximation, the polarization function contains
diagrams whose bubbles are coupled to the spin fluctua-
tions with different wave numbers. This generates mode
couplings, which are treated self-consistently. This is ba-
sically a self-consistent treatment of the one-loop ap-
proximation. The original mode-coupling treatment
takes account of dynamic fluctuations but is justified
only for weakly correlated systems at the one-loop level
and at the level of minor vertex corrections. On the
other hand, our main interest in this review is strongly
correlated systems. Therefore we shall use the terminol-
ogy of the SCR approximation for more generalized
treatments, formulated later, with the static approxima-
tion of the Stratonovich-Hubbard variable, to cover
both small and large amplitudes (Moriya, 1985). This
may be viewed as an extrapolation of the original SCR
to the strong-correlation regime but within the static ap-
proximation of the Stratonovich-Hubbard variables. As
we shall see below, in principle, the mode-coupling con-
tribution to the additionally introduced self-energy can
be implemented so as to include the original SCR treat-
ment as a special case, although it has not been done
seriously. Though there exist several different ways of
formulating the SCR theory, the level of approximations
used is similar. A typical formulation of the SCR theory
(Moriya and Hasegawa, 1980) is reviewed below. We
also briefly review a more or less equivalent
renormalization-group approach by Millis (1993) in Sec.
II.D.9.

To calculate the partition function in the path-integral
formalism with the Stratonovich-Hubbard transforma-
tion, we need to calculate Eq. (2.132a). Like the
Hartree-Fock formulation for the strong-correlation re-
gime, the SCR approximation for the strong-correlation
regime employs a static approximation in which dynamic
fluctuations of D̃s and D̃c are ignored. This static ap-
proximation becomes a serious drawback in treating
anomalous metals with fluctuations related to correlated
insulators.

Instead of the saddle-point approximation of a single
mode of D̃ in the Hartree-Fock approximation, the SCR
theory employs a mode-coupling theory for Gaussian
fluctuations combined with a coherent potential ap-
proximation (CPA) which regards the wave-number-
dependent static Stratonovich fields D̃s as random po-
tentials. The framework of the CPA is quite similar to
that for the Hubbard approximation discussed in Sec.
II.C.4. Instead of the D̃c considered in the Hubbard ap-
proximation, the fields D̃s are mainly taken into account
in SCR. The first goal is to calculate the Green’s func-
tion

Gss8~k ,k8![2Qss8
21

~k ,k8!. (2.224)

Instead of using Eq. (2.143) for the quasiparticle
Green’s function in the Hartree-Fock approximation, we
consider the self-energy correction in the form
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Gg
2152Qg5S 2Qg↑↑2S1 , 0

0, 2Qg↓↓2S2
D ,

(2.225)

with Qgss given in Eq. (2.145c). The self-energy is de-
scribed as S1 and S2 . In the absence of symmetry
breaking, namely, in the paramagnetic phase, the self-
energy correction may be written in the original single-
particle Green’s function (2.143) in the form

G2152Q02S S1 0

0 S2
D . (2.226)

The self-energy is determined by the CPA combined
with some approximations such as the Gaussian approxi-
mation for the static fluctuation D̃s(k,vn50). The co-
herent potential approximation neglects the wave-
number dependence of the self-energy and considers
only S1(k50)5S2(k50) in the absence of magnetic
fields. In other words, the CPA condition is to take into
account the effect of Q1 (or effects of dynamic D̃s) by
the local on-site self-energy on average. This may be
achieved by solution of the self-consistent equation

S5

K Q1~k !F12S 1
N (

k
G~k,v! D ~Q1~k!2S!G21L

K F12S 1
N (

k
G~k,v! D ~Q1~k!2S!G21L .

(2.227)

as in Eq. (2.187). Here ^¯& is the average over the dis-
tribution of D̃s corresponding to ( lZl¯/( lZl in Eq.
(2.187). In this case, the probability Pl is taken as
exp@2SD# defined in Eq. (2.134).

After one has determined the wave-number-
independent but frequency-dependent S(v), a system-
atic t-matrix expansion is in principle possible to allow
for corrections coming from the wave-number depen-
dence. The effective action for D obtained from Eqs.
(2.134a)–(2.134c),

Seff~D!5@2Tr ln~2G0!1Tr ln~12G0Q1!# ,
(2.228)

is rewritten as

Seff~D!5Tr ln~2G0
211Q1!5Tr ln~2G211Q12S!

52Tr@ ln~2G !2ln„12G~Q12S!…#

52Tr@ ln~2G !2ln$12Gloc~Q12S!%

2ln$12~G2Gloc!T %# , (2.229)

where the t matrix is defined as

T5~Q12S!@12Gloc~Q12S!#21 (2.230)

with the local Green’s function

Gloc~vn!5
1
N (

k
G~k,vn!. (2.231)

The CPA condition (2.227) is solved in some approxima-
tion, while charge fluctuations are neglected. Then a fur-
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ther approximation such as the Gaussian approximation
of D̃s is taken to cut off the t-matrix expansion (Moriya
and Hasegawa, 1980). The formal procedure for solving
the problem in this approximation is rather similar to
that explained in the Hubbard approximation (Sec.
II.D.4). The result in the paramagnetic phase is

S~vn![S15S252FS2~vn!22pS 1
Nb D 2

3 (
kÞ0

^D̃s~k!D̃s~2k!&GGloc~vn!. (2.232)

It should be noted that, in contrast to the infinite-
dimensional approach, the CPA self-consistent equation
(2.227) cannot be exactly solved because of its explicit
wave-number dependence. Since (kÞ0Ds(k)Ds(2k) be-
comes b linear at low temperatures, Re (}T is obtained.
From the Kramers-Kronig relation, this implies Im (
}T2, which is consistent with the Fermi-liquid descrip-
tion.

When S50, the static approximation with only a
single mode of D̃s retained leads directly to the Hartree-
Fock approximation, while the Gaussian approximation
for D̃s leads to the RPA result. Therefore, at T50, the
SCR approximation is reduced to the Hartree-Fock-
RPA result. The most important contribution of the
SCR approximation is an improvement in the prediction
of temperature dependence for various physical quanti-
ties in weak ferromagnetic or antiferromagnetic metals.
One of them is the Curie-Weiss-like temperature depen-
dence of the susceptibility derived in metallic magne-
tism. In contrast to the critical behavior of the Mott in-
sulating systems, in which the local magnetic moment is
temperature independent, the Curie-Weiss-like suscepti-
bility in this case is mainly ascribed to temperature de-
pendence of the squared local moment, which becomes
T-linear at the critical coupling constant for T.Tc50.
The Curie-Weiss-like susceptibility obtained in this
framework is not so surprising because in the SCR ap-
proximation we reproduce the critical behavior of the
Gaussian treatment, as we discuss in Sec. II.D.9. For
analyses of experimental results in weakly correlated
materials, readers are referred to the review article of
Moriya (1985). The basic predictions of this treatment
for transport, magnetic, and thermodynamic properties,
especially temperature dependences, have already been
described in Sec. II.D.1, where the basic temperature
dependences are derived from rather simple dimen-
sional analyses. Experimentally, an example that follows
the basic predictions of the SCR approximation near the
magnetic transition is discussed in Sec. IV.A. Several
f-electron systems also appear to follow this prediction,
while some systems such as CeCu62xAux show different
criticality at the antiferromagnetic transition (von
Löhneysen, 1996), where the specific heat C , the resis-
tivity r, and the uniform magnetic susceptibility x follow
C/T}2ln(T), r5r01A8T , and x5x0(12aAT), re-
spectively. Other f-electron systems such as UxY12xPd3
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and CeCu2Si2 also show a variety of anomalous features,
which we do not discuss in detail here.

The most serious drawback of the SCR approximation
in treating strongly correlated systems is the combina-
tion of the Gaussian approximation with the static ap-
proximation. First, dynamic spin fluctuations beyond the
Gaussian level (one-loop level) are neglected. The pre-
scription for the vertex correction is also insufficient.
Second, since the static approximation employed in the
strong-correlation regime is justified only when the tem-
perature is much higher than all the characteristic spin
fluctuation energies, various interesting quantum fluc-
tuations may be ignored. Intrinsically quantum-
mechanical phenomena have to be treated beyond the
static approximation.

The metal-to-Mott-insulator transition, one of the
main subjects in this article, is a good example in which
the above drawbacks become serious. MITs are essen-
tially quantum phase transitions at T50 controlled by
quantum fluctuations such as the band-width and the
filling. There quantum dynamics plays a crucial role. In
fact, near the Mott insulator, the characteristic spin-
fluctuation energy remains at a finite value even in the
insulating phase, whereas the characteristic charge exci-
tation energy has to vanish toward the MIT point if the
transition is of continuous type. Therefore the tempera-
ture range at which the static approximation is justified
lies outside the interesting temperature range of charge
dynamics. In addition, the existing framework of SCR
on the one-loop level does not properly take into ac-
count the contribution from incoherent excitations or
the reduction of the renormalization factor, which is a
dominant effect near the continuous MIT.

Another point to be discussed with SCR is the treat-
ment of magnetic transitions at finite temperatures as
well as at zero. Self-consistent renormalization leads to a
mean-field prediction for critical exponents near the
transition point, because it is based on the Gaussian ap-
proximation in the paramagnetic region. This is only
valid when the system is above the upper critical dimen-
sion of the T50 quantum transition. In terms of critical
phenomena, a proper treatment beyond the mean-field
level becomes necessary in low dimensions. Recently, an
equivalent approach to the weak-coupling SCR approxi-
mation was formulated by Hertz (1976) and Millis
(1993), using renormalization-group (RG) analysis, as
we review in the next subsection (Sec. II.D.9). This RG
approach is also justified only above the upper critical
dimension. A basic point there is that the dynamic ex-
ponent z is 2 for an antiferromagnetic transition in the
metallic phase while z53 for a ferromagnetic transition
in metals. These dynamic exponents are derived from
the low-energy action for an overdamped spin-wave due
to the continuum of the Stoner excitation coupled to the
spin wave. From the renormalization-group study, it was
suggested that the upper critical dimension appears to
be d53 for antiferromagnetic transitions provided that
the Fermi surface does not satisfy the nesting condition,
while it is controversial for the ferromagnetic case (see
the next subsection). As we discuss in Secs. II.D.9 and
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II.F in detail, such mean-field predictions are no longer
justified in low dimensions. The mean-field prediction
also ceases to be satisfied near the Mott transition point
because the nesting condition has to be considered. Low
dimensionality and the proximity of the Mott insulating
phase are two typical cases in which quantum fluctua-
tions are crucially important in deriving various features
beyond the level of the SCR approximation, as is de-
tailed in Sec. II.F.

Recently, an approximation at the same level as the
SCR but extended to allow explicit charge fluctuations
simultaneously and to allow an incommensurate period-
icity of order has been developed as the two-particle
self-consistent approach (Vilk, Chen, and Tremblay,
1994; Daré, Vilk, and Tremblay, 1996). In this approach,
the same functional forms as for the RPA for xs and xc
are assumed, but with renormalized interactions Us and
Uc . These parameters Us and Uc are determined self-
consistently to satisfy the constraint on a relation to
^n↑n↓&. This constitutes a conserving one-loop approxi-
mation at the two-particle level, in contrast to the one-
particle level in the fluctuation exchange (FLEX) ap-
proximation. FLEX is regarded as the same level of
approximation as the original weak-coupling SCR ap-
proximation without the vertex correction.

In the strong-coupling limit, that is, in localized spin
systems, it appears that the SCR approximation in this
subsection can be extended to reproduce the spherical
approximation of spin systems. Kuramoto and Fuku-
shima (1997) clarified the level of approximation needed
to reproduce the spherical approximation in more detail.

9. Renormalization-group study of magnetic transitions
in metals

In this subsection, renormalization-group studies of
the Gaussian fixed point of magnetic transitions in the
metallic phase, developed by Hertz (1976) and Millis
(1993), are reviewed. As is mentioned in Sec. II.D.8, this
treatment of the Gaussian fixed point essentially leads to
equivalent results to the SCR approximation. We start
with the path-integral formalism with the Stratonovich-
Hubbard transformation introduced in Sec. II.D.2.
When we neglect the charge fluctuation part by taking
y50 in Eq. (2.132b), the Ds-dependent part of the ac-
tion derived in Eq. (2.137) is rewritten as

S5
4
U (

k
D̃s* ~k !D̃s~k !2Tr ln@12G0Q1# . (2.233)

Since Q1 is linear in D̃s , as defined in Eqs. (2.135c) and
(2.133c)–(2.133e), we are able to expand S in terms of
D̃s and D̃s* . Hereafter, for simplicity, we employ the no-
tation Ds for 2D̃s . Up to the fourth order of Ds , it is
written as

S5(
k

v2~k !Ds* ~k !Ds~k !1 (
k1¯k4

v4~k1 ,k2 ,k3 ,k4!

3dS (
i51

4

kiDDs* ~k1!Ds* ~k2!Ds~k3!Ds~k4!1¯ (2.234)
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where

v2~k !5
1
U

2xb~k ! (2.235)

while

xb~k !52
1
b (

q
G0~q !G0~k1q !

52(
q

f~«q!2f~«k1q!

«q2«k1q1v
(2.236)

is the magnetic susceptibility of the noninteracting sys-
tem. The coefficient v4 is given by the fourth-order loop
and can be expressed using G0 . The Gaussian coeffi-
cient v2(k) is expanded in terms of k and vn by using

xb~k,ivn!5r~«F!F12
1
3 S k

2kF
D 2

2
p

2
uvnu
ukuvF

1¯ G
(2.237)

for the case of ferromagnetic transitions with isotropic
Fermi sphere. It should be noted that this expansion is
possible only for d.3. In d51 and d52, the suscepti-
bility is singular at uku52kF even for an isotropic Fermi
surface and cannot be expanded regularly (Kittel, 1968).
A crucial assumption of the Gaussian treatment de-
scribed in this subsection is that the dispersion in v2 has
nonzero coefficient for the quadratic k dependence and
this is the leading contribution at small k . Recently, the
nonanalyticity of xb in k for d<3 in the leading order
was considered more seriously (Vojta et al., 1996; Kirk-
patrick and Belitz, 1997), which led to the conclusion
that, for the ferromagnetic case, the mean-field descrip-
tion is incorrect at d52 and 3, in contrast with the re-
sults obtained from Eq. (2.237).

If the above assumption for the regular expansion in
(2.237) is allowed, we obtain

v2~k !5D1k21
uvnu
uku

, (2.238)

where we have assumed nonzero and finite coefficients
for D, k2, and uvnu/uku, which can be taken to be unity in
appropriate units. Here D is the parameter measuring
the distance from the critical point (D50 at the transi-
tion point) and should not be confused with the order
parameter Ds . In the antiferromagnetic case, v2(k) is
similarly expanded around the ordering wave number Q
through xb(Q1k,ivn) for small k and vn if the nesting
condition is not satisfied and the spatial dimension d
satisfies d>3. When the nesting condition is satisfied, as
in the case of transitions to the Mott insulating state, this
type of simple expansion is not possible, because vn in
the expansion (2.234) has higher-order singularities for
larger n . We do not discuss this case here. The Mott
transition is the subject of Sec. II.F, and we discuss this
problem in Sec. II.F.11. After taking proper units, we
have

v2~k !5D1k21uvnut (2.239)

for the antiferromagnetic case, where we have again as-
sumed that coefficients for D, k2, and uvnu are nonzero
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and finite. We discuss the possible breakdown of this
assumption in Sec. II.F. The difference between the fer-
romagnetic and antiferromagnetic cases arises from the
fact that the order parameter, that is, the magnetization,
commutes with the Hamiltonian and hence is conserved
for the ferromagnetic case while this is not so for the
staggered magnetization in the antiferromagnetic case.
Because of the conserved magnetization, the inverse
lifetime t21 of the ferromagnetic fluctuation becomes k
linear for small k and hence the lifetime diverges in the
limit k→0. The vn-linear dependence of the action is
the consequence of the overdamped nature of the fluc-
tuation due to coupling to the continuum Stoner excita-
tions of metal.

Next we consider the scaling properties of these ac-
tions. When we take the scale transformation k85kb
and v85vbz, the Gaussian terms

S2F5(
k

~D1k21 uvnu/uku!uDs~k !u2 (2.240)

for the ferromagnetic case and

S2AF5(
k

@D1k21 uvnut#uDs~k !u2 (2.241)

for the antiferromagnetic case are transformed as

S2F8 5(
k8

@D1k82b221 ~ uvn8 u/uk8u! b12z#uDs~k !u2

(2.242)

and

S2AF8 5(
k8

@D1k82b221 ~ uvn8 ut! b2z#uDs~k !u2,

(2.243)

respectively. The action can be kept in the same form
after this scaling if the dynamic exponent z is given by
z53 for the ferromagnetic case and z52 for the anti-
ferromagnetic case with the following scaling taken si-
multaneously:

D85Db2 (2.244)

and

Ds85Dsb
2~d1z12 !/2. (2.245)

The k dependence of the fourth-order coefficient v4 is
not important for critical properties and may be re-
placed with the value u[v4(k50) because v4(k50)
.0 is assumed to be finite to make the transition from
paramagnetic phase ^Ds&50 to the magnetic phase
^Ds&Þ0 possible at D50, as in the usual Landau free-
energy expansion for Ds . Then the fourth-order term is
scaled as

S45b42~d1z !u (
k18¯k48

dS (
i51

4

ki8D
3Ds8* ~k18!Ds8* ~k28!Ds8~k38!Ds8~k48!. (2.246)

Therefore, the scaling of u should be
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u85ub42~d1z ! (2.247)

to keep the scale-invariant form for S4 . This means that
the quartic term is scaled to zero for d1z.4 after re-
peating the renormalization. This is the reason why the
mean-field approximation is justified for d1z.4 be-
cause the term S4 becomes irrelevant. [Strictly speaking,
as usual, the term S4 is dangerously irrelevant. See, for
example, Ma (1976)]. In this case, in the paramagnetic
phase, the Gaussian approximation retaining only the
quadratic term S2 is justified in describing the quantum
phase transition at T50. We note, however, that if the
dispersion itself in Eq. (2.240) or (2.241) is given by
higher-order kz such as k4 instead of k2, the above cri-
terion d1z.4 for the justification of the mean-field
treatment must be replaced with d1z.2z . This is in-
deed the case for the Mott transition, discussed in Sec.
II.F, where hyperscaling is justified.

If only the Gaussian part of S2F or S2AF is considered,
the partition function Z5e2bF[*DDs*DDse

2S is given
by

F5VE
0

L ddk
~2p!d E

0

Gk d«

p
coth

«

2T
tan21F «/Gk

D1k2G ,

(2.248)

where we introduce a cutoff L for the momentum and G
for the energy, with Gk5G for antiferromagnets and
Gk5Gk for ferromagnets. When we first integrate out
the rapidly varying part of a thin frequency-momentum
shell defined by the region L>k>L/b and Gk>«
>Gk /bz, we obtain

F5VE
0

L/b ddk

~2p!d E
0

Gk /bz d«

p
coth

«

2T
tan21

«/Gk

D1k2

1F1ln b , (2.249)

F15VLdKdE
0

GL d«

p
coth

«

2T
tan21

«/GL

D1L2

1
Vz

p E
0

L ddk

~2p!d coth
Gk

2T
tan21

1
D1k2 . (2.250)

After the rescaling of k to k85bk and « to «85«bz to
recover the original range of k and «, we need the re-
scaling

D5D8/b2, (2.251)

T5T8/bz (2.252)

to keep the same form for F as

F5V8b2~d1z !E
0

L ddk8

~2p!d E
0

Gk8 d«8

p

3coth
«8

2T8
tan21

«8/Gk8
D81k82 . (2.253)

Then the renormalization-group equation of D and u for
S2 is dD/d ln b 52D and dT/d ln b 5zT. The non-
Gaussian term S4 can be treated perturbatively, when
we treat only Gaussian behavior. The free energy can be
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easily calculated up to first order in u , and rescalings of
D, T , and u are determined to keep the same form for F
after the scale transformation b . The resultant
renormalization-group equations up to first order in u
are

dD

d ln b
52D1J~T ,D!u , (2.254)

dT

d ln b
5zT , (2.255)

du

d ln b
5@42~d1z !#u (2.256)

with

J~T ,D!52~n12 !F 2
p E

0

L ddk

~2p!d kz22

3coth
kz22

2T

1
11~D1k2!2

1KdE
0

1 d«

p
coth

«

2T

«

«21~D11 !2G ,

(2.257)

where

Kd5~2p!2 d/2/~d22 !!!

for even d and

Kd52~2p!2 ~d11 !/2/~d22 !!!

for odd d . The solution of these equations is

T5T0bz, (2.258)

u5u0b42~d1z !, (2.259)

D5b2S D01u0E
0

ln b
dxe @22~d1z !#xF(T0ezx,D0e2x) D .

(2.260)

From the solution for u , it is clear that the Gaussian
treatment is justified in the paramagnetic phase when 4
2(d1z),0. Two regimes exist when the scaling stops
at D;1. One is the quantum regime, where T!1 is sat-
isfied when the scaling stops at D;1. The other is the
classical regime, where T@1 for D;1. The boundary of
these two regimes is obtained by putting T50 and D51
into Eq. (2.260) to get b and substituting the resultant b
into Eq. (2.258). The condition for the occurrence of the
quantum regime is

1@T0 /rz/2, (2.261)

r5D01
uF~T50,D0!

z1d22
, (2.262)

where T0 and D0 are the bare values of the temperature
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and the control parameter. In the quantum regime, as is
usual in the Gaussian model, the correlation length is
given by

j5r21/2. (2.263)

When T is scaled large, the renormalization-group equa-
tion should be rewritten with a new variable v5uT be-
cause J(T);CT for T@1, and the right-hand side of
Eq. (2.254) is a function of the single variable uT . Then
the renormalization-group equation reads

dD

d ln b
52D1Cv , (2.264)

dv
d ln b

5~42d !v (2.265)

up to linear order in v . The initial condition for these
equations is obtained from a solution of the original
equations (2.254)–(2.256) when the renormalization
stops at T51, as

D̄5T0
22/z@r1Bu0T0

~d1z22 !/z# , (2.266)

v̄5u0T0
~d1z24 !/z , (2.267)

where

B5
1

2z E
0

1
dT T ~22d22z !/z@J~T !2J~0 !#/~n12 !.

(2.268)

The renormalization-group equations (2.264) and
(2.265) are solved using the initial conditions (2.266) and
(2.267). The Ginsburg criterion, which is the condition
for justification of Gaussian treatment, is given by v!1
when the scaling stops at D51. This criterion is

uT111/z

r1~B1C !uT111/z !1, (2.269)

which is always justified at T50 and is violated only in a
narrow critical region near the critical point r1(B
1C)uT111/z50 for TÞ0. We note that this derivation
of the Ginsburg criterion is justified only when d1z
24.0 and u remains small after renormalization.

The free energy can be computed from the solution of
the renormalization-group equation. The specific heat
coefficient g5C/T at low T is calculated as

g}g01O~T2! (2.270)

in the quantum regime with a constant g0 , while

g}ln T (2.271)

for z5d and

g}g01aT1/z (2.272)

for z,d in the classical regime. These are indeed the
results obtained in the SCR approximation, which is es-
sentially a treatment by the Gaussian fixed point with
self-consistent determination of the coefficients of the
Gaussian term. When this description is justified, it is
natural to expect that x(q) follows the criticality of the
mean-field theory and hence the Curie-Weiss law x(q)
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;C/(T1u), although the coefficients C and u may be
renormalized from the bare values. This is related to the
Curie-Weiss law derived in the SCR approximation,
where treatment by the Gaussian fixed point is justified
around D;0 even at low temperatures T;0. In this re-
gion, as pointed out by the SCR approximation, the tem-
perature dependence of the local moment ;T plays an
important role in deriving the Curie-Weiss behavior.
Consequences of the Gaussian treatment for other
quantities such as the susceptibility, spin correlations,
and resistivity are discussed from intuitive picture in
Secs. II.D.1 and II.D.8. In the strong-correlation regime,
the amplitude of the order parameter grows faster than
the weak-correlation regime above the transition tem-
perature, where the low-energy excitation is described
through nW i and u i by Eq. (2.156). In this region, the
Gaussian treatment described in this subsection is no
longer justified, even in the disordered phase. The
Gaussian treatment also becomes invalid when the dis-
persion of the relevant gapless excitation becomes flatter
in low-dimensional systems. In this case we have to con-
sider the scaling analysis. We discuss in Sec. II.F when
and how the Gaussian treatment breaks down.

E. Numerical studies of metal-insulator transitions
for theoretical models

Algorithms for numerical computation of strongly
correlated systems have recently been developed and
applied extensively. Several comprehensive articles in
the literature are available on these algorithms and their
applications (Scalapino, 1990; von der Linden, 1992; Ha-
tano and Suzuki, 1993; Imada, 1993d, 1995d; Dagotto,
1994). Two different algorithms have been widely stud-
ied and applied, so far. One is the exact diagonalization
of the Hamiltonian matrix including the Lanczos
method. Using this method, one can obtain physical
quantities with high accuracy but only for small clusters.
Tractable system size is strictly limited because the nec-
essary memory size increases exponentially with system
size. For instance, for the Hubbard model, the largest
tractable number of sites for the ground state is around
20. The exact diagonalization method has close ties with
the configuration-interaction method, which is the sub-
ject of Sec. III.A.1.

Rigorous treatments of finite-temperature properties
as well as dynamic properties are possible only when the
Hamiltonian matrix is fully diagonalized. However, full
diagonalization by, for example, the Householder
method is possible only for even smaller-sized system
than the Lanczos method for the ground state only. To
relax the severe limitation of tractable size for treating
finite-temperature and dynamic properties, a combina-
tion of diagonalization and statistical sampling was in-
troduced a decade ago (Imada and Takahashi, 1986). In
this method, the trace summation is replaced by a sam-
pling of randomly generated basis states, while the
imaginary-time or real-time evolution, e2tH or eiHt, is
computed exactly as in the power method. In this quan-
tum transfer Monte Carlo method and the quantum mo-
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lecular dynamics method, the tractable system size is ex-
tended to sizes comparable to the Lanczos method. A
very similar method was also applied recently to the t-J
model by replacing the power method with Lanczos di-
agonalization (Jaklič and Prelovšek, 1994).

The quantum Monte Carlo method provides another
way of calculating strong-correlation effects for rela-
tively larger systems. A frequently used algorithm of
quantum Monte Carlo calculation is based on the path-
integral formalism combined with the Stratonovich-
Hubbard transformation. This takes a similar starting
point to that of the method described in Secs. II.C and
II.D. The Stratonovich-Hubbard variable employed in
the Monte Carlo calculation is usually chosen to break
up the interaction into two diagonal operators. A crucial
difference from the Hartree-Fock-type treatment is that
dynamic and spatial fluctuations of the Stratonovich-
Hubbard variables are taken into account numerically in
an honest fashion in contrast to saddle-point estimates,
static approximations, or Gaussian approximations em-
ployed in the mean-field-type treatments. Therefore, in
terms of interaction effects, the quantum Monte Carlo
study provides a controlled method of calculation. A
drawback of the numerical methods is that they can
treat only finite-size systems. Thus careful analyses of
finite-size effects are important in numerical studies, es-
pecially for low-energy excitations.

There exist various types of algorithms for quantum
Monte Carlo simulations. For the algorithm for fermion
systems with the Stratonovich-Hubbard transformation
described above, readers are referred to the literature
(von der Linden, 1992; Hatano and Suzuki, 1993; Imada,
1993d, 1995d). In addition to this algorithm, several dif-
ferent methods are known. The so-called world-line al-
gorithm is a powerful method for nonfrustrated quan-
tum spin systems as well as for fermion models in one
dimension. Recently for the world-line method, two use-
ful algorithms have been introduced. One is the cluster
updating algorithm or the loop algorithm (Evertz, Lana,
and Marcu, 1993; Evertz and Marcu, 1993), which was
developed based on the original cluster algorithm for
classical systems (Swendsen and Wang, 1987). By using
the cluster algorithm, one can update the configuration
of a large cluster at once, so that the sample can be more
efficiently updated with shorter autocorrelation time.
This is especially powerful for example, when the critical
slowing down is serious near the critical point. The other
useful algorithm is for continuous time simulation,
where the path integral can be simulated without taking
a discrete time slice, so that the procedure to take the
continuum limit of the breakup in the time slice can be
avoided (Beard and Wiese, 1996). In 1D systems, some
other efficient methods of numerical calculation have
also been developed. The density-matrix
renormalization-group (DMRG) method developed by
White (1993) is a typical example, where the numerical
renormalization-group method originally developed by
Wilson (1975) is successfully extended to a study of the
ground state of 1D lattice models using a
renormalization-group scheme applied to the density
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
matrix by properly considering the boundary condition
of the system. It was recently applied, as well, to a lattice
of stripe such as 63n and 83n square lattices to discuss
2D systems (White and Scalapino, 1996). The recently
developed constrained path-integral method also ap-
pears to give high accuracy in any dimension, although it
relies on a variational estimate (Zhang, Carlson, and
Gubernatis, 1997).

There is an enormous literature on the numerical in-
vestigation of strongly correlated systems, especially on
models for high-Tc cuprates. Because extensive reviews
of numerical results on strongly interacting lattice fer-
mion models are available elsewhere (Scalapino, 1990;
von der Linden, 1992; Imada, 1993d, 1995d; Dagotto,
1994), here we give only a brief summary of results di-
rectly related to the metal-insulator transition and the
anomalous metallic states near it. We do not discuss in
detail the superconducting properties studied by nu-
merical methods. The reader is referred to other reviews
(Scalapino, 1995, and the references cited above).

Near the MIT point, various quantities exhibit critical
fluctuations. Here we discuss calculated results for the
Hubbard model, the d-p model, and the t-J model.
Most of the effort in numerical studies is concentrated in
1D and 2D systems without orbital degeneracy, partly
due to the interest in these systems in relation to the
high-Tc cuprates and partly due to the feasibility of es-
timating finite-size effects within present computer capa-
bilities. Another important motivation for investigating
low-dimensional systems is that they show a variety of
interesting and anomalous quantum fluctuations. To un-
derstand real complexity in d-electron systems with or-
bital degeneracy, an algorithm for the degenerate Hub-
bard model, treating the MIT and orbital and spin-
fluctuation effects, was developed and applied by
Motome and Imada (1997, 1998).

1. Drude weight and transport properties

As we discuss in Sec. II.F.3, the Drude weight and the
charge compressibility are the most basic and relevant
quantities for discussing the Mott transition. The Drude
weight D for periodic systems is defined from the
frequency-dependent conductivity s(v) as

s~v!5Dd~v!1sreg~v! (2.273)

at T50 where sreg describes the contribution from in-
coherent excitations and must be smooth as a function
of v.

The Drude weight has been calculated by the exact
diagonalization method for the 1D and 2D Hubbard
models as well as for the t-J models.2 Although the ex-
trapolation to the thermodynamic limit is difficult be-
cause of small system sizes, it appears to show that the

2Exact diagonalization studies include those of Moreo and
Dagotto, 1990; Sega and Prelovšek, 1990; Stephen and Horsch,
1990, 1992; Fye et al., 1991; Wagner, Hanke, and Scalapino,
1991; Dagotto, Moreo, Ortolani, Riera, and Scalapino, 1991;
Tohyama and Maekawa, 1992; Tsunetsugu and Imada, 1997.
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Drude weight decreases continuously and vanishes at
half filling. The vanishing Drude weight clearly shows
the appearance of the Mott insulator at half filling. The
Hubbard model and the t-J model show similar behav-
iors, as can be seen in Figs. 16 and 17. In 1D systems,
exactly solvable models follow D}d , as we show in Sec.
II.F. In constrast, 2D systems seem to follow D}d2

(Tsunetsugu and Imada, 1998).
Experimental results on the cuprate superconductors

and several other transition-metal oxides such as
La12xSrxTiO3 appear to show similar continuous reduc-
tion of the Drude weight with decreasing doping con-
centration (see Sec. IV). In the strict sense, the Drude
weight is defined as the singularity of the conductivity at

FIG. 16. Diagonalization result for the total kinetic energy K
in (a) and Drude weight D in (b) as a function of electron
filling ^n& in the ground state for the 434 cluster of the Hub-
bard model: triangles, U/t54; squares, U/t58; pentagons,
U/t520; hexagons, U/t5100. The curves without symbols are
for U50. From Dagotto et al., 1992.

FIG. 17. The same as Fig. 16 as a function of hole doping
concentration d[x512^n& for the 434 cluster of the t-J
model: squares, J/t50.1; solid triangles, J/t50.4; open tri-
angles, J/t51. From Dagotto et al., 1992.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
v50 and T50, but experimental results always suffer
from finite-temperature broadening as well as lifetime
effects from the impurity scattering. This issue is further
discussed in Secs. II.F and IV.

The frequency-dependent conductivity s(v) has also
been calculated in the Hubbard and t-J models (Inoue
and Maekawa, 1990; Moreo and Dagotto, 1990; Sega
and Prelovšek, 1990; Stephen and Horsch, 1990). It was
pointed out that the 2D system under doping has large
weight in the incoherent part sreg(v) inside the original
charge gap. Upon doping, in addition to the growth of
the Drude-like part, the weight is progressively trans-
ferred from the higher v region above the charge gap of
the insulator to the region inside the gap as shown in
Fig. 18. This is similar to what happens in the cuprate
superconductors (see, for example, Uchida et al., 1991)
as discussed in Sec. IV.C. It was also pointed out that
the long tail of s(v) at large v seen in the numerical

FIG. 18. Optical conductivity s(v) of the t-J model with one
hole at T50: (a) two-dimensional 434 cluster for three
choices of J/t50.25, 0.5, and 0.75; (b) one-dimensional 16-site
cluster at J/t50.5 for the S51/2 ground state (solid curve) and
the S515/16 ferromagnetic state (dashed curve). Note that the
Drude peak appears at a finite frequency v;0.1 due to the
open boundary condition. The spectra are broadened with
width 0.1. The inset in (a) shows the case with a higher reso-
lution (the broadening is 0.02). The inset in (b) shows the
weight integrated from 0 to v. From Stephan and Horsch,
1990.
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results is similar to the experimental results (Azrak
et al., 1994). In contrast with 2D systems, the incoherent
part of the charge excitation is not clearly seen in 1D
systems under doping, as shown in Fig. 18 (Stephen and
Horsch, 1990). The transferred weight from the region
above the gap is exhausted only in the coherent Drude
part. Recently, it was suggested that the integrable
model in 1D has a finite Drude weight with the d-
function peak at v50 in s(v), even at finite tempera-
tures (Zotos and Prelovšek, 1996). It should be noted
that the overall feature of s(v) of the single ladder sys-
tem shows an incoherent tail similar to the 2D case, in
contrast to the naive expectation of similarity to 1D sys-
tems (Tsunetsugu and Imada, 1997).

For the t-J model in 2D, in the temperature range of
the superexchange interaction and lower, s(v) shown in
Fig. 19 and calculated by Jaklič and Prelovšek (1995a)
appears to follow

s~v!5
12e2bv

v
C~v! (2.274)

and the current correlation function

C~v![E
2`

`

dt eivt^j~0 !j~ t !&.
s0 /t

v21~1/t!2 (2.275)

with temperature-independent s0 and t. The scale of 1/t
seems to be larger than or comparable to the transfer t
(Jaklič and Prelovšek, 1995a). This form implicitly as-
sumes that the carrier dynamics are totally incoherent.
We discuss this problem in Secs. II.F.9 and II.G.2, as
well as a related problem in Sec. II.E.3. Jaklič and Pre-
lovšek claimed the similarity of this result to the experi-
mentally observed transport properties in the normal
state of high-Tc cuprates. From the above form, s(v)
has a rather long tail proportional to 1/v in the range
0,v,1/t , while the dc conductivity is proportional to
b, consistent with experimental results on cuprates and

FIG. 19. Optical conductivity at finite temperatures for 434
cluster of the t-J model at J/t50.3 and d53/16 where r0
5\/e2, with e being the electronic charge and nh[d the dop-
ing concentration. From Jaklič and Prelovšek, 1995a.
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the marginal Fermi-liquid hypothesis (for the marginal
Fermi liquid, see Sec. II.G.2, and for experimental as-
pects of the cuprates, see Sec. IV.C). The dc resistivity
has indeed been calculated at relatively high tempera-
tures (Jaklič and Prelovšek, 1995a, 1995b; Tsunetsugu
and Imada, 1997). What should be noted here is that the
linear-T resistivity R}T characteristic in the high-
temperature limit with totally incoherent dynamics
(Ohata and Kubo, 1970; Rice and Zhang, 1989) seems to
be retained even in the temperature region below the
superexchange interaction for the planar t-J model (see
Fig. 20). This seems to be related to the suppression of
coherence due to the anomalous character of the Mott
transition (see Secs. II.F.9 and II.G.2). Broad incoherent
tails roughly scaled by 1/v are seen not only in the high-
Tc cuprates but also in many transition-metal com-
pounds near the Mott transition point. We discuss ex-
amples of this unusual feature in Sec. IV, for example in
Secs. IV.B and IV.D. The optical conductivity of the Mn
and Co compounds discussed in Secs. IV.F and IV.G
shows even more incoherent v dependence.

The Hall coefficient is another interesting subject of
the transport properties. The frequency-dependent Hall
coefficient RH(B ,v) in a magnetic field B is defined by

RH~B ,v!5
1
B

sx ,y~v!

sx ,x~v!sy ,y~v!2sx ,y~v!sy ,x~v!
,

(2.276)

where

sa ,g~v!5
ie2

v1ih
Da ,g~v! (2.277)

with

Da ,g~v!5
1

Ld S 2
^K&

d
da ,g2E

0

`

dt e2ivt^ja~ t !;jg~0 !& D
(2.278)

for a linear system of size L and the infinitesimal con-

FIG. 20. Temperature dependence of resistivity r for 434
cluster of the t-J model for various doping concentrations:
dashed curves, J/t50; solid curves, J/t50.3. The same nota-
tion as Fig. 19. From Jaklič and Prelovšek, 1995a.
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vergence factor h (Shastry, Shraiman, and Singh, 1993;
Assaad and Imada, 1995). The canonical correlation
^P ;Q& is defined by

^P ;Q&[E
0

b dl

b
Tr@e2bHelHPe2lHQ# . (2.279)

Here the averaged kinetic energy is denoted by ^K& and
the current operator is given by

ja52i(
iW ,s

@ t iW ,aW a
~AW !c iW ,s

† c iW ,1aW a ,s

2t iW1aW a ,2aW a
~AW !c iW1aW a ,sc iW ,s# (2.280)

and

t iW ,aW~AW !52t expS 2pi

F0
E

iW

iW1aW
AW •d lW D , (2.281)

with the flux quantum F0 and the vector potential AW .
Here, a hypercubic lattice structure is assumed for sim-
plicity. Since the effect of the lifetime t of the charge is
washed out in the frequency v@1/t , RH at large v rep-
resents a simpler and more intrinsic property of strong
correlations than the zero-frequency Hall coefficient. In
fact it is a better probe to measure the carrier density, as
pointed out by Shastry et al. (1993). At v→` , one can
show

RH* [RH~v→`!52
4Ld

e2B

i^~ jx ,jy!&

^K&2 (2.282)

with the commutator (a ,b)5ab2ba . Recently the v-
dependent Hall coefficient was measured experimentally
(Kaplan et al., 1996).

The temperature dependence of the Hall coefficient
RH* as well as its frequency dependence has been calcu-
lated by several authors (Shastry, Shraimann, and Singh,
1993; Assaad and Imada, 1995; Tsunetsugu and Imada,
1997). In the strong-correlation regime of 2D systems, it
shows that, at small hole doping, RH* is electronlike
(RH* ,0) with small amplitude at T.U , while it be-
comes hole-like (RH* .0) with large amplitude at J,T
,U where U and J are the energy scales of the repul-
sive interaction and the superexchange interaction, re-
spectively. When T is smaller than the energy scale of
J , RH* again decreases and becomes negative (electron-
like; see Fig. 21).

These two crossovers are explained by the following
simple physical picture: At T.U , the Hall coefficient
approaches the value of noninteracting electrons be-
cause the interaction effect may be neglected. In the re-
gion J,T,U , the interaction effect becomes important,
while the spin degrees of freedom are still degenerate,
so that the particles behave essentially as spinless fermi-
ons. In terms of the spinless fermions, the band is com-
pletely filled for the filling corresponding to the Mott
insulator. Therefore a system with small hole doping is
indeed expected to behave as hole-like with small car-
rier number (that is, RH has large amplitude). When the
temperature is further lowered to T,J , the spin entropy
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
is gradually released with the growth of antiferromag-
netic correlations and up- and down-spin electrons start
forming large Fermi surface consistently with the Lut-
tinger volume. This state with large carrier number leads
to a small amplitude of the Hall coefficient. The sign of
RH itself may depend on details of the Fermi surface. If
the curvature of the Fermi surface is hole-like, RH* may
be positive.

Another interesting crossover happens when a spin
gap or pseudogap due to singlet pairing is formed. Al-
though the tractable system size is limited to small clus-
ters, this was numerically studied by explicitly forming a
spin gap in a ladder structure of the lattice. Below the
spin-gap temperature, RH* becomes large and generally
positive (Tsunetsugu and Imada, 1997), and the system
is transformed essentially to single-component bosons
near the Mott insulator, although coexistence of singlet
pairs and quasiparticles with dynamic fluctuations may
show aspects different from simple bosons. Because the
hard-core bosons near the Mott insulator are mapped to
the case of dilute bosons near the vacuum by the
electron-hole transformation, the single-component
bosons near the Mott insulator behave as dilute holes.
This is the basic reason for hole-like RH* with large am-
plitude.

All the above seem to be consistent with the mea-
sured temperature dependence of RH in the high-Tc cu-
prates if the RH at large and small frequencies are quali-
tatively similar. As is discussed in Secs. IV.C.1 and

FIG. 21. Temperature dependence of high-frequency Hall co-
efficient RH* and equal-time spin structure factor S(p ,p) at d
50.05 for 636 cluster of the 2D Hubbard model. Solid line
with no symbols corresponds to the U/t50 result. From As-
saad and Imada, 1995.
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IV.C.3, the experimentally measured RH in the under-
doped region showed strong temperature dependence
from small amplitude at higher temperatures to large
and positive values basically scaled by the inverse hole
concentration 1/d at low temperatures. The crossover
occurred at the temperature Tcr where the uniform
magnetic susceptibility decreased remarkably with de-
creasing temperature (Nishikawa et al., 1993; Hwang
et al., 1994; Nakano et al., 1994). All of these properties
can be explained by gradual and progressive pseudogap
formation (preformed singlet pair fluctuation) below the
crossover temperature Tcr , which decreases from the
value ;500;600 K at small doping to 0 K in the over-
doped region (d;0.2;0.3).

In the case of ladder systems, with the lattice structure
of two chains coupled by rungs, however, the particular
geometry of the ladder leads to a large negative value of
RH* below the temperature of spin-gap formation, al-
though it has been shown in a small cluster study that a
substantial interladder coupling generally drives RH* to a
large positive value (Tsunetsugu and Imada, 1997). In
most of the above cases, the frequency dependence of
RH(v) has not yet been examined systematically. How-
ever, the calculated v dependence available so far ap-
pears to show similar behavior between small and large
v. It is not clear whether RH(v) has a strong v depen-
dence at the frequency scale of the inverse relaxation
time t21 of carriers.

2. Spectral function and density of states

Two other quantities important to our understanding
of the MIT and anomalous metallic states are the spec-
tral function A(k,v) and the density of states r(v) de-
fined from Eqs. (2.50), (2.56), and (2.57) as

r~v!5(
k

A~k,v!, (2.283)

A~k,v!52
1
p

Im GR~k,v!, (2.284)

GR~k,v!52iE
2`

`

dt eivtu~ t !^$cks~ t !,cks
† ~0 !%&,

(2.285)

where the thermodynamic average ^¯& and the Heisen-
berg representation O(t)5e2iHtOeiHt are introduced.
In the ground state, A(k,v) may be rewritten as Eq.
(2.54). Experimentally, A(k,v) is measured by angle-
resolved photoemission and inverse photoemission ex-
periments as described in Sec. II.C.4. The angle-
integrated intensity gives r(v). Numerically, A(k,v)
and r(v) have been calculated either by the exact diago-
nalization method or by quantum Monte Carlo calcula-
tions combined with the maximum-entropy method.

Numerical results on A(k,v) and r(v) for the Hub-
bard model and the t-J model show drastic but continu-
ous change upon doping (Dagotto, Moreo, et al., 1991,
1992; Stephen and Horsch, 1991; Tohyama and
Maekawa, 1992; Bulut, Scalapino, and White, 1994a;
Moreo, Haas, Sandvik, and Dagotto, 1995; Preuss,
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
Hanke, and W. von der Linden, 1995; Preuss et al.,
1997). Figure 22 shows an example of the doping con-
centration dependence of r(v). The density of states at
half filling clearly shows the opening of the charge gap,
as we discuss below. The chemical potential shifts imme-
diately upon doping to the edge of the ‘‘Hubbard gap.’’
The chemical potential slowly shifts upon further doping
within a large density of states observed near the gap
edge. This shift is accompanied by a drastic and continu-
ous reconstruction from ‘‘upper’’ and ‘‘lower’’ Hubbard
band structure to a single merged band structure. When
the doping concentration is low, in the 2D Hubbard or
t-J models, A(k,v) shows dispersive quasiparticle-like
structure with a bandwidth comparable to that of J in
addition to broad incoherent backgrounds, as in Fig. 23.
This basic and overall structure seems to be robust in
some interval of doping range. The dispersive part has a
flat band structure with stronger damping around k
5(p ,0) and three other equivalent points (Bulut, Scala-
pino, and White, 1994b; Dagotto, Nazarenko, and Bon-
insegni, 1994). The dispersions there appear to be flatter
than that expected from the usual van Hove singularity.
This flatter dispersion could be related to other unusual
properties observed numerically, such as incoherent
charge transport (Sec. II.E.1), singular charge compress-
ibility (Sec. II.E.3), and incoherent spin dynamics (Sec.
II.E.4). This idea is discussed in Sec. II.F.11. Recently, it
was shown that the dispersion around (p ,0) follows
quartic dispersion (;k4) in agreement with the picture
in Sec. II.F.11 (Imada, Assaad, et al., 1998). Although
the numerical results of clusters have suggested the ex-
istence of a quasiparticle band of width ;J , this ‘‘band’’
itself could be dominantly incoherent near the Fermi
level. Because these numerical results are results on sim-
plified models, more complicated features can also be
observed in realistic situations. Effects of impurity levels
and the long-range Coulumb interaction are among
these complexities. We compare these results on theo-
retical models with photoemission results on transition-
metal oxides in Secs. IV.C.3, IV.C.4 and IV.D.1. In par-
ticular, in a recent comparison of 1D and 2D systems by
Kim et al. (1996), it was suggested that weakly dispersive
bands with incoherent character in 2D be contrasted
with a clearer dispersion in 1D, as is discussed in Sec.
IV.D.1. This difference between 1D and 2D is related
with the difference in the Drude weight discussed in Sec.
II.E.1.

Angle-resolved photoemission spectra of a model
compound of the parent insulator of high-Tc supercon-
ductors, Sr2CuCl2O2 (Wells et al., 1995), can be com-
pared with the Monte Carlo simulations of the Hubbard
as well as of the t-J model (Dagotto, 1994), since the
single-band Hubbard model and the t-J model are effec-
tive Hamiltonians for the CuO2 plane. (The top of the
occupied band is derived from the d9→d9LI local-singlet
spectral weight and the bottom of the unoccupied band
forms the d9→d10 spectral weight). Figure 24 shows that
in going away from k5(0,0) a peak disperses towards
lower binding energies; along the (p,p) direction, the
peak reaches closest to EF at ;(p/2,p/2) and then is
shifted back toward higher binding energies, in good
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FIG. 22. Doping concentration and temperature dependence
of the density of states r(v) for 838 Hubbard model at U/t
58 for (a) d50, (b) d50.13, and (c) d50.3. The ordinate
N(v) is the density of states r(v) in our notation. From Bulut,
Scalapino, and White, 1994a.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
agreement with the prediction of the Monte Carlo simu-
lations using the t-J model and the Hubbard model.
Along the (p,0) direction, on the other hand, the peak
does not disperse so close to EF , although the t-J and
Hubbard-model calculations predict a peak position
nearly equal to the ;(p/2,p/2) point. That the occupied
band has maxima along the (p ,0)-(0,p) line as in the
Monte Carlo study is a generic feature of the single-
band Hubbard model and is also the case in the weak-
coupling spin-density wave picture (Bulut et al., 1994b).
The discrepancy between theory and experiment around
the (p,0) point remains unexplained. Around (p,0) the
peak is rather broad due to large incoherent character,
leading to uncertainty that might be the origin of the
discrepancy. Another possibility is that a more realistic
model, such as the t-t8-J model or d-p model including
apex oxygens, will be necessary (see, for example, Naza-
renko et al., 1995).

FIG. 23. The spectral weight A(k ,v) by quantum Monte
Carlo calculations of the 838 Hubbard model at U58t . Dark
areas correspond to large spectral weight, white areas to small
spectral weight. The solid lines in (a) and (c) are tight-binding
fits of the data while in (b) they are the quantum Monte Carlo
result at ^n&51.0. Preuss et al., 1997.
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3. Charge response

In connection with the vanishing Drude weight, a
charge excitation gap opens at half filling. This is directly
observed in the density of states at half filling (White,
1992). A direct estimate of the charge gap is also pos-
sible from Eq. (2.16). Both the quantum Monte Carlo
finite-temperature algorithm applied by Moreo, Scala-
pino, and Dagotto (1991) and the projector algorithm
for T50 applied by Furukawa and Imada (1991b, 1991c,
1992) to the nearest-neighbor Hubbard model at U/t
54 show the charge gap Dc;0.6. Recently a more
elaborate algorithm for estimating zero-temperature
properties in the Mott insulating phase was developed
using stabilized matrix calculations (Assaad and Imada,
1996a). The application of this algorithm to the Hubbard
model at U/t54 showed Dc /t50.6660.015 (Assaad and
Imada, 1996b). The amplitude of the charge gap exam-
ined as a function of U in the 2D Hubbard model agreed
with the prediction of the Hartree-Fock approximation
for small U but deviated for larger U , as is expected.
Figure 25 shows how the charge gap scaled as a function
of U . In Fig. 25, Uren is the interaction with which the
Hartree-Fock equation of the Hubbard model gives the
same charge gap as the numerically observed value in
the quantum Monte Carlo. The Hartree-Fock result pre-
dicts that Dc is scaled as Dc;t exp@22pAt/U# , while
Hirsch (1985b) suggested a slight modification, namely,
replacing the prefactor t with AtU .

The charge compressibility k is essentially the same as
the charge susceptibility xc and is defined as

xc5n2k5]n/]m (2.286)

where n is the electron density and m is the chemical
potential. The charge susceptibility vanishes in the Mott
insulating phase because of incompressibility. However,
quantum Monte Carlo results on 2D systems show that
doped systems can be very compressible near the MIT
on the metallic side (Otsuka, 1990; Furukawa and
Imada, 1991b, 1992, 1993). In 2D systems, in contrast to
the Drude weight, the charge susceptibility xc does not

FIG. 24. Quasiparticle dispersions in angle-resolved photo-
emission spectra of Sr2CuCl2O2 (Wells et al., 1995) compared
with t-J model calculations given by solid curve (left panel)
and crosses with an interpolation of crosses by dotted curve
(right panel). From Bulut, Scalapino, and White, 1994a, 1994b.
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gradually and continuously vanish when one controls the
doping concentration from the metallic phase to the
MIT point d50. The scaling plot of xc even shows a
singular divergence in the form

xc}1/udu (2.287)

for dÞ0, as illustrated in Fig. 26 (Furukawa and Imada,
1992, 1993). The singular divergence in the form of
(2.287) is observed not only in the nearest-neighbor
Hubbard model (1.1a) but also in a model extended by
adding a finite next-nearest-neighbor transfer t8. This
indicates that the origin of this scaling has nothing to do
either with electron-hole symmetry, perfect nesting, or
with the Van Hove singularity because they are absent
in a model with nonzero t8. Similar behavior is also ob-
served in the 2D t-J model (Jaklič and Prelovšek, 1996;
Kohno, 1997). In 1D systems the same scaling xc}d21 is
derived in exactly solvable cases, as we shall see in Sec.
II.F.6. There we shall discuss how the 1D and 2D sys-
tems differ in terms of the quantum phase transition de-

FIG. 25. The renormalized interaction Urn derived so as to
reproduce the numerically observed charge gap by the
Hartree-Fock calculation is plotted against the bare U for the
2D Hubbard model (from N. Furukawa and M. Imada, unpub-
lished). This indicates that the Hartree-Fock gap becomes cor-
rect for small U .

FIG. 26. Chemical potential vs d2 for the 2D Hubbard model
of various sizes at T50: open symbols, without next-nearest-
neighbor transfer t8; filled symbols, with t850.2. From Fu-
rukawa and Imada, 1993.
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spite their seemingly identical behavior. This is due to
the difference in universality class. Experimental aspects
of xc and the chemical-potential shift upon doping of a
2D MIT are discussed in Secs. IV.C.1 and IV.G.5 and
interpretation in terms of Fermi-liquid theory is given in
Sec. II.D.1.

When the charge susceptibility is singularly divergent
as a power law of d for d→10, the single-particle de-
scription of low-energy excitations is made possible only
by the divergence of the effective mass of a relevant
particle. This is in contrast with the usual transition be-
tween metals and band insulators, in which the number
of carriers goes to zero as the effective mass of the qua-
siparticle remains finite. This numerical study by Fu-
rukawa and Imada prompted subsequent theoretical
studies of continuous MITs based on the scaling theory,
the main subject of Sec. II.F.

When the charge susceptibility is scaled by Eq.
(2.287), it may be regarded as tending strongly toward
phase separation as d→0 although real phase separation
is not achieved. In fact, a continuous transition to a
phase-separated state may be probed by the singularity
xc→` . The growth of charge-density fluctuations, ob-
served when xc is enhanced is reminiscent of the pro-
posal of phase separation by Visscher (1974) and Emery,
Kivelson, and Lin (1990). The possibility of phase sepa-
ration in the 2D t-J model was examined recently by
Hellberg and Manousakis (1997), who claimed to find a
phase separation for any J/t at close to half filling. This
result contradicts the observation of Kohno mentioned
above. The numerical methods of these two studies are
similar, while Hellberg et al. derived the opposite con-
clusion basically by relying on a single data point near
half filling. Further studies in the t-J model are clearly
needed, including a reexamination of the convergence to
the ground state for this region. The quantum Monte
Carlo results in the Hubbard model imply that xc di-
verges only for d→10, and there the transition to a
Mott insulator takes place without a real phase separa-
tion. If a phase separation took place at finite doping
concentration, the quantum Monte Carlo method could
indeed detect it, as we shall see later in the case of the
Ising-like boson t-J model in Sec. II.E.12. We of course
have to note here the limitation of the numerical study
for the ultimate limit of d→0, because the numerical
results can be obtained only at finite d in finite-size sys-
tems. In any case, the overall numerical results indicate
that rapid growth of the charge compressibility and the
tendency towards phase separation do exist near half
filling. It is interesting to regard the critical enhancement
of xc at small d as a general tendency not of static but of
dynamic fluctuation toward the phase separation. In
fact, static phase separation is suppressed due to the
long-range Coulomb force, ignored in this discussion,
and the above controversy is not so serious in real ma-
terials. The dynamic phase separation provides an alter-
native view to Eq. (2.287). We discuss this issue further
in Secs. II.H.3, IV.C., and IV.E.
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4. Magnetic correlations

Effects of spin fluctuations are another intensively
studied issue. In low-dimensional systems, the antiferro-
magnetic correlation is under the strong influence of
quantum fluctuations. The one-dimensional spin-1/2
Heisenberg model and the Hubbard model at half filling
show a power-law decay of the antiferromagnetic corre-
lation at T50, ^S(r)•S(0)&}1/r . For spin-1/2 systems,
the spin-wave theory in 2D predicts the existence of an-
tiferromagnetic order (Anderson, 1952; Kubo, 1952).
Although the existence of long-range order is proven for
a spin S>1 on a square lattice (Neves and Perez, 1986;
Kubo and Kishi, 1988), at the moment, no rigorous
proof for long-range order exists at S51/2, even for
nearest-neighbor coupling on a square lattice. Quantum
Monte Carlo results on the square-lattice Heisenberg
model appear to show antiferromagnetic order at T50
(Okabe and Kikuchi, 1988; Reger and Young, 1988;
Makivić and Ding, 1991). In the 2D Hubbard model,
quantum Monte Carlo results also suggest the existence
of antiferromagnetic long-range order in the Mott insu-
lating phase, d50 (White et al., 1989). The existence of
long-range order is also inferred in a parameter region
of the d-p model (Dopf, Wagner, et al., 1992).

In the 2D Hubbard model, long-range order appears
to be lost immediately upon doping (Furukawa and
Imada, 1991b, 1992). The Fourier transform of the
equal-time spin-spin correlation function

S~k!5
1
3 E e2ik•r^S~r!•S~0 !&dr (2.288)

shows a short-ranged incommensurate peak at k5Q
away from the antiferromagnetic Bragg point k
5(p ,p) when the doping proceeds as we see in Fig. 27
(Imada and Hatsugai, 1989; Moreo, Scalapino, et al.,
1990; Furukawa and Imada, 1992). Similar incommensu-
rate peaks are observed in the 2D t-J model (Moreo and
Dagotto, 1990) and in the d-p model (Dopf, Mura-
matsu, and Hanke, 1992). Figure 28 indicates that this
peak value S(Q) becomes finite for dÞ0, which means
the disappearance of long-range order in the whole me-
tallic region, dÞ0. The scaling of S(Q) appears to follow

S~Q!}1/d , (2.289)

which can be interpreted as the antiferromagnetic corre-
lation length jm scaled by jm}d21/2 (Furukawa and
Imada, 1993). Here it should be noted that the existence
of an antiferromagnetic correlation length in the metal-
lic phase is nontrivial because the correlation at an as-
ymptotically long distance should follow a power-law
decay in the usual spin gapless metals and, naively, this
should lead to divergence of the correlation length. The
Monte Carlo results in 2D suggest that the spin correla-
tion of the period given by the wave number Q is con-
stant as in the Heisenberg model for the distance 1!r
!jm while it decays as a power law }1/rg with g.2 in
the region r@jm . In the 1D doped Hubbard model, it
has been established that the incommensurate spin cor-
relation decays as 1/r for 1!r!jm while as 1/r11Kr for
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r@jm with jm}d21 (Imada, Furukawa, and Rice, 1992;
Iino and Imada, 1995). Kr is the exponent of the
Tomonaga-Luttinger liquid given in Sec. II.G.1. This
nontrivial way of defining jm in 1D and 2D is further
discussed in Sec. II.F.10. We note that the immediate
destruction of antiferromagnetic order, which is numeri-
cally observed, may be a characteristic feature in single-
band 2D systems.

Experimentally, so far we have no definite example of
an antiferromagnetic metal near the Mott insulator in
highly 2D single-band systems, in agreement with the
above numerical studies. As is well known and discussed
in Sec. IV.C, the cuprate superconductors in general lose
antiferromagnetic order upon small doping without any
indication of antiferromagnetic metals. Antiferromag-
netic order survives up to d50.02, while insulating be-
havior persists until d50.05 for La22d SrdCuO4. The
MIT at small but finite d is clearly due to Anderson
localization under random potentials.

In 3D systems, however, antiferromagnetic metals
may exist, although no numerical study is available so
far. They have been found adjacent to the Mott insula-
tor in limited examples, such as NiS22xSex with pyrite
structure and V2O32y , as will be discussed in Sec. IV.A.
However, it should also be noted that these two materi-
als have orbital degeneracies with spins larger than 1/2
in the insulator, which may stabilize the antiferromag-
netic metals. In the weak-correlation regime, other ex-
amples of antiferromagnetic metals are known, for in-

FIG. 27. Incommensurate peak in the momentum space of
equal-time magnetic structure factor S(q ,t50) for the 2D
Hubbard model of a 10310 cluster at T50: (a) d50.18; (b)
d50.26; (c) d50.42; and (d) d50.5 at U/t54. From Furukawa
and Imada, 1992.
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stance in such d-electron systems with orbital
degeneracy as V3Se4, V5Se8, and V3S4. Even in 3D, so
far, antiferromagnetic metals are observed only in cases
with strong orbital degeneracy. From both theoretical
and experimental viewpoints, the stability of antiferro-
magnetic and metallic phases near the Mott insulator for
single-band systems, even in 3D, calls for further study.
It is not clear whether the lower critical dimension of
antiferromagnetism in metals, dml , is even higher than
three for systems without orbital degeneracy, that is,
two-component systems. This uncertainty is due in part
to the difficulty of finding an effectively single-band sys-
tem in 3D.

The temperature dependence of the antiferromag-
netic correlation length jm has also been studied exten-
sively by numerical approaches. In the undoped case, jm
continuously and rapidly increases until T→0 because
the antiferromagnetic transition takes place at T50 in
2D. Chakraverty, Halperin, and Nelson (1989) pointed
out the relation of the quantum Heisenberg model in 2D
to the O(3) nonlinear sigma model in 3D and suggested
the existence of two regions, namely, where jm}1/T at
higher temperatures (the quantum critical regime) and
where jm increases exponentially at lower temperatures
in the renormalized classical regime. This basic picture
has been more or less confirmed numerically (for ex-
ample, Makivić and Ding, 1991).

At finite doping, jm(T) was also computed for the 2D
Hubbard model (Imada, 1994a). It displayed a sharp
contrast with the undoped case. Both jm and the peak
value of the equal-time spin structure factor S(Q)
started growing at high temperatures, T.J . With de-
creasing temperature, however, they showed rapid satu-
ration at rather high temperatures, as in Fig. 29. For
example, at d;0.15, jm more or less saturated at T;J
and did not grow below it. This means that jm quickly
approaches the intrinsic correlation length ;1/Ad given
from Eq. (2.289). The temperature below which jm be-
comes more or less temperature independent is denoted
as Tscr . Tscr rapidly increases from 0 at d50 to Tscr;J at

FIG. 28. Inverse of equal-time spin structure factor S21(Q ,t
50) at the peak point q5Q as a function of doping d for the
2D Hubbard model at U/t54 with various sizes. From Fu-
rukawa and Imada, 1992.
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d;0.15;0.2. A similar and consistent result was also
obtained in the 2D t-J model by Jaklič and Prelovšek
(1995b), who applied the finite-temperature Lanczos
method mentioned above and found that Im x(q,v)/v
has a peak around (p,p) and grows with decreasing tem-
perature, while the width in v and q is temperature in-
dependent at T,J for the doping d;0.15; see Fig. 30.
This peak structure is associated with the ‘‘incoherent
part’’ of the spin correlation, while the ‘‘coherent part’’
has only a low weight at lower frequencies when the
doping concentration becomes low. This coherent part
may give rise to the Fermi-surface effect at low tempera-
tures, which is associated with a power-law decay of the
spin correlation at long distances in metals.

These numerical results are consistently interpreted
by the following picture, as discussed by Imada (1994a)
and Jaklič and Prelovšek (1995b): Although it is not
completely correct, it is useful to analyze the spin corre-
lation as the sum of incoherent and coherent parts. As
the doping concentration decreases, the weight of the
coherent part decreases to zero and the incoherent
weight becomes dominant. The coherent part comes
from an asymptotically long-time and long-distance part
beyond tm([jm

z ) and jm , where the correlation decays
as a power law at T50. Here z is the dynamic exponent
discussed in detail in Sec. II.F. The incoherent part
arises from the short-time and short-distance part (t
,jm

z and r,jm). As jm→` with decreasing d, it is clear
that the incoherent spin correlation dominates and the
coherent weight vanishes. The spin structure factor

S~q,v![E
2`

`

dr dt e2ivte iq•r^S~r,t !•S~0,0!& (2.290)

may be given as the sum of the coherent and incoherent
contributions,

S~q,v!.S inc~q,v!1Scoh~q,v!. (2.291)

This phenomenological way of writing S(q ,v) with co-
herent and incoherent contributions was also suggested
by Narikiyo and Miyake (1994). The incoherent contri-
bution S inc has typical widths jm

21 in q space and jm
2z in

FIG. 29. Temperature dependence of S(Q ,t50) for various
fillings n512d of the 2D Hubbard model at U/t54. From
Imada, 1994a.
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v space. The essential features of the numerical results
may be written, approximately and phenomenologically,
for v.0 as

S inc~q,v!;
C

v21@Ds~q21K2!#2 , (2.292)

with K[jm
21 , Ds}jm

22z , C}jm
d . Here we take the di-

mension d52. The important point is that jm has to be
temperature independent at T,Tscr to be consistent
with numerical results. The coherent part Scoh may have
strong temperature dependence even below Tscr . In
fact, Scoh represents the long-ranged power-law decay of
the spin correlation and reflects the Fermi-surface effect
at low temperatures. Therefore Scoh grows in general as
incommensurate and rather sharp non-Lorentzian peaks
below the coherence temperature Tcoh[TF . The total
structure factor S is schematically illustrated in Fig. 31 as
the sum of these two parts. Although neutron scattering
may detect this structure coming from Scoh at low tem-
peratures, the weight of Scoh becomes smaller at lower
doping. Therefore q-integrated or v-integrated values
are generally dominated by S inc at low doping. Because
K and Ds are temperature independent below Tscr ,

Im x~q ,v!5~12e2bv!S~q ,v! (2.293)

for v.0 has a temperature dependence coming mainly
from the Bose factor (12e2bv). We note that Im x and
S at v,0 are determined from the requirement

FIG. 30. Dynamic spin susceptibility Im x(q,v)/v for a 434
cluster of the t-J model at d53/16: solid line, T/t50.1; dashed
line, T/t50.2; dashed-dotted line, T/t50.3; dotted line, T/t
50.5. From Jaklič and Prelovšek, 1995b.
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Im x(q,2v)52Im x(q,v), leading to the result that
*dq Im x(q,v) is universally scaled as

E dq Im x~q ,v!}~12e2bv! (2.294)

at v,jm
2z when the incoherent contribution is domi-

nant. It was pointed out (Imada, 1994a) that this ex-
plains the neutron and NMR results in high-Tc cuprates
where *dq Im x(q,v) is reported to be universally
scaled by v/T (Hayden et al., 1991a; Keimer et al., 1992;
Sternlieb et al., 1993) while the NMR relaxation rate
T1;const at T.Tcoh (Imai et al., 1993). The coherence
temperature Tcoh is estimated to be ;100;300 K at the
optimal doping d;0.15. More detailed analysis of the
antiferromagnetic correlation based on scaling theory is
given in Sec. II.F.10. Experimental aspects of high-Tc
cuprates are discussed in Secs. IV.C.1 and IV.C.3.

5. Approach from the insulator side

So far we have discussed the Mott transition from the
metallic side. Recently, a method of probing the transi-
tion from the insulator side was developed (Assaad and
Imada, 1996a, 1996b). If the transition is continuous, it
can be shown that critical exponents in both sides should
be the same. Therefore, any information gained about
the transition from the insulator side also helps to clarify
its character on the metallic side. A large advantage of
observing the transition from the insulator side is that
we can avoid the negative-sign problem, which has
plagued the quantum Monte Carlo method (Loh et al.,
1990; Furukawa and Imada, 1991a). For the case of
electron-hole symmetry, as in the nearest-neighbor Hub-
bard model on a bipartite lattice, the negative sign does
not appear at half filling (Hirsch, 1983).

The insulator undergoes a transition to a metal when
the chemical potential m approaches the critical point mc
from the region of the charge gap. The ground-state
wave function uFg& in the insulating phase should not
change when m changes because the number of particles
is fixed at N within the gap, while the Hamiltonian con-
tains m only through the term mN irrespective of the

FIG. 31. Total typical and schematic structure of S(q ,v)
around the antiferromagnetic peak point. The incoherent con-
tribution is illustrated as a bold gray curve and the total am-
plitude is given by a black solid curve.
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eigenvectors in the Hilbert space of N particles. The
two-body correlation function is also independent of m
within the charge gap. However, the single-particle
Green’s function defined in Eq. (2.44) as

G~r ,t!5^Tc~r ,t!c†~0,0!& (2.295)

depends on m because it propagates a particle created
above the gap in the N11-particle sector for the interval
of t.0. This Green’s function yields a factor of
e2t(En2m) in Eq. (2.295) for a created particle with en-
ergy En . Then the m dependence of G(r ,t) is simply
emt. Therefore, when G(r ,t) at m50 is calculated,
G(r ,t) at mÞ0 is given as G(r ,t ,mÞ0)5G(r ,t ,m
50)emt. This means that all the G(r ,t) for m within the
charge gap can be obtained by calculating G(r ,t) once at
m50. Because there may be numerical instability for
large t due to the factor emt, a numerical stabilization
technique for the matrix calculation is necessary (As-
saad and Imada, 1996a).

In any case, the calculated Green’s function provides
the localization length j l defined by

G~r ,v5m![E
0

`

G~r ,t ,m!dt;e2r/j l. (2.296)

Here j l may be regarded as the localization length of the
wave function of the virtually created state at the chemi-
cal potential. The localization length j l has to diverge at
the MIT. The scaling of j l near mc calculated by the
above method for the two-dimensional Hubbard model
shows

j l;um2mcu2n,

n50.2660.05, (2.297)

as in Fig. 32 (Assaad and Imada, 1996a, 1996b). In Sec.
II.F, we compare this exponent n;1/4 with the exponent
of the compressibility analysis given in Eq. (2.287) in the
metallic side, assuming hyperscaling, and find them to be
consistent. The confirmation of the large dynamic expo-
nent has prompted subsequent studies on the t-U-W
model in which the two-particle process defined in Eq.
(2.347) is introduced explicitly and added to the Hub-
bard model because of its greater relevance than that of
the irrelevant single-particle process characterized by z
54 (Assaad, Imada, and Scalapino, 1996, 1997; Assaad
and Imada, 1997; see also Sec. II.F.9). The (t-U-W)
model has made it possible to study directly the quan-
tum transition between an antiferromagnetic Mott insu-
lator and a d-wave superconductor and thereby to
clarify the character of the obtained d-wave supercon-
ductor at T50. Antiferromagnetic correlation is ex-
tremely compatible in the superconducting phase with
divergence of the staggered susceptibility. Finite tem-
perature fluctuations were also studied as well.

6. Bosonic systems

Transitions between Mott insulators and superfluids
in bosonic systems have been the subject of recent inten-
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sive studies. When disorder drives the transition in
bosonic systems, a superfluid undergoes a transition to a
Bose glass phase. Studies of the critical exponents of the
transition from superfluid to Bose glass were motivated
by the proposal of the scaling theory (Fisher et al., 1989).
The results of quantum Monte Carlo calculations appear
to support the scaling theory, as discussed in Sec. II.F.12
(So”rensen et al., 1992; Wallin et al., 1994; Zhang et al.,
1995).

In the transition between a superfluid and a Mott in-
sulator, an interesting case is that of multicomponent
bosons. In analogy with the fermion t-J model (2.13),
the boson t-J model of two-component hard-core
bosons was investigated by Imada (1994b). In the case of
Ising-exchange for J , Monte Carlo results clearly show a
phase separation into the Mott insulating phase at d
50 and another component-ordered phase at a finite dc
near the Mott insulator (Motome and Imada, 1996). A
remarkable fact is that the component correlation length
diverges at the continuous transition point d5dc when
the filling is changed from d.dc to d→dc while phase
separation takes place for d,dc . Strong mass enhance-
ment and vanishing superfluid density are observed with
d→dc . This appears to come from a mechanism of mass
enhancement at finite d which is different from the
mechanism of the mass divergence in the 2D Hubbard
model discussed above. The origin of the mass enhance-

FIG. 32. Localization length j l vs um2mcu for the Hubbard
model at U/t54 for (a) two-dimensional systems, (b) one-
dimensional systems. Monte Carlo data are illustrated by solid
circles. From Assaad and Imada, 1996b.
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ment was speculated to be the persistence of the Ising-
like component order for d<dc .

F. Scaling theory of metal-insulator transitions

The Mott transition defined as the transition between
a metal and a Mott insulator, has two types, the filling-
control transition (FC-MIT) and the bandwidth-control
transition (BC-MIT), as explained in Sec. I and illus-
trated in Fig. 33. Both of these transitions are controlled
by quantum fluctuations rather than by temperatures.
The FC-MIT has as control parameters the electron con-
centration or the chemical potential. The BC-MIT has as
a control parameter the ratio of the bandwidth to the
interaction, t/U . The quantum fluctuation is enhanced
for large t/U , which stabilizes the metallic phase,
namely, the quantum liquid state of electrons, while
large U/t makes the localized state more stable. Because
these control parameters are intrinsically quantum me-
chanical, the MIT is the subject of research in the more
general field of quantum phase transitions. The transi-
tion itself can take place either through continuous
phase transitions or through a first-order transition ac-
companied by hysteresis. Critical fluctuations of metallic
states can be observed more easily near the continuous
transition point. In this section, we look more closely at
continuous transitions.

In Sec. II.D, various theoretical approaches to the
Mott transition and correlated metals are described, in-
cluding the Gutzwiller approximation, the Hubbard ap-
proximation, the infinite-dimensional approach, slave-
particle methods, and spin-fluctuation theories.
Although their physical consequences vary and some-
times conflict with each other, these methods share a
common limitation in that they all rely on the mean-field
approximation. The level of mean-field approximations
used ranges from dynamically correct treatments that
neglect spatial correlations, as in the d5` approach, to
simple static approximations on the Hartree-Fock level.
In Sec. II.D.9, we have seen that the magnetic transition

FIG. 33. Schematic phase diagram of a metal and a Mott in-
sulator in the plane of m/t and t/U . Route A shows filling-
control transition, FC-MIT (generic transition), while route B
is the bandwidth-control transition, BC-MIT (multicritical
transition). Dotted curves illustration density contour lines.
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in metals independent of the MIT seems to be described
by mean-field fixed points for antiferromagnetic transi-
tions at d>3 and for ferromagnetic transitions at d>2
or d>3 under certain assumptions. However, in this sec-
tion, we discuss some rather different features of the
Mott transition.

In general, mean-field approximations are justified if
the dimension is high enough. However, in the Mott
transition of fermionic models, the upper critical dimen-
sion beyond which the mean-field approximation is jus-
tified is not so straightforwardly estimated as in simple
magnetic transitions of the Ising model. As we saw in
Sec. II.D.6, the infinite-dimensional approach provides
an example where the mean-field approximation be-
comes exact at d5` by taking account of dynamic fluc-
tuations correctly. On the other hand, other mean-field
approximations do not take account of on-site dynamic
fluctuations and incoherent excitations correctly, leading
to failure of the method even in the limit of large dimen-
sions, because incoherent excitations become over-
whelming near the transition point.

In low-dimensional systems, temporal as well as spa-
tial fluctuations from both thermal and quantum origins
become important. A generally accepted view is that the
mean-field theories for phase transitions become invalid
below the upper critical dimension due to large spatial
fluctuations.

Below the upper critical dimension, where the mean-
field description breaks down, phase transitions are be-
lieved in general to be described by scaling theory, with
hyperscaling assumed. In this subsection we review the
scaling theory of the Mott transition and examine its
validity based on recent numerical work. Its conse-
quences and experimental relevance are also discussed.
Among various Mott transitions categorized in Sec.
II.B, @I-1↔M-1# , @I-1↔M-2# , @I-2↔M-2# , and
@I-2↔M-4# are basically characterized by vanishing
carrier number as the MIT is approached. In this case,
the universality class of the MIT may be characterized as
the same as that for a transition between a band insula-
tor and a standard metal, as will be discussed in Sec.
II.F.8. On the other hand, for the case of @I-1↔M-3# ,
an unusual type of MIT can take place with an anoma-
lous metallic phase. In this case the MIT is characterized
by diverging single-particle mass (Imada, 1993a). As we
shall see below and also in Sec. II.E, critical properties
of the MIT are observed numerically in a wide region
around the critical point. The existence of such a wide
critical region also leads to a wide region of an anoma-
lous metallic state near the MIT with strongly incoher-
ent charge dynamics. In this sense, the scaling argument
for the MIT discussed in this section is not limited to a
narrow region but appears to be relevant for a wide re-
gion of unusual metallic behavior observed in transition-
metal compounds.

In 2D systems, numerical analyses support the as-
sumption of hyperscaling and the mean-field description
breaks down. This observation may be related to the
strong and singular wave-number dependence of the
renormalized charge excitations near the Mott insulator.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
The universality class obtained in 2D is characterized by
an unusually large dynamic exponent z54. An impor-
tant consequence of this new universality class is the
suppression of coherence as compared to that in the
transition between band insulators and metals. We dis-
cuss in Sec. II.F.9 how and why the coherence of charge
and spin dynamics is suppressed for the Mott transition.
We also discuss the instability of the large-z state to
superconducting pairing. The success of the hyperscaling
description is a nontrivial consequence for large z be-
cause, generally speaking, the upper critical dimension
becomes low for large z . A possible microscopic origin
for hyperscaling with z54 in 2D is discussed in Sec.
II.F.11. In Sec. II.F.12, superfluid-insulator transitions
are discussed.

1. Hyperscaling scenario

Continuous MITs were first analyzed in terms of the
scaling concept in the Anderson localization problem in
the 70s. Scaling has proven to be useful in establishing
the marginal nature of 2D systems for localization by
disorder (Wegner, 1976; Abrahams et al., 1979). The un-
derlying assumption in this approach is the hyperscaling
hypothesis. In this subsection, we introduce the hyper-
scaling description of the MIT caused by the electron
correlation from more general point of view following
recent developments (Continentino, 1992, 1994; Imada,
1994c, 1995a, 1995b). Because the MIT is controlled by
quantum fluctuations, we may use control parameters
such as the electron chemical potential m or the band-
width t and measure the distance from the critical point
by D. The control parameter can either be the chemical
potential to control the filling or the bandwidth (or the
interaction), as can be seen in Fig. 33. The scaling theory
assumes the existence of a single characteristic length
scale j, which diverges as uDu→0, and a single character-
istic frequency scale V, which vanishes as uDu→0. The
correlation length j is assumed to follow

j;uDu2n (2.298)

as D→0, which defines the correlation length exponent
n. The frequency scale V is determined from the quan-
tum dynamics of the system independently of the length
scale in general. The dynamical exponent z determines
how V vanishes as a power of D,

V;j2z;uDuzn. (2.299)

In critical phenomena, hyperscaling is believed to hold
between the upper critical dimension dc and the lower
critical dimension dl (see, for example, Ma, 1976).
Above dc , the mean-field description is justified and the
hyperscaling description breaks down, whereas below dl
the transition itself disappears. Here, dc and dl should
not be confused with dml and dil defined in Sec. II.B. dc
and dl are defined as the critical dimensions of the MIT
and not of the magnetic transition. Hyperscaling asserts
the homogeneity in the singular part of the free-energy
density fs in terms of an arbitrary length-scale transfor-
mation parameter b :

fs~D!;b2~d1z !fs~b1/nD!;Dn~d1z !. (2.300)



1106 Imada, Fujimori, and Tokura: Metal-insulator transitions
This scaling is derived, in the absence of anomalous di-
mensions, from dimensional analysis of the free-energy
density defined by

f52 lim
b→`

lim
N→`

1
bN

ln Z , (2.301)

which is proportional to [frequency]3[length]2d. The
scale transformation of the argument }b1/nD in fs is
made dimensionless using the single characteristic
length scale (2.298). When the inverse temperature b
and the linear dimension of the system size L are both
large but finite, a finite-size scaling function F is ex-
pected to hold as

fs~D!;Dn~d1z !F~j/L ,jz/b! (2.302)

in the combination of dimensionless arguments.
Here, we confirm that the hyperscaling scenario is sat-

isfied for the transition between a metal and a band in-
sulator in any number of dimensions 1<d<` . In a non-
interacting fermion system, the control parameter D is
the chemical potential that controls the filling, and the
ground-state energy has the form

Eg;E
0

kF
dk kd21

k2

2m
;

kF
d12

2~d12 !m

5
~2m !d/2

d12
D~d12 !/2, (2.303)

where D is the chemical potential measured from the
bottom of the band edge with a quadratic dispersion,
«(kF)5kF

2 /2m . Comparison of Eqs. (2.303) and (2.300)
clearly shows that the hyperscaling scenario is satisfied
with n51/2 and z52. The characteristic length j and the
characteristic energy V are nothing but the Fermi wave-
length kF

21 and the Fermi energy EF5mF5D , respec-
tively. The reason why hyperscaling holds in any dimen-
sion in this case is rather trivial, namely, the
Hamiltonian is quadratic and it is always at the Gaussian
fixed point.

2. Metal-insulator transition of a noninteracting system
by disorder

The idea of scaling for the MIT in the form first intro-
duced (Wegner, 1976, 1979; Abrahams et al., 1979) for
the Anderson localization problem is certainly equiva-
lent to the assumption of hyperscaling (Abrahams and
Lee, 1986). We introduce here the scaling function for
an external field h relevant to the order parameter

fs~D ,T ,h !5b2~d1z !Fsh~b1/nD ,byhh ! (2.304)

with the exponent yh . Since the order parameter for a
disordered transition is the single-particle density of
states r at the Fermi level, we obtain the scaling of the
density of states as

r~D!5
1
T

]f

]h U
h50

5b2~d2yh!r~b1/nD ,byhh !

}Dn~d2yh!. (2.305)
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Since the order parameter exponent is shown to be non-
critical (McKane and Stone, 1981) for a transition con-
trolled by disorder, Eq. (2.305) leads to the relation yh
5d . The order-parameter susceptibility also has the
scaling form

x~D!5
1
T

]2f

]h2 U
h50

5b2yh2dx~b1/nD ,byhh !. (2.306)

From the fluctuation dissipation theorem (Kubo, 1957),
we see that Eq. (2.306) is equal to the density-density
correlation function

C~k,v!5
i]n/]m

2iv1Dck2 (2.307)

at v50. Because of the noncriticality of the compress-
ibility at a transition driven by disorder, we have

C~k,v50 !}Dc
21k22. (2.308)

Therefore C , which follows the same scaling form as Eq.
(2.306),

C~k,v50 !5b2yh2dC~bk,v50 !, (2.309)

leads to scaling of the diffusion coefficient Dc as

Dc~k,v50 !5b21d22yhDc~bk,v50 !. (2.310)

Combined with d5yh , this is indeed consistent with the
original scaling function of the conductivity s}Dc intro-
duced by Wegner (1976) in the form

s~k,v!5b22ds~bk,bzv!. (2.311)

This demonstrates that d52 is marginal. This scaling
form has inspired subsequent studies by perturbation ex-
pansion in terms of «F /t in the weakly localized regime.
The scaling form (2.310) is supported by numerical
analysis (MacKinnon and Kramer, 1993).

In the case of the Anderson transition, the compress-
ibility k, g, and the density of states are all nonsingular
at the critical point, in contrast with the Mott transition.
This is because a finite density of states exists on both
sides of the mobility edge. As we shall see later, g and k
are scaled by Dn(d2z), leading to z5yh5d .

So far we have discussed the noninteracting case. To
treat the Anderson transition with an interaction term,
we can write the original action in the path-integral for-
malism. After making the Stratonovich-Hubbard trans-
formation for the interaction part with the replica trick
for the random potential, we can reduce the effective
action to the nonlinear sigma model,

S@Q#52
1

2G E dr tr„“W Q~r!…212HE dr tr„VQ~r!…

1Sint~Q !, (2.312)

where Q is an infinite matrix with matrix element Qnm
ab

given by spin quarternions represented by 434 complex
matrices (Finkelstein, 1983, 1984). The indices n ,m are
for the Matsubara frequencies, while a,b denote replica
indices. The c-number variables Q are obtained as the
Stratonovich variables from the interaction and the ran-
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dom potential combined, and Sint(Q) represents the in-
teraction part. The coupling constants G54/pNFDc and
H5pNF/4 are given from the density of states NF and
the diffusion constant Dc . The critical exponent n for
the transition by disorder is known to follow n>2/d
(Chayes et al., 1986). Experimentally and theoretically,
the critical exponents are examined for various cases
with and without magnetic field, magnetic impurities,
and spin-orbit scattering. For example, under the spin-
flip mechanism, as in magnetic fields, n51 has been sug-
gested experimentally [for example Dai, Zhang, and Sa-
rachik (1992) and Bishop, Spencer, and Dynes (1985)].
When antiferromagnetic symmetry breaking exists on
both sides of the MIT, it has been argued (Kirkpatrick
and Belitz, 1995) that the effect of disorder can be
mapped onto the random-field problem where the hy-
perscaling description is known to be modified even be-
low the upper critical dimension.

So far the effect of interaction has been considered in
this nonlinear sigma model only by the saddle-point ap-
proximation and hence at the Hartree-Fock level. The
critical exponents have been calculated by perturbative
renormalization-group analysis in the « expansion. In
the latter part of Sec. II.F, we shall see that the Mott
transition must be treated by taking the interaction ef-
fect beyond the Hartree-Fock level because the critical
behavior of the MIT itself is due to the critical fluctua-
tion of interaction effects. Therefore qualitatively differ-
ent aspects of scaling behavior at the Mott transition
point appear, as we discuss later.

For more detailed discussions of the MIT caused by
disorder in the case of minor contribution of electron
correlation effects at the Hartree-Fock level, readers are
referred to the extensive review articles of Lee and Ra-
makrishnan (1985) and Belitz and Kirkpatrick (1994).
An important open question remains concerning the na-
ture of the MIT when both correlation effects and dis-
order are crucially important near the Mott insulator. A
dynamic mean-field theory (infinite-dimensional ap-
proach) was recently formulated to discuss the MIT
when both electron correlation and disorder are strong
(Dobrosavljević and Kotliar, 1997). It shows the appear-
ance of a metallic non-Fermi-liquid phase near the MIT
and strong effects of correlation even away from half
filling. A recent experiment by Kravchenko et al. (1995)
appears to show the existence of a true MIT in 2D in-
teracting systems, in contrast with the conventional ar-
gument for noninteracting systems in which 2D systems
become insulating even with weak disorder. The scaling
properties of this transition have been discussed theo-
retically, for example, by Dobrosavljević et al. (1997).

3. Drude weight and charge compressibility

The Drude weight defined in Eq. (2.273) and the
charge compressibility in Eq. (2.286) are the two impor-
tant and relevant quantities needed to describe the Mott
transition. A Mott insulator has two basic properties,
one its insulating property and the other its incompress-
ibility. In particular, incompressibility is a property that
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clearly distinguishes Mott insulators from Anderson-
localized insulators, whose compressibility is generally
nonzero, because incoherent states localized around im-
purities contribute to the compressibility. The Drude
weight and the charge compressibility are both zero in
the Mott insulating phase, whereas they are both non-
zero in metallic phases. Therefore these two quantities
must both be nonanalytic at the Mott transition point.
The existence of nonanalyticities in these two quantities
at the transition point is also common in the transition
to a band insulator. However, as we shall see below, the
way of reaching the transition point, in other words, the
critical exponents and hence the universality class, can
be different for a Mott transition and for the usual band-
insulator/metal transition.

To understand the fundamental importance of the
Drude weight and the charge compressibility, it is help-
ful to represent them as stiffness constants to the twist in
boundary conditions in the path-integral formalism. The
stiffness constant to the twist is in general useful in iden-
tifying phase transitions. One simple example is found in
the ferromagnetic transition of the Ising model at the
critical temperature. Suppose one imposes two different
types of fixed boundary conditions at the boundaries in
one spatial direction, x , in a system with a hypercubic
structure. In one of the boundary conditions, one fixes
all the up spins at the boundary rx50 and rx5L , where
rx denotes the x coordinate of the spatial point r. In the
other boundary condition, one fixes all the up spins at
rx50 and all the down spins at rx5L . Let the averaged
energy under the former boundary condition be Eu and
under the latter, Et . Then dE5lim

L→`
Et2Eu must be

zero in the paramagnetic phase because the spin corre-
lation length is finite, whereas dE remains nonzero as
L→` in the ferromagnetically long-range-ordered
phase because a domain wall in the plane perpendicular
to the x axis has to be introduced only for the latter
boundary condition due to the twist. The latter bound-
ary condition has higher energy coming from the forma-
tion energy of a domain wall.

When one wishes to establish similar criteria for the
MIT, one has to work with the path-integral formalism
because this transition is intrinsically quantum mechani-
cal. Because of this quantum-mechanical nature, one has
two ways of imposing twists in the (d11)-dimensional
space of the path integral. One way is to impose twist in
the spatial direction while the other is to impose it in the
temporal direction. Since the wave function in a metal is
characterized by phase coherence, while that in an insu-
lator is characterized by incoherence of the phase, these
two types of wave functions respond differently to a
twist of the phase in boundary conditions in terms of
rigidity of the phase. In particular, in the Mott insulator,
space-time localized wave functions result in the absence
of phase rigidity in both the space and the time direc-
tions. Below it is shown that spatial and temporal
rigidities are associated with nonzero Drude weight and
nonzero charge compressibility, respectively (Continen-
tino, 1992 Imada, 1994c, 1995a, 1995b).



1108 Imada, Fujimori, and Tokura: Metal-insulator transitions
An infinitesimally small twist of the phase, f̃L , im-
posed between two boundaries rx50 and rx5L may al-
ternatively be expressed by a transformation of the
Grassmann variable introduced in Sec. II.C in the form

cs~r,t!→cs~r,t!exp@ irx¹f# , (2.313)

where ¹f5f̃L /L and rx denotes the x coordinate of r.
It has been shown by Kohn (1964), Thouless (1974), and
Shastry and Sutherland (1990) that this type of phase
twist measures the stiffness, which is proportional to the
Drude weight.

In a tight-binding Hamiltonian, the transformation
(2.313) may equivalently be replaced by transforming
the off-diagonal transfer term t(r ,r8)c̄(r)c(r8) in the
Hamiltonian as

t~r ,r8!→t~r ,r8!exp@ i~rx2rx8!f̃L /L# . (2.314)

This is nothing but the Peierls factor. In other words,
Eq. (2.314) is the same as applying a vector potential

Ax5cf̃L /Le (2.315)

in the x direction. Because a small uniform phase twist
and hence a uniform vector potential is imposed, it
should be associated with the electromagnetic response
at k5v50 in the second-order perturbation. This is in-
deed shown as follows: Under the vector potential
(2.315), the change in the Hamiltonian up to the second
order in f̃L reads

dH52
jx

L
f̃L2

Kx

2L2 f̃L
2 1O~f̃L

3 !, (2.316)

where jx and Kx are the current and the kinetic energy
operator in the x direction, respectively. In the case of
the nearest-neighbor Hubbard model (1.1a), these op-
erators in the coherent-state representation have the
form

jx52t(
k,s

sin kxc̄kscks , (2.317)

Kx522t(
k,s

cos kxc̄kscks . (2.318)

The change in the ground-state energy up to f̃L
2 is ob-

tained from the second-order perturbation as

dE5D̃
f̃L

2

L22d 1O~f̃L
4 !, (2.319)

D̃5
21
Ld S 1

2d
^K&1 (

nÞ0

u^0ujxun&u2

En2E0
D , (2.320)

for a d-dimensional hypercubic lattice. In Eq. (2.320), un&
denotes an eigenstate with the energy En and n50 de-
notes the ground state. The total average kinetic energy
is ^K&.
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Under the frequency-dependent vector potential Ax
5Ax

0eivt, the electric field of the x component is given
by

Ex5Ax
0iv/c . (2.321)

When one uses the linear-response theory (Kubo, 1957),
the current response to this electric field yields the con-
ductivity as

Im s~v!5
2e2

v
D̃ . (2.322)

From the Kramers-Kronig relation

Im s~v!5E
2`

`

dv8
P

v2v8
Re s~v8!dv8,

the change in the energy density df5dE/Ld is given by
using the Drude weight defined in Eq. (2.273) as

df5
1

2pe2

f̃L
2

L2 D1OS S f̃L

L D 4D . (2.323)

Equation (2.323) shows that the stiffness constant for
the spatial phase twist is proportional to the Drude
weight. An important point to keep in mind is that the
Drude weight is obtained by taking the limit f̃L→0 first
and L→` afterwards. If the opposite limit
limfL→0limL→` is taken, one has to take account of pos-

sible level crossings at finite f̃L in the limit L→` , which
yields in principle a different quantity, namely, the su-
perfluid density (Byers and Yang, 1961; Scalapino,
White, and Zhang, 1993).

An infinitesimally small twist of the phase f̃b imposed
between two boundaries t50 and t5b is equivalent to
transforming the Grassmann variable as

cs~r,t!→cs~r,t!exp@ itḟ# (2.324)

with ḟ5f̃b /b , where s in general denotes quantum
numbers other than the spatial coordinate. In case of the
Hubbard model, s is the spin. The transformation
(2.324) may be replaced with the transformation of the
Hamiltonian

H→H1iḟ(
r,s

c̄s~r!cs~r!. (2.325)

This equivalence is proven as follows: To calculate the
partition function, one calculates the matrix element in a
Trotter slice of the path integral:

L~t ,c ,H!5^c~t1Dt!ue2Dt•H[c†,c]uc~t!&

5^0u)
a

„11c̄a~t1Dt!ca…e
2DtH[c†,c]

3)
g

„12ca~t!ca
†
…u0&

5e2DtH[c̄~t1Dt!,c~t!]. (2.326)

If one takes the transformation (2.325), this matrix ele-
ment is transformed to
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L~t ,ceitf,H!5L~t ,c ,H!2i~Dt!ḟc̄a~t1Dt!ca~t!

1O„~Dt!2
…

5^c~t1Dt!ue2~Dt!$H[c†,c]1iḟc†c%uc~t!&

1O„~Dt!2
…. (2.327)

This proves equivalence to the transformation (2.325) in
the functional integral limit Dt→0.

From Eq. (2.325) it turns out that 2if is the same as
an additional change in the chemical potential m→m

2iḟ . Therefore the free energy as a function of the im-
posed small twist should have the form

f~ḟ !5f~ḟ50 !1
if̃b

b
r1

f̃b
2

2b2 k1O~f̃b
3 !, (2.328)

where the electron density r52]f/]m and the charge
compressibility k5]r/]m are obtained as expansion co-
efficients. Equation (2.328) shows that k indeed mea-
sures the stiffness constant of the phase in the temporal
direction.

4. Scaling of physical quantities

Combining Eqs. (2.323) and (2.328) for the Drude
weight and the compressibility, respectively, with the
finite-size scaling form derived from hyperscaling, one
obtains useful scaling forms for physical quantities
(Imada, 1994c, 1995a, 1995b; Continentino, 1994). This
is because the finite-size scaling form (2.302) is also valid
for df , namely, the difference of the free energy be-
tween the cases in the presence and the absence of the
twists. From a comparison of Eqs. (2.323) and (2.302) in
the order of L22, the scaling of D is obtained:

D}Dz (2.329)

with z5n(d1z22). Comparison of Eqs. (2.302) and
(2.328) yields, in the order of b21 and b22,

d}D2a11 (2.330)

and

k}D2a (2.331)

with a5n(z2d), where d denotes the doping concen-
tration, that is, the density measured from the Mott in-
sulator.

When hyperscaling holds, scaling of other physical
quantities can also be derived from Eqs. (2.300) and
(2.302). In the insulating phase, the charge excitation
gap Eg and the localization length j l defined in Eq.
(2.296) should be determined from the single character-
istic energy and length scale V and j, respectively. Then,

Eg}uDuzn (2.332)

and

j l}uDun (2.333)

immediately follows, where we have used the fact that n
and z are identical on both sides of the transition point.
This is shown by connecting the two sides via a route
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through the parameter space of D, temperature, and
staggered magnetic fields. On the metallic side, the scal-
ing of the specific heat C5b2]2(ln Z)/]b2 is given from
Eq. (2.302):

C5Dn~d1z !T
]2

]T2 F~j/L50,jzT !. (2.334)

At the critical point, the specific heat is given from the
D-independent term as

C}Td/z. (2.335)

If C5gT is satisfied at low temperatures in the metallic
phase, the coefficient g follows:

g}Dn~d2z !. (2.336)

In general, if C is not linear in T but proportional to Tq

as C};ḡTq, ḡ is scaled as

ḡ}Dn~d2qz !. (2.337)

Another interesting quantity is the coherence tempera-
ture TF below which the electron motion becomes quan-
tum mechanical and degenerate. It is clear that TF has to
approach zero as D→0 in a continuous transition. In
case of the Fermi liquid, TF is nothing but the Fermi
temperature. The existence of a single characteristic en-
ergy scale with singularity at D50 leads to the scaling of
TF in the form

TF}Dnz. (2.338)

5. Filling-control transition

When the control parameter D is the chemical poten-
tial m measured from the critical point mc , it represents
the filling-control MIT (FC-MIT) and, in the terminol-
ogy of critical phenomena, it is called a generic transi-
tion. In this case, it is possible to derive a useful scaling
relation. Because the doping concentration is d5
2]fs /]m52]fs /]D , it scales as

d;Dn~d1z !21. (2.339)

From the comparison of Eqs. (2.339) and (2.330), we
derive

nz51. (2.340)

The characteristic length scale is then

j;d21/d, (2.341)

which is the length scale of the ‘‘mean hole distance.’’
This is a natural consequence because the mean hole
distance is indeed a characteristic length scale which di-
verges at D50. From the scaling relation (2.340) the
number of independent critical exponents is reduced to
one in the above physical quantities. In the case of the
FC-MIT, because the doping concentration d is easier to
control than the chemical potential, various exponents
in terms of d are summarized for convenience as follows:

j;d21/d, (2.342a)

D;dz/d, (2.342b)
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k;d12z/d, (2.342c)

D;d11~z22 !/d, (2.342d)

g;d12z/d, (2.342e)

TF;dz/d. (2.342f)

6. Critical exponents of the filling-control metal-insulator
transition in one dimension

In several 1D systems, we can derive rigorous esti-
mates of various critical exponents for the cases of inte-
grable models. After comparison of various cases, it
turns out that the hyperscaling scenario holds for the
MIT in 1D with n51/2 and z52 for all cases (Imada,
1995b; see also Stafford and Millis, 1993). This means
that 1D is between the upper and lower critical dimen-
sions of MIT. We start with the case of the Hubbard
model. From the Bethe Ansatz solution, it is known that
the compressibility (Usuki, Kawakami, and Okiji, 1989),
the Drude weight (Shastry and Sutherland, 1990), and
the specific-heat coefficient (Takahashi, 1972; Usuki,
Kawakami, and Okiji, 1989) scale as

xc}d21, (2.343a)

D}d , (2.343b)

g}d21, (2.343c)

for the 1D Hubbard model. For the supersymmetric t-J
model, with t5J in 1D, the Bethe Ansatz solution shows
the same scaling as in Eqs. (2.343a)–(2.343c)
(Kawakami and Yang, 1991). This is actually the same
scaling form as we saw in Eq. (2.303) for noninteracting
fermions near a band insulator. To understand the hy-
perscaling in 1D more intuitively, it is useful to consider
the bosonized Hamiltonian derived after the asymptotic
spin-charge separation. As will be derived in Sec. II.G.1,
the Hamiltonian for the charge part has the form

Hr5E dxS pvrKr

2
Pr

21
vr

2pKr
~]xfr!2D , (2.344)

where the charge-density phase field fr and the conju-
gate momentum Pr satisfy the Bose commutation rela-
tion and constitute a noninteracting Hamiltonian with
linear dispersion, vr(k)5vruku (Emery, 1979; Haldane,
1980; Schulz, 1990b). This free-boson system indeed de-
scribes the case z51/n52 when vr}j21. It should also
be noted that, when the Hubbard model is mapped to
the massive Thirring model, the transition to a Mott in-
sulator with a Mott gap is mapped to the transition to a
band insulator with a hybridization gap (Hida, Imada,
and Ishikawa, 1983; Mori, Fukuyama, and Imada, 1994).
This also shows that in 1D, the universality class should
be the same between the metal Mott-insulator and metal
band-insulator transitions. Even in bosonic systems, the
Mott transition in 1D is characterized by the same uni-
versality class, z51/n52 (Imada, 1995b).

As for the MIT in 1D, the universality class is always
the same irrespective of the character of low-energy ex-
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citations in the metallic phase. In the metallic phase, the
low-energy spin and charge excitations can be character-
ized either by free fermions or by some type of
Tomonaga-Luttinger liquid. However, the critical expo-
nents of the MIT do not reflect this difference. In the
metallic phase, the characteristic length and energy
scales for the MIT are finite and always determine a
crossover scale, while the character of a liquid is associ-
ated with behavior below this energy scale. The present
scaling approach treats equally the zero-temperature
transition for different types of metals, while the univer-
sality class of the transition does not necessarily specify
the nature of coherent metals.

7. Critical exponents of the filling-control metal-insulator
transition in two and three dimensions

In two or three dimensions, we have no exact solution
for this problem. Therefore we have to rely on com-
bined analyses of several numerical results. The most
important question to be answered is whether 2D and
3D are lower than the upper critical dimension dc or
not. If dc,2, some type of mean-field theory would be
justified even in 2D, whereas we have to go beyond the
mean-field level if dc.2. We first review the predictions
of various mean-field theories. In the Hartree-Fock ap-
proximation, the 2D and 3D Hubbard model in general
has a phase diagram with an extended region of antifer-
romagnetic order in the metallic region around the Mott
insulator, as in Figs. 10 and 11. Therefore the MIT takes
place as a transition between insulating and metallic
states, both with antiferromagnetic order. The solution
of the unrestricted Hartree-Fock approximation shows
that incommensurate periodicity at the wave-number k
Þ(p ,p) appears at finite doping. Irrespective of com-
mensurate or incommensurate cases, the metal-insulator
transition is in general achieved by the shrinking of hole
pockets. This is the case for the transition @I-1↔M-1#
discussed in Sec. II.B. It appears to be realized in some
3D compounds with orbital degeneracy, such as
NiS22xSex , as will be discussed in Sec. IV.A.2.

Various experimental and numerical results, however,
do not support this class in 2D. This is suggested by the
absence of an antiferromagnetic metal in 2D. It means
dml.2 at least unless the orbital degeneracy is too large.
In this case possible types of transition in 2D would be
@I-1↔M-2# and @I-1↔M-3# . Quantum Monte Carlo cal-
culations first performed on the metallic side have
shown xc}d21 and an antiferromagnetic correlation
length jm}d21/2, which suggests a new universality class
(Furukawa and Imada, 1992, 1993). This implication on
the metallic side has been examined in terms of the scal-
ing theory, leading to the conclusion that there does ex-
ist a new universality class z51/n54 in this case (Imada,
1994c, 1995b). Moreover, a localization length j l scaled
by j l}um2mcu2n is predicted on the insulating side. This
prediction for the insulating side has been critically
tested by a quantum Monte Carlo calculation. The result
is j l}um2mcu2n, n50.2660.05. Therefore all the data
are consistently explained by the scaling theory with a
universality class of z54 and n51/4 for the case
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The fact that NaCuO2 is a nonmagnetic insulator (S
50) was explained by the low-spin (S50) solution of
the CI cluster model, whereas band-structure calcula-
tions using the local-density approximation (LDA;
Karlsson et al., 1992; Singh, 1994) have also given a non-
magnetic insulating ground state. Therefore it is not ob-
vious whether NaCuO2 is a correlated insulator or a
band insulator. According to the configuration-
interaction picture, the nonmagnetic ground state domi-
nated by the d9LI configuration may be viewed as a
valence-bond state in which the local spin of the d hole
(d9) and that of the ligand hole (LI ) form a local singlet.
Therefore the negative D insulator with low-spin con-
figuration may be called a ‘‘local-singlet lattice’’ or
‘‘valence-bond (Heitler-London) insulator.’’ In this pic-
ture, the wave function of the ground state is quite dif-
ferent from a single Slater determinant without electron
correlation. Such a lattice consisting of the local singlets
is, however, analytically connected to the nonmagnetic
band insulator. Because the origin of the band gaps in
insulators with small or negative D is neither U nor D
but rather the strong p-d hybridization. Sarma and co-
workers referred to them as ‘‘covalent insulators’’
(Nimkar et al., 1993). According to their Hartree-Fock
band-structure calculations on the p-d model, the char-
acter of the band gap is of strongly hybridized pd-p type
rather than pure p-p type. On the other hand, it is closer
to the p-p type according to the LDA calculation of
Singh (1994).

B. Systematics in model parameters and charge gaps

To understand the diverse physical properties of 3d
transition-metal compounds from a unified point of
view, it is important to clarify the systematics underlying
changes in the electronic structure and hence in the
model parameters, D, U , and T as functions of chemical
environment, namely, as functions of the atomic number
and valence of the transition-metal ion, the nature (elec-
tronegativity, ionic radius, etc.) of the ligand atom, and
the crystal structure. In the following, we present three
different approaches to this task, namely, (1) methods
based on the ionic crystal model, (2) semiempirical
methods based on the analysis of photoemission spectra,
and (3) theoretical methods using first-principles elec-
tronic structure calculations.

1. Ionic crystal model

The simplest method of estimating values for the pa-
rameters D and U is the ionic crystal model, which was
applied to 3d transition-metal oxides by Torrance et al.
(1991). Assuming that each atom is a point charge hav-
ing its formal ionic charge, they calculated the bare
Madelung potential energy at each atomic site and esti-
mated Deff and Ueff using the ionization potentials and
electron affinities of the constituent ions. Here, the mul-
tiplet corrections are included in the parameters thus
estimated since the experimental ionization potentials
are used.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
Using the ionization potential I(Mv1) and the elec-
tron affinity A(Mv1) of the transition-metal Mv1 ion,
Ueff is given by

Ueff5I~Mv1!2A~Mv1!2
e2

dM2M
, (3.21)

where e2/(dM2M) is the attractive Coulomb energy be-
tween nearest-neighbor metal ions that are separated by
dM2M . Here, the inclusion of the e2/(dM2M) term cor-
responds to the optical excitation, where an electron and
a hole are created on nearest-neighbor cation sites.
Without the latter term, Ueff would correspond to pho-
toemission and inverse photoemission, where the elec-
tron and hole are well separated from each other and do
not interact. Correspondingly, Deff is given by

Deff5eDVMad1I~O22!2A~Mv1!2
e2

dM2O
, (3.22)

where DVMad is the difference in the Madelung potential
between the metal site and the oxygen site and dM2O is
the nearest-neighbor metal-oxygen distance. The defini-
tion of Deff also contains the electron-hole interaction
term relevant to optical transitions.

In Fig. 47 are plotted values for Deff and Ueff esti-
mated using Eqs. (3.21) and (3.22). These Deff and Ueff
values have been calculated using the bare electrostatic
potential without screening and are therefore expected
to overestimate the actual parameter values. Indeed,
they range from 210 eV to 120 eV, extending over a
much wider energy range than parameter values esti-
mated using first-principles methods or the spectro-
scopic method. One can see from Fig. 47 that, although
the absolute magnitudes of Deff and Ueff are overesti-
mated, the qualitative trends are the same as those esti-
mated using spectroscopic methods. The charge-transfer
type (Deff,Ueff) versus Mott-Hubbard type (Deff.Ueff)
seems almost correctly predicted by this method: Late
transition-metal compounds fall into the charge-transfer
regime and early transition-metal compounds into the
Mott-Hubbard regime with some V compounds with
high valences in the charge-transfer regime. According
to the Zaanen-Sawatzky-Allen picture, a charge-transfer
insulator becomes metallic when the charge-transfer gap
of magnitude Deff2

1
2(Wp1Wd) becomes negative, while

a Mott-Hubbard-type insulator becomes metallic when
the Mott-Hubbard-type gap of magnitude Ueff2Wd be-
comes negative. The vertical (Deff5DB) and horizontal
(Ueff5UB) lines in Fig. 47 are drawn in an attempt to
separate metals from insulators. DB;10 eV and UB
;11 eV would mean that Wp;Wd;10 eV. The latter
values are, however, unrealistically large and would con-
tain other contributions (such as incomplete screening of
the bare electrostatic potentials in the ionic model).

The band gaps predicted by the ionic model were
compared with the optical band gaps of perovskite-type
RMO3 compounds, where R is La or Y, by Arima,
Tokura, and Torrance (1993). The experimentally deter-
mined optical gaps are shown in Fig. 48. The figure
shows that the lowest-energy gap is of the Mott-
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FIG. 47. Charge-transfer energies Deff and on-site d-d Cou-
lomb energies Ueff of transition-metal oxides calculated using
the ionic model by Torrance et al. (1991). The vertical (Deff
5DB) and horizontal (Ueff5UB) lines are drawn to separate
metals (solid symbols) and insulators (open symbols). The
number next to each element gives its oxidation state, e.g.,
Fe3: a-Fe2O3 and LaFeO3.

FIG. 48. Measured optical gaps for RMO3 (R5La or Y) plot-
ted against the transition-metal atom (Arima, Tokura, and
Torrance, 1993). The open symbols give charge-transfer (p-to-
d) gaps, while the solid symbols give Mott-Hubbard (d-to-d)
gaps.
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Hubbard type for M5Ti and V and is of the charge-
transfer type for M5Mn to Cu. The magnitude of the
gap shows a maximum at n55 (M5Fe), due to the
maximum stabilization of the completely filled t2g↑ and
eg↑ levels as shown in Fig. 44. The peak at n53 (M
5Cr) is due to the complete filling of the t2g↑ level. The
dip at n54 (M5Mn) seen in Fig. 48 can also be under-
stood from the multiplet correction (Fig. 44). A com-
parison of the optical gap values with those calculated
using the ionic model is made in Fig. 49, where one can
see excellent correlation between the experimental and
the calculated values except for the ;10 eV overesti-
mate of the calculated values. The ;10 eV difference
should have the same origin as the metal-insulator
boundary Deff5DB and Ueff5UB noticed in Fig. 47.

There are slightly different methods of estimating the
parameters U and D using the ionic crystal model. Ohta
et al. (1991a, 1991b) assumed that the Madelung term
eDVMad is screened by the optical dielectric constant
«` : eDVMad /«` . Zaanen and Sawatzky (1990) argued
that the dielectric constant, which describes screening
between charges separated by many lattice spacings, is
not appropriate for describing the screening process
considered here. Instead they added the polarization en-
ergies of surrounding atoms 22Epol and 24Epol to Eqs.
(3.21) and (3.22), respectively. Here, Epol is the polariza-
tion energy for a unit point charge 6e in the crystal and
is given by Epol5

1
2 ( ja jFj

2 , where Fj is the electric field
produced by the point charge at ion j and a is the po-
larizability of ion j . The Racah parameter A and charge-
transfer energy D estimated by this method for various
3d transition-metal monoxides are listed in Table III.
Here, in order to estimate Epol , parameters for NiO
have been determined so as to fit the photoemission
spectra, and the empirical 1/d4 dependence of Epol on
the interatomic distance d has been used.

2. Spectroscopic methods

The valence-band photoemission spectra of a number
of 3d transition-metal compounds have so far been ana-

FIG. 49. Experimental optical gaps vs charge-transfer (open
symbols, D) or Mott-Hubbard (solid symbols, U) gaps calcu-
lated using the ionic model. From Arima, Tokura, and Tor-
rance, 1993.
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lyzed using the CI cluster model and the Anderson im-
purity model (Fujimori et al., 1986, 1990; Eskes et al.,
1990; van Elp et al., 1991) and the model parameters D,
U , and T have been estimated. Having obtained N- and
(N21)-electron eigenstates, one calculates the photo-
emission spectrum by

r~v!5(
i

u^F i~N21 !uduFg~N !&u2

3d„v1Ei~N21 !2Eg~N !…, (3.23)

where Fg(N) and F i(N21) are the ground state and
the final states of photoemission, Eg(N) and Ei(N21)
are their energies, d is the annihilation operator of a d
electron and v[«kin2hn . Therefore m2v, where m is
the electron chemical potential, i.e., the Fermi level, is
the electron binding energy measured from the Fermi
level and r(v) with v,m gives a photoemission spec-
trum. The summation in Eq. (3.23) runs over all final
states that can be reached by the annihilation of one d
electron. By inserting Eqs. (3.1) and (3.6) into Eq.
(3.23), one obtains r(v)5( iua1bi11a2bi21¯u2d„v
1Ei(N21)2Eg(N)…. When one compares the calcu-
lated spectra with experiment, the delta function in Eq.
(3.23) is replaced by a Gaussian function (broadened by
a Lorentzian function) in order to represent the finite
bandwidths, lifetime widths, and other broadening ef-
fects. In addition, the oxygen p band is superposed on
the d-electron spectrum.

Figure 50 shows the photoemission spectra and the
best-fit results for a series of transition-metal monox-
ides. Since CuO and NiO are charge-transfer insulators,
the main band closer to the Fermi level is due to dnLI
final states and the satellite at higher binding energies is
due to dn21 final states. The separation between the
main and satellite features is given by ;U2D (plus
shifts due to p-d hybridization). In going from heavier
to lighter transition-metal atoms, the separation be-
tween the main band and the satellite decreases, mean-
ing that U2D decreases. The cluster-model analysis
shown in Fig. 50 yields a systematic increase of D with
decreasing atomic number, while the systematic de-
crease of U is not so significant. U.D for the charge-

TABLE III. On-site Coulomb (U) and exchange (J) energies
estimated using the constrained LDA method (Anisimov et al.,
1991), compared with the empirical estimates for the Racah
parameter A and charge-transfer energy D (Zaanen and Sa-
watzky, 1990). Ueff is the splitting between the dn21 and dn11

high-spin states. Energies are in eV.

U J Ueff A D

CuO/CaCuO2 7.5 0.98 6.5 4.0 4.0
NiO 8.0 0.95 7.1 (6.0) (4.92)
CoO 7.8 0.92 6.9 5.02 5.53
FeO 6.8 0.89 5.9 4.46 6.21
MnO 6.9 0.86 10.3 5.43 8.23
VO 6.7 0.81 5.9 3.54 10.47
TiO 6.6 0.78 5.8 3.02 10.01
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transfer-type CuO and NiO, and U,D for the Mott-
Hubbard-type VO (although this compound is metallic).
MnO with U;D is intermediate between the charge-
transfer-type and Mott-Hubbard-type compounds.

The photoemission spectra of the core levels of the 3d
transition-metal atom also yield nearly the same infor-
mation as the valence-band spectra (van der Laan et al.,
1981). The core-level spectra have an advantage over
the valence-band spectra in that there are no overlap-
ping features, such as the O 2p band, that obscure the
cluster-model analysis, while they have the disadvantage
that the unknown strength of the core-hole potential in-
troduces an additional parameter. The final state of
core-level photoemission is given by

F~cI N !5e1ucI dn&1e2ucI dn11LI &1¯ (3.24)

and the photoemission spectrum by

r~v!5(
i

ua1ei11a2ei21¯u2d„v1Ei~cI N !2Eg~N !…

(3.25)

FIG. 50. Valence-band photoemission spectra of CuO (Eskes
et al., 1990), NiO (Fujimori and Minami, 1984), MnO (Fuji-
mori et al., 1990) and VO (Werfel et al., 1981) and their
cluster-model analyses. D;2.75 eV and U;6.5 eV for CuO,
D;4.0 eV and U;7.5 eV for NiO, and D;7.0 eV and U
;7.5 eV for MnO. VO is metallic and no cluster-model analy-
sis could be made.
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A systematic analysis of the metal 2p core-level spec-
tra for a wide range of 3d transition-metal compounds
was attempted by Bocquet et al. (1992a; 1996) using a
simplified version of the CI cluster model, where wave
functions of single Slater determinants [Eq. (3.20)] and
Kanamori’s parameters were employed for both the
ground state and the final states. The parameter values
thus obtained are not exactly the same as, but are rea-
sonably close to, those obtained from analysis of the
valence-band photoemission spectra. More elaborate
full multiplet cluster-model calculations have been made
for the transition-metal dihalides MX2 and trivalent
transition-metal oxides M2O3 by Kotani and co-workers
(Okada et al., 1992; Uozumi et al., 1997). The D values
thus obtained for M2O3 are generally smaller than those
for the monoxides MO but show a tendency to increase
with decreasing transition-metal atomic number, as in
the case of the monoxides. Thus D seems to decrease
systematically with atomic number Z and valence v of
the transition-metal ion. This tendency is clearly seen in
Fig. 51, where D values deduced from the 2p core-level
spectra are plotted as a function of Z and v . In Fig. 52
are plotted U values, which weakly increase with the
atomic number and valence of the transition-metal due
to shrinkage of the spatial extent of the 3d orbitals. Fig-
ure 52 also shows that the decrease in the electronega-
tivity of the ligand atom (in going from oxygen to sulfur)
decreases the D value. The systematic variation of D and
U with Z and v demonstrated above may be very
crudely written as

D;D020.6Z22.5v , (3.26)

U;U010.3Z10.5v , (3.27)

where D0;26 eV and U0;22.5 eV for oxides and D0
;23.5 eV and U0;24.5 eV for sulfides.

Figure 52 shows that light transition-metal compounds
still have sizable U values, which in some cases exceed
D. This means that many light transition-metal oxides
are not ideal Mott-Hubbard-type compounds, in which
D is larger than U and the magnitude of the band gap is
;U . Indeed, recent cluster-model analyses of the metal
2p core levels of Ti and V oxides have shown that U is
comparable to or larger than D (Uozumi et al., 1993;
Okada et al., 1994; Bocquet et al., 1996). The prefactor
A102n in the off-diagonal matrix elements Teff
[A102nT increases with decreasing atomic number Z ,
not only because of the increase in T itself (Fig. 53), but
also because of the increase in (102n). Therefore, in
the light transition-metal oxides, Teff is often larger than
U and D and sets the largest energy scale. Then Teff
plays the most important role in determining the magni-
tude of the band gap, unlike in the original Zaanen-
Sawatzky-Allen picture. This situation may be described
as follows: For example, for the d1 system Ti2O3, the
occupied d band seen by photoemission is actually a
split-off state of predominantly d1LI character rather
than d0 in the photoemission final state (Uozumi et al.,
1996) in a manner similar to that shown in Fig. 42(b).
Figure 54 shows various transition-metal oxides plotted
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in the Zaanen-Sawatzky-Allen diagram (Fig. 41) but
with U/Teff and D/Teff shown in the plot instead of U/T
and D/T . Most of the V and Ti oxides are found near
the origin (U/Teff;0 and D/Teff;0) because of the large
Teff values. The parameter values shown in Fig. 54 indi-
cate that the D of compounds with high metal valencies,
such as Ti41, V41, and V51, is comparable to or lower
than U .

If there were no p-d hybridization and the band-
widths (Wp and Wd) were zero, the band gap would be
given by Deff for a charge-transfer insulator and by Ueff
for a Mott-Hubbard insulator. Values for Deff and Ueff
deduced from the cluster-model analysis of the metal 2p
core-level spectra are plotted for various transition-
metal compounds in Fig. 55 as functions of n . Figure
55(a) demonstrates that Deff decreases monotonically
with n except for the large discontinuity between n54
and 5. This variation reflects both the smooth variation
of D with n and its multiplet correction, Deff2D (Fig. 44),
which is a large negative value for n54 and a large posi-
tive value for n55. Figure 55 also shows that, for a fixed
n , Deff (and hence D) decreases as the valence of the
metal ion increases, reflecting the lowering of the 3d
energy level due to the increasing positive charges at the
transition-metal ion. Figure 55(b) shows that Ueff slowly
and monotonically increases with n except for the sharp
peak at n55. Calculated band gaps are shown in Fig. 56.
Due to p-d hybridization, the d-d and p-d characters of
the band gaps are mixed with each other and the varia-
tion of the band gap with n reflects both that of Deff and
that of Ueff . The p-d hybridization weakens the degree
of variation of the band gap compared to that of Deff or
Ueff . Moreover, p-d hybridization lowers the ground-
state energy Eg(N), thereby increasing Egap [see, Eq.
(3.5)]. In addition to the Egap peak at n55, which is
derived from the peak in Deff and/or Ueff , there is a
small peak at n53. This comes from the stabilization of
the d3 configuration due to intra-atomic exchange cou-
pling (Hund’s rule coupling), since the t2g orbitals are
half-filled by three electrons. The calculated Egap for ox-
ides of composition RMO3 compare favorably with the
experimental values (Fig. 48).

Using the cluster-model calculation, one can study
whether doped carriers occupy the metal d or ligand p
orbitals. We may define the p character of doped holes
and the d character of doped electrons from the nd val-
ues of the N-, (N21)-, and (N11)-electron states,
nd(N)([nd), nd(N21), and nd(N11), as Chole

p 51
2@nd(N)2nd(N21)# and Cel

d 5nd(N11)2nd(N).
The Chole

p shown in Fig. 57(a) generally increases with n ,
reflecting the decrease in D. The curves have a peak at
n55 and a dip at n56 due to the multiplet effect. In
Fig. 57(b), Cel

d is plotted against n . The exchange stabi-
lization and hence the reduced covalency for the d5 con-
figurations enhances the d character of doped electrons
and the p character of doped holes. One can also see
that the d character of doped electrons decreases with
the valence of the transition-metal ion, reflecting
the decrease in D with metal valence. In the above
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FIG. 51. Charge-transfer energies D of various 3d transition-metal compounds displayed with respect to (a) the transition-metal
atomic number (b) its valence, and (c) the ligand electronegativity (Bocquet et al., 1992a, 1992c, 1996).
definition those compounds which have Chole
p smaller

than 0.5 and Cel
d larger than 0.5 can be said to have d-d

gaps, while those compounds which have Chole
p larger

than 0.5 and Cel
d larger than 0.5 can be said to have p-d

gaps.
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3. First-principles methods

There has also been considerable progress in first-
principles methods for estimating the parameter values
using the local(-spin)-density approximation [L(S)DA].
Although the L(S)DA often fails to predict the correct
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FIG. 52. On-site d-d Coulomb energies U of various 3d transition-metal compounds displayed with respect to (a) the transition-
metal atomic number, (b) its valence and (c) the ligand electronegativity (Bocquet et al., 1992a, 1992c, 1996).
ground-state properties of Mott insulators, it gives basi-
cally correct model parameters.

The p-d transfer integral T [or (pds), (pdp)] can be
estimated by fitting the LDA energy band structure us-
ing a tight-binding Hamiltonian, which contains the p-d
transfer integrals as well as the p-p transfer integrals
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
@(pps), (ppp)# , the transition-metal d level «d , and
the anion p level «p . Systematic changes of these pa-
rameters with transition-metal atomic number were
found in an early study of 3d transition-metal monox-
ides (Mattheiss, 1972): Tight-binding fits to non-self-
consistent band-structure calculations showed an in-
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crease in «d2«p by ;0.7 eV per unit increase in Z , in
good agreement with the spectroscopic estimates de-
scribed above.

Using the tight-binding fit approach to band structures
calculated within the LDA, Mahadevan, Shanti, and
Sarma (1996) systematically studied a series of LaMO3
compounds. Figure 58 shows deduced values for various
transfer integrals including (pds) and (pdp) between
the metal and other oxygen orbitals. The decreasing

FIG. 53. p-d transfer integral (pds) plotted against the nomi-
nal d-electron number n (Bocquet et al., 1996).

FIG. 54. Zaanen-Sawatzky-Allen U/Teff-D/Teff plot for 3d
transition-metal oxides (Bocquet et al., 1996).
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trend of their magnitudes with atomic number is in ac-
cordance with the spectroscopic estimates shown in Fig.
53. Values for «d2«p deduced simultaneously are plot-
ted in Fig. 59, which again shows the same decreasing
trend with metal atomic number as the D values deduced
from electron spectroscopy (Fig. 51). One can see from
the figures that D is generally larger than «d2«p by a
few eV. This can be understood from the definition of
the LDA eigenvalue «LDA,d[«d

01(n2 1
2 )U [see Eq.

(3.29) below] and that of the d-electron affinity level
«d[«d

01nU [see Eqs. (3.2) and (3.3)].

FIG. 55. Effective charge-transfer energy Deff (a) and effective
averaged d-d Coulomb energy Ueff (b) of 3d transition-metal
oxides plotted against the nominal d-electron number n . The
dotted line for MO is deduced from the extrapolated values of
D and U for MO. Dashed lines represent behaviors expected
from the systematic variation of the parameters. From Saitoh,
Bocquet, et al., 1995a.
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The Coulomb interaction parameter U in solids can
be calculated using constrained local-density functional
techniques (McMahan et al., 1989, 1990; Gunnarsson
et al., 1989; Hybertsen et al., 1990). In the L(S)DA, the
one-electron potential at a given spatial point r is ap-
proximated by a function of the charge density at that
point r, r(r) [and the spin density s(r)[r↑(r)2r↓(r)].
If we use atomic orbitals as the basis set, the total energy
of a transition-metal atom is given by the d-electron
number n at the atomic site (which is here regarded as a
continuous variable) as

ELDA~n !5E01n«d
01

1
2

n~n21 !U , (3.28)

when the orbitals are not spin polarized. The one-
electron eigenvalue of the atomic d orbital is given by
the derivative of the total-energy functional with respect
to n :

«LDA,d~n !5
]ELDA~n !

]n
5«d

01S n2
1
2 DU . (3.29)

Therefore U is given by the n derivative of the eigen-
value «LDA :

U5
]«LDA,d

]n
. (3.30)

In order to evaluate this quantity, one calculates «LDA,d
for various fixed n values. To do so, one employs the
constrained LDA method in the impurity model or the
supercell model, in which the transfer integrals connect-
ing the d atomic orbitals of the central transition-metal
ion with surrounding orbitals (including anion p) are set
to zero, making n a good quantum number. The sur-
rounding orbitals are allowed to relax as a function of

FIG. 56. Band gaps Egap of 3d transition-metal compounds
calculated using the cluster model. The dotted line for MO
represents the calculated results using the extrapolated values
of D and U for MO (Saitoh, Bocquet, et al., 1995a).
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the change in n in order to include solid-state screening
effects in self-consistent calculations for the U value.

In order to deduce the charge-transfer energy D, the
affinity level, E(dn11)2E(dn)5«d [Eq. (3.3)], or the
ionization level E(dn)2E(dn21)5«d2U of the d or-
bital has to be evaluated. For this purpose, Slater’s
transition-state rule (Slater, 1974) is utilized:

«d[ELDA~dn11!2ELDA~dn!5«LDA,d~n1 1
2 !, (3.31)

which also follows from Eqs. (3.28) and (3.29). Slater’s
transition-state rule can also be applied to evaluate U :

U[@E~dn11!2E~dn!#2@E~dn!2E~dn21!#

5«LDA,d~n1 1
2 !2«LDA,d~n2 1

2 !. (3.32)

The p-level energy «p is assumed to be correctly given
by the LDA eigenvalue.

When the system is spin polarized, the LSDA func-
tional becomes a function not only of n[n↑1n↓ but also
of the d-electron number of each spin, n↑ and n↓ :

ELSDA~n↑ ,n↓!5E01n«d
01

1
2

n~n21 !U

2
1
2

n↑~n↑21 !J2
1
2

n↓~n↓21 !J , (3.33)

FIG. 57. Character of doped electron and hole in 3d
transition-metal compounds: (a) p character of the doped hole
Chole

p ; (b) d character of the doped electron Cel
d . From Saitoh,

Bocquet, et al., 1995a.
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where J([j[JH/2) is the exchange integral between the
d electrons. The one-electron eigenvalues of the spin-up
and spin-down d levels are given by (Anisimov et al.,
1991)

«LSDA,ds~n↑ ,n↓!5
]ELSDA~n↑ ,n↓!

]ns

5«d
01~n2 1

2 !U2~ns2 1
2 !J , (3.34)

where s5↑ or ↓. Using this expression, one can estimate
the parameters U and J by

U5«LSDA,d↑S n

2
1

1
2

,
n

2 D2«LSDA,d↑S n

2
1

1
2

,
n

2
21 D ,

(3.35)

J5«LSDA,d↓S n

2
1

1
2

,
n

2
2

1
2 D2«LSDA,d↑S n

2
1

1
2

,
n

2
2

1
2 D .

(3.36)

Here, it should be noted that setting n↑5n↓5
1
2 n in Eq.

(3.35) does not reduce to Eq. (3.32), meaning that the
definition of U is different between the two expressions.
J in Eq. (3.36) is equal to j , and U in Eq. (3.35) is a
certain average of u and u8 (see Table II). Parameters
thus estimated are listed in Table III for some 3d
transition-metal monoxides (Anisimov et al., 1991). A
serious shortcoming of this method is that the Coulomb
energy tends to be overestimated for light 3d transition-
metal oxides: U’s for TiO and VO were calculated too

FIG. 58. Various p-d and p-p transfer integrals in the 3d
transition-metal oxide series LaMO3 derived from a tight-
binding fit to the LDA band structures (Mahadevan et al.,
1996). The inset shows the metal-oxygen and oxygen-oxygen
distances in Å.
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large, as shown in Table III, and hence these compounds
are incorrectly predicted to be wide gap insulators. This
is related to the problem of how well the constrained
LDA works in describing the screening process in the
solid state and also to the problem of how one can de-
fine localized orbitals in a strongly hybridized system.

C. Control of model parameters in materials

1. Bandwidth control

The electron correlation strength can be controlled by
modifying the lattice parameters or the chemical compo-
sition while essentially maintaining the original lattice
structure. The on-site (U) or intersite (V) Coulomb in-
teraction is kept almost unchanged during the above
procedure and hence control of electron correlation
strength is usually achieved by control of the transfer
interaction (t) or the one-electron bandwidth (W). One
method of controlling W is the application of pressure.
In general, an application of hydrostatic pressure de-
creases the interatomic distance and hence increases the
transfer interaction. Pressure-induced Mott-insulator-to-
metal transitions are observed typically for V2O3 (see
Sec. IV.A.1) and RNiO3 (R5Pr and Nd; see Sec.
IV.A.3). Hydrostatic pressure is an ideal perturbation
that modifies W and that is suitable for investigating the
critical behavior of the phase transition. To derive a
more quantitative picture of the transition, however, we
need to know the lattice structural change under a pres-
sure that is usually not so easy to determine. In particu-
lar, in the anisotropic crystals, such as a layered perov-
skite structure, anisotropic compressibility affects W in a
complex manner.

Another method of W control is modification of the
chemical composition using the solid solution or mixed-
crystal effect. In the case of transition-metal compounds,
the electron correlation arises from a narrow d band.

FIG. 59. Variation of «d2«p for the LaMO3 series with the
metal M element. From Mahadevan et al., 1996.
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Therefore alloying of the transition-metal cations should
be avoided for W control, and the solid solution in other
chemical sites is usually attempted. One of the best-
known examples of this W control is the case of
NiS22xSex crystals (Wilson, 1985). The schematic metal-
insulator phase diagram for NiS22xSex is shown in Fig.
60 (see Sec. IV.A.2 for the details and references). The
parent compound NiS2 is a charge-transfer insulator
with the charge gap between the Ni 3d-like state (upper
Hubbard band) and the S2 2p band. The partial substi-
tution of Se on the S site enlarges the amalgamated 2p
band and increases d-p hybridization. Around x50.6
the mixed crystal NiS22xSex undergoes the insulator-
metal transition at room temperature. At low tempera-
tures, the antiferromagnetic metal (AFM) state exists in
between the Pauli paramagnetic metal (PM) and antifer-
romagnetic insulator phase. It has been confirmed that
an application of hydrostatic pressure near the
AFM-PM phase boundary reproduces a change in the
transport properties like that observed in the case of x
control, indicating a nearly identical role of pressure and
compositional control.

Another useful method of W control for a perovskite-
type compound (ABO3, see Fig. 61) is modification of
the ionic radius of the A site. The lattice distortion of
the perovskite ABO3 is governed by the so-called toler-
ance factor f , which is defined as

f5~rA1rO!/&~rB1rO!. (3.37)

Here, ri (i5A , B, or O) represents the ionic size of each
element. When f is close to 1, the cubic perovskite struc-
ture is realized, as shown in Fig. 62. As rA or equiva-
lently f decreases, the lattice structure transforms to
rhombohedral and then to orthorhombic (GdFeO3-type)
structure (Fig. 61), in which the B-O-B bond is bent and
the angle is deviated from 180°. In the case of the ortho-
rhombic lattice (the so-called GdFeO3-type lattice), the
bond angle (u) varies continuously with f (Marezio et al.,

FIG. 60. Phase diagram of NiS22xSex in the plane of tempera-
ture and x (Czjzek et al., 1976; Wilson and Pitt, 1971).
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1970; MacLean et al., 1979), as shown in Fig. 62, nearly
irrespective of the species of A and B . The bond angle
distortion decreases the one-electron bandwidth W ,
since the effective d electron transfer interaction be-
tween the neighboring B sites is governed by the super-
transfer process via the O 2p state. For example, let us
consider the hybridization between the 3d eg state and
the 2p s state in a GdFeO3-type lattice composed of the
quasi-right BO6 octahedral tilting alternatively (see Fig.
61). In the strong-ligand-field approximation, the p-d
transfer interaction tpd is scaled as tpd

0 cos(p2u), where

FIG. 61. Orthorhombically distorted perovskite (GdFeO3-
type) structure.

FIG. 62. The metal-oxygen-metal bond angles in an ortho-
rhombically distorted perovskite (GdFeO3-type) as a function
of tolerance factor.
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tpd
0 is the value for the cubic perovskite. Thus W is ap-

proximately proportional to cos2u. A similar relation will
hold approximately for the one-electron bandwidth of
the t2g electron state, although a more complicated cal-
culation for distortion-induced mixing between the t2g
and 2p s orbitals is necessary (Okimoto et al., 1995b).

An advantage of using a distorted perovskite for W
control is that the A site is not directly relevant to the
electronic properties inherent in the B-O network and
also that the W value can be varied to a considerable
extent (by 30–40 %) by choice of different rare-earth or
alkaline-earth cations as the A-site element. The best
example of successful W control is the MIT for RNiO3,
with R being the trivalent rare-earth ions (La to Lu).
The MI phase diagram for RNiO3 derived by Torrance
et al. (1992) is shown in Fig. 63. The tolerance factor f as
the abscissa represents the variation of the one-electron
bandwidth or the degree of p-d hybridization tpd . The
effective valence of Ni in RNiO3 is 31 and hence the d
electron configuration is t2g

6 eg
1 with S51/2. LaNiO3 with

the maximal tpd is metallic, while the other RNiO3 com-
pounds with smaller f or tpd are charge-transfer insula-
tors with an antiferromagnetic ground state. The MI
phase boundary is slanting in the T-f plane, as shown in
Fig. 63. For example, PrNiO3 shows a first-order I-M
transition around 200 K associated with an abrupt
change in the lattice parameters and the sudden onset of
antiferromagnetic spin ordering. For the smaller-f re-
gion, however, the paramagnetic insulating phase is
present above the antiferromagnetic insulating phase, as
in most of the correlated insulators. Again, an applica-
tion of pressure increases tpd and in fact drives the IM
transition for PrNiO3 and NdNiO3 because these two
compounds are located in the vicinity of the MI phase
boundary. (See Sec. IV.A.3 for the details.)

Such a strategy for W control in the perovskite-type
compounds has been widely used. In Sec. IV, we shall
see ample examples of W control not only for the parent
(integer-n) compounds but also for the carrier-doped

FIG. 63. Electronic phase diagram of RNiO3 (Torrance et al.,
1992).
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compounds such as R12xAxMO3 (M5Ti, V, Mn, and
Co), where the averaged ionic size of the rare-earth (R)
and alkaline-earth (A) ions on the perovskite A sites
can be systematically modified.

2. Filling control

The importance of filling control in correlated metals
has been widely recognized since the discovery of high-
temperature superconductivity as a function of filling in
the layered cuprate compounds. The standard method
of filling control is to utilize ternary or multinary com-
pounds in which ionic sites other than the 3d (4d) or 2p
electron related sites can be occupied by different-
valence ions. For example, the band filling (n) of
La22xSrxCuO4 is controlled by substitution of divalent
Sr on the trivalent La sites and is given by the relation;
n512x . Similarly, a number of filling-controlled com-
pounds can be made by forming the A-site mixed crys-
tals of perovskites, such as La12xSrxMO3, M being the
3d transition-metal element. Taking the correlated insu-
lator (Mott or CT insulator with n5integer filling) as
the parent compound, we customarily use the nomencla-
ture ‘‘hole doping’’ when the band filling is decreased
and ‘‘electron-doping’’ when it is increased, although the
carriers are not necessarily hole-like or electron-like.

Among a number of ternary and multinary com-
pounds, perovskite and related compounds are quite
suitable for filling control since their structure is very
tough in withstanding chemical modification on the
A-site. We show in Fig. 64 a guide map for the synthesis
of quasicubic and single-layered (K2NiF4-type) perov-
skite oxides of 3d transition-metals (Tokura, 1994), e.g.,
(La,Sr)MO3 and (La,Sr)2MO4, with a variable number
of 3d electrons (or with a variable filling of the
3d-electron-related band). Black bars indicate the range
of the solid solution (mixed-crystal) compounds that
have so far been successfully synthesized. We can imme-
diately see that quite a wide range of the band fillings
can be achieved by A-site substitution of perovskite-
related structures.

For the pseudocubic perovskites of 3d transition-
metal oxides, we show in Fig. 65 a schematic metal-
insulator phase diagram (Fujimori, 1992) with the rela-
tive electron correlation strength represented by U/W as
an ordinate and the band filling of the 3d band as an
abscissa. As described in the previous section, YMO3
shows stronger electron correlation than LaMO3 be-
cause of reduced W due to M-O-M bending in the dis-
torted perovskite structure. The n5integer filled 3d
transition-metal oxides with perovskite-type structure
are mostly correlated insulators, as can be seen in Fig.
65, apart from LaCuO3 and LaNiO3. A fractional va-
lence or filling drives the system metallic, yet in some
cases the compounds remain insulating for large U/W .

Nonstoichiometry or altered stoichiometry for the el-
ement composition sometimes plays the role of filling
control. A well-known example of this is the case of
YBa2Cu3O61y with variable oxygen content. The y51
compound (YBa2Cu3O7) is composed of CuO2 sheets
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FIG. 64. A guide map for the synthesis of filling-controlled (FC) 3d transition-metal oxides with perovskite and layered perovskite
(K2NiF4-type) structures.
and CuO chains. The nominal valence of Cu on the
sheet and chain is estimated to be approximately 12.25
and 2.50, respectively (Tokura et al., 1988). In other
words, the holes are almost optimally doped into the
sheet to produce superconductivity in this stoichiometric
compound. The oxygen content on the chain site can be
reduced, either partially (0,y,1) or totally (y50),
which results in a decrease in the nominal valence of Cu
on the sheet, lowering the superconducting transition
temperature Tc and finally (y,0.4) driving the system
to a Mott insulator (or more rigorously, a CT insulator).
The nominal valence of the chain-site Cu in the y50
compound is 11 due to the twofold coordination, while
that for the y51 compounds is '12.5. Thus the nomi-
nal hole concentration or Cu valence in the sheet can
apparently be controlled by oxygen nonstoichiometry on
the chain site, yet it bears a complicated relation to the
oxygen content (y) and furthermore depends on the de-
tailed ordering pattern of the oxygen on the chain sites.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
Filling control by use of nonstoichiometry (offstoichi-
ometry) has also been carried out for other systems, for
example V22yO3 (see Sec. IV.A.1) and LaTiO31y (Sec.
IV.B.1), which both show the Mott-insulator-to-metal
transition with such slight offstoichiometry as y<0.03.
The advantage of utilizing oxygen nonstoichiometry is
that one can accurately vary the filling on the same
specimen by a post-annealing procedure under oxidizing
or reducing atmosphere. Since vacancies or interstitials
may cause an additional random potential, the above
method is not appropriate for covering a broad range of
fillings.

3. Dimensionality control

Anisotropic electronic structure and the resultant an-
isotropy in the electrical and magnetic properties of d
electron systems arises in general from anisotropic net-
work patterns of covalent bondings in the compounds.
FIG. 65. A schematic metal-insulator diagram for the filling-control (FC) and bandwidth-control (BC) 3d transition-metal oxides
with perovskite structure. From Fujimori, 1992.
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The lowering of the electronic dimensionality causes a
variety of essential changes in the electronic properties
as well as changes in the interactions among the elec-
tron, spin, and lattice dynamics. Systematic control of
the electronic dimensionality while keeping the funda-
mental electronic parameters is usually not so easy. In
the ternary or multinary transition-metal oxide com-
pounds, however, we may sometimes find a homologous
series in which dimensionality control is possible to a
considerable extent, as we show in the following ex-
amples.

Typical examples of such a homologous series are the
transition-metal oxide compounds with layered perov-
skite structure (called the Ruddlesden-Popper phase),
which are represented by the chemical formula
(R ,A)n11MnO3n112y , where R and A are the trivalent
rare-earth and divalent alkaline-earth ions, respectively,
and y is the oxygen vacancy. The layered perovskite
structure, (R ,A)n11MnO3n11 , includes in the unit cell
two sets of n-MO2 sheets, which are connected via api-
cal oxygens and separated by an intergrowth (R ,A)O
layer of rock salt structure, as depicted for n51, 2, and 3
in Fig. 66. The infinite-n analog of a layered perovskite
is nothing but the conventional cubic perovskite. Filling
control can be executed by alloying the (R ,A)-sites,
such as Rn112xAxMnO3n112y . The nominal valence of
the transition metal M(v) is given by the relation v
5(3n1x22y21)/n . Thus varying n in the layered per-
ovskite structures corresponds to dimensionality control
from two to three dimensions as far as the M-O network
shape is concerned. However, the lifting of the
d-electron orbital degeneracy in the (pseudo)tetragonal
structure and/or the anisotropic distortion of the MO6

FIG. 66. Ruddlesden-Popper series (layered perovskite struc-
tures) (R ,A)n11MnO3n11 (n51, 2, and 3).
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octahedron (e.g., Jahn-Teller distortion) have to be
taken into account when considering the anisotropic na-
ture of the electronic states near the Fermi level.

A prototypical series of layered perovskites are the
titanates, Srn11TinO3n11 . They have Ti41 valence (no
3d electron) irrespective of n , showing the fairly wide
2p –3d gap exceeding 3 eV. The best known example of
a layered perovskite is La22xAxCuO4 (A5Ba, Sr, or
Ca) with n51 structure or the so-called K2NiF4 struc-
ture. This was the first compound of the high-
temperature superconducting cuprates discovered by
Bednorz and Müller (1986). The n52 analogs of the
cuprates are La22xCa11xCu2O6 or (La22xSrx)CaCuO6,
which are also superconducting for the appropriate dop-
ing range, e.g., at x;0.3 (Cava et al., 1990). The com-
pounds are regularly oxygen deficient (y51) at the api-
cal positions in between a pair of CuO2 sheets and hence
form a nearly isolated Cu-O sheet composed of CuO5
pyramidal, not octahedral, units. Similar n51,2,3,.. . ana-
logs of the layered perovskite structure are often seen as
essential building blocks of the high-temperature super-
conducting cuprates, e.g., in the compounds containing
BiO, TlO, or HgO layers. In those cases, however, each
CuO2 sheet is always nearly isolated by the oxygen-
deficient layer or by the absence of the apical oxygens
and retains its essentially single-CuO2-layer structure as
well.

In contrast, a literally dimensional crossover with n
(the number of MO2 sheets) has been observed in some
3d transition-metal oxides with layered perovskite struc-
ture. One such example is Srn11VnO3n11 (n51, 2, 3,
and infinite), in which the nominal electronic configura-
tion of the V ion is always 3d1 (S51/2). The single-
layered (n51) compound shows an insulating behavior
over the whole temperature region, whereas the n>2
compound is metallic down to near-zero temperature
(Nozaki et al., 1991). Another example of a layered per-
ovskite family showing the insulator-metal transition
with n is the case of (La,Sr)n11MnnO3n11 . As described
in detail in Sec. IV.F, the perovskite manganites un-
dergo a phase change from antiferromagnetic insulator
(Mott insulator) to ferromagnetic metal with hole dop-
ing, e.g., by partial substitution of Sr on the La sites.
Such a ferromagnetic metallic state is stabilized to gain
the kinetic energy of doped carriers under the so-called
double-exchange interaction. The single-layered (n51)
compounds La12xSr11xMnO4 are insulators with anti-
ferromagnetic or spin-glass-like ground states over the
whole nominal hole concentration (x). (The x50 corre-
sponds to a parent Mott insulator with a nominal va-
lence of Mn31). On the other hand, the ferromagnetic
metallic state appears around x50.3–0.4 in the double-
layer (n52) compounds, La22xSr11xMn2O7, perhaps
due to an increased double-exchange interaction with
effective increase of dimensionality, in which high an-
isotropy in magnetic and electronic properties is ob-
served (see Sec. IV.F.2). A doped hole in the mangan-
ites has an orbital degree of freedom in the eg state, and
hence the lifting of orbital degeneracy as well as the
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effective decrease of W should be taken into account
when considering the variation of electronic properties
with n .

A new homologous series of the ladder chain systems
of the copper oxides, Srn21Cun11O2n , may be viewed as
a successful example of dimensionality control between
1D and 2D. The structures are depicted for n53 and 5
in Fig. 67. The n5` compound corresponds to the so-
called infinite-layer compound, SrCuO2 (higher-pressure
phase), which is composed of alternating sheets of CuO2
and Sr. A strong antiferromagnetic exchange interaction
(of the order of 0.1 eV) works between the S51/2 spins
on the Cu21 sites connected via the corner oxygens (i.e.,
on the corner-sharing Cu sites) but not on the edge-
sharing Cu sites. Thus the Cu-O networks shown in Fig.
67 can be viewed as representing the two-leg and three-
leg antiferromagnetic Heisenberg spin-ladder systems. It
was theoretically predicted (Dagotto, Riera, and Scala-
pino 1992; Rice et al., 1993) that the even-leg chains
would show the singlet ground-state with a spin gap,
while the odd-leg chains would have no spin gap.

Takano and co-workers (Hiroi et al., 1991; Azuma
et al., 1994; Hiroi and Takano, 1995) have succeeded in
preparing a series of these spin-ladder compounds, n
53, 5, and infinite, with use of an ultrahigh-pressure fur-
nace. In fact, they have observed a spin-gap behavior in
the temperature dependence of the magnetic suscepti-
bility and the NMR relaxation rate (T1) for the n53
compound, but not for the n55 compound. Dagotto,
Riera, and Scalapino (1992) and Rice et al. (1993) pre-
dicted theoretically that hole-doping in a spin-ladder
system with a spin gap might produce the metallic state
with a pseudo spin gap in the underdoped region and
give rise to novel superconductivity. Unfortunately, car-
rier doping has not been successful up to now for the
spin-ladder systems shown in Fig. 67. However, it is pos-
sible for somewhat modified spin-ladder systems, and in
fact superconductivity was discovered (Uehara et al.,
1996), as detailed in Sec. IV.D.1.

IV. SOME ANOMALOUS METALS

In Table IV we summarize the basic properties of
compounds discussed in this section.

FIG. 67. Schematic structures of spin-ladder chain systems,
Srn21Cun11O2n (n53 and 5). From Azuma et al., 1994.
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A. Bandwidth-control metal-insulator transition systems

1. V2O3

Vanadium sesquioxide V2O3 and its derivatives have
been extensively studied over the past three decades as
the canonical Mott-Hubbard system. The discovery of
high-temperature superconductivity in the doped cu-
prates has revived interest in the vanadium and titanium
oxides with many similar ingredients for correlated me-
tallic states in close proximity to insulating antiferro-
magnetic states. As for undoped and doped V2O3, the
literature is vast (.500 papers), yet a review by Mott
(1990) summarizes the basic features (see also Brückner
et al., 1983). Here, we should like to focus on recent
advances in the study of V2O3 achieved in the 1990s.

V2O3 shows the corundum structure (Fig. 68), in
which the V ions are arranged in V-V pairs along the c
axis and form a honeycomb lattice in the ab plane. The
oxidation state of V ions is V31 with 3d2 configuration.
Each V ion is surrounded by an octahedron of O atoms.
The t2g orbitals are subject to lifting of degeneracy due
to trigonal distortion of the V2O3 lattice and splitting
into nondegenerate a1g and doubly degenerate eg levels.
This set of t2g levels forms a group of subbands which
are isolated in energy but do not decouple further within
the subbands. A recent LDA band-structure calculation
by Mattheiss (1994) confirms this feature. On the other
hand, the c-axis V-V pairs have a large overlap of orbit-
als in the a1g levels and hence it has been assumed in
many theoretical studies that one electron per V atom
resides in a singlet bond of a1g levels and the remaining
electron is accommodated in the doublet eg levels. How-
ever, as we discuss below, the electronic state of this
material is still controversial.

Direct information about the electronic structure of
V2O3 has been obtained by photoemission and x-ray ab-
sorption spectroscopic studies since the 1970s. As shown
in Fig. 69, the valence-band photoemission spectra of
V2O3 show the O 2p band located from ;24 to
;210 eV and the V 3d band within ;3 eV of the Fermi
level (EF), apparently indicating a typical Mott-
Hubbard-type electronic structure, i.e., D.U (Shin
et al., 1990). The peak of the V 3d band (at 1–1.5 eV
below EF) shows a weak dispersion of ;0.5 eV accord-
ing to angle-resolved photoemission spectroscopy
(Smith and Henrich, 1988). This assignment was con-
firmed by a resonant photoemission study, in which a
strong enhancement of the near-EF feature was ob-
served for photon energies above the V 3p→3d core
absorption threshold (hn*45 eV), as shown in the fig-
ure. However, hybridization between the O 2p and V
3d states is substantial, as indicated by their having
nearly the same D and U values (;4 eV), as described
in Sec. III.B (Bocquet et al., 1996). If one applies the
local-cluster configuration-interaction picture to V2O3,
the V 3d band just below EF in the photoemission spec-
tra is described as made up of bonding states which are
formed between the d1 and d2LI configurations in the
(N21)-electron final state and are pushed out of the
p-band continuum (i.e., d2LI ) due to strong p-d
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TABLE IV. Basic physical properties near metal-insulator transitions for d-electron systems discussed in this article. The comp
appearance in Sec. IV. The representative cases of the properties summarized here can be found in figures in the correspon
abbreviations are used: Mott-Hubbard type (MH), charge-transfer type (CT), antiferromagnetic order (AF), ferrimagnetic order (Fer
spin-density wave (SDW), filling control (FC), bandwidth control (BC), temperature control (T), continuous transition (C), cro
structural symmetry (S), enhanced Pauli paramagnetic (ePp), enhanced specific heat g(e). The following notations are also used: T
Tc (superconducting transitions temperature), TC (ferromagnetic Curie temperature), TN (Néel temperature), xc (critical concentrati
are not available, while ‘‘text’’ indicates that details are given in the text (Sec. IV). The resistivity denoted as ‘‘diffuse’’ indicates th
with weakly metallic dependence at high temperatures. The description of the magnetic susceptibility in metals is for the paramagn
state near the MIT. The unit of temperature T , the uniform magnetic susceptibility x, and the specific-heat coefficient g are K, 1024 e
ions), and (mJ/K2)/(Avogadro’s number of transition-metal ions), respectively.

Compounds

Mott insulator MIT Metals near MIT
Spat

dimen
of anisoType

Spin
order TN(K)

Control
parameter order r x g Spin order

FC T2 for ePp;10 e SDW for FC
V2O32y d2 MH AF ;180 BC 1 BC for BC <40 P for BC 3

;30–40
for FC for BC

T (y50.013) and FC corun
NiS22xSex d8 CT AF 40–80 BC weakly T2 ePp e AF 3

S51 T 1 ;5 [1] ;20 pyri
RNiO3 d7 CT AF 1302 BC 1 T2 ePp e P 3

S51/2 240 T 5 14 perov
NiS12xSex d8 CT AF 260 (FC)BC 1 T2 ePp e P 3

T(260 at NiA
S51 x50) 1.622.4 ;6 –7

Ca12xSrxVO3 — — — — — — T2 ePp e P 3
;2 ;9 perov

La12xSrxTiO3 d1 MH AF 140 FC C T2 ePp e P 3

S51/2 xc50.05 <5 <17 perov
La12xSrxVO3 d2 MH AF ;150 FC C ;T1.5 ePp e P 3

S51 xc50.2 ;9.5 [2] * perov
La22xSrxCuO4 d9 CT AF 300 FC C ;T text P 2

S51/2 xc;0.052 K2N
0.06 <14 SC

Nd22xCexCuO4 d9 CT AF ;240 FC C ;T2 P 2
S51/2 xc;0.14 * * SC

text
YBa2Cu3O72y d9 CT AF ;400 FC C ;T (pseudo <18 P 2

S51/2 yc;0.6 gap) SC perovski
Bi2Sr2Ca12xRxCu2O81d d9 CT * * FC C ;T * P 2

s51/2 <0.2 [3] SC
La12xSrxCuO2.5 d9 CT AF 110 FC C ;T2 ;1 <4 [4] P 1 (or

S51/2 xc;0.15
Sr142xCaxCu24O41 d9 CT gap — FC C ;T2 ;2 * P 1 (or

s51/2 xc;13.5 SC
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TABLE IV. (Continued).

Compounds

Mott insulator MIT Metals near MIT
Sp

dime
of aniType

Spin
order TN(K)

Control
parameter order r x g Spin order

BaVS3 d1 MH AF ;35 T C diffuse CW * P
S51/2 (74 K) hexa

Fe3O4 d6,d5 Ferri T 1 diffuse — — P
S52,5/2 (121 K) S Ferri sp

La12xSrxFeO3 d5 CT AF 740(x50) FC C diffuse CW * P(x,0.7) or
S55/2 134(x51) T (at Tco) AF(x51) pero

;500 at
La22xSrxNiO41y d8 CT AF x5y50 [5] FC C diffuse ;4[6] * P

xc;0.72 K2

0.8

La12xSr11xMnO4 d4 CT AF 120 — — — — — —
S52 K2

La12xSrxMnO3 d4 CT AF 140 FC C T2 — ;3 –5 F
S52 (xc;0.17) pero

La222xSr112xMn2O7 d4 CT * * FC C * — * F
S52 (xc;0.3) pero

FeSi gap — T CR diffuse CW — P
(300 K) distort

VO2 d1 (MH) gap — T 1 T? ePp — P 1 o
(340 K) S ;6 ru

Ti2O3 d1 MH gap — (FC) T CR diffuse * — P
400 K–600 K coru

LaCoO3 d6 CT gap — T CR diffuse CW — P
S50,1, ;500 K pero

2
La1.172xAxVS3.17 d2 (MH) gap — FC(xc;0.35) CR diffuse ePp e P

T (280 K m
at x50.17) 4.4 ,20

Sr2RuO4 — — — — — — ;T2 ePp 9.7 39 P
SC K2

Ca12xSrxRuO3 — — — — — — T2 CW 30 P(x,0.4)
(x,0.4) x51 F(x.0.4) pero
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(d1-d2LI ) hybridization (Uozumi et al., 1993). Cluster-
model analysis has revealed considerable weight of
charge-transfer configurations, d3LI ,d4LI 2,. . . , mixed into
the ionic d2 configuration, resulting in a net d-electron
number of nd.3.1 (Bocquet et al., 1996). This value is
considerably larger than the d-band filling or the formal
d-electron number n52 and is in good agreement with
the value (nd53.0) deduced from an analysis of core-
core-valence Auger spectra (Sawatzky and Post, 1979).
If the above local-cluster CI picture is relevant to experi-
ment, the antibonding counterpart of the split-off bond-
ing state is predicted to be observed as a satellite on the
high-binding-energy side of the O 2p band, although its
spectral weight may be much smaller than the bonding
state [due to interference between the d2→d11e and
d3LI→d2LI 1e photoemission channels; see Eq. (3.12)].
Such a spectral feature was indeed observed in an ultra-
violet photoemission study by Smith and Henrich (1988)
and in a resonant photoemission study by Park and
Allen (1997). In spite of the strong p-d hybridization
and the resulting charge-transfer satellite mechanism de-
scribed above, it is not only convenient but also realistic
to regard the d1-d2LI bonding band as an effective V 3d
band (lower Hubbard band). The 3d wave function is
thus considerably hybridized with oxygen p orbitals and
hence has a relatively small effective U of 1–2 eV (Sa-
watzky and Post, 1979) instead of the bare value U
;4 eV. Therefore the effective d bandwidth W becomes
comparable to the effective U : W;U . With these facts
in mind, one can regard V2O3 as a model Mott-Hubbard
system and the (degenerate) Hubbard model as a rel-
evant model for analyzing the physical properties of
V2O3.

The time-honored phase diagram for doped V2O3 sys-
tems, (V12xCrx)2O3 and (V12xTix)2O3 , is reproduced
in Fig. 70. The phase boundary represented by the solid
line is of first order, accompanied by thermal hysteresis
(Kuwamoto, Honig, and Appel, 1980). In a Cr-doped
system (V12xCrx)2O3 , a gradual crossover is observed
from the high-temperature paramagnetic metal (PM) to

FIG. 68. Corundum structure of V2O3.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
FIG. 69. Photoemission spectra of V2O3 in the metallic phase
taken using photon energies in the 3p-3d core excitation re-
gion. From Shin et al., 1990.

FIG. 70. Phase diagram for doped V2O3 systems,
(V12xCrx)2O3 and (V12xTix)2O3. From McWhan et al., 1971,
1973.
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the paramagnetic insulator (PI) with decreasing tem-
perature from above the 500-K region. In a
(V12xCrx)2O3 (x50.03) crystal, for example, one en-
counters the three transitions from the high-temperature
side: PM to PI, PI to PM, and PM to antiferromagnetic
insulator, the last two of which are of first order. Such a
reentrant MIT disappears for x(Cr),0.05, and with
x(Ti).0.05 the metallic phase dominates over the
whole temperature region.

As first theoretically demonstrated by Castellani et al.
(1978a, 1978b, 1978c), orbital spin coupling of the type
(2.8) is particularly important for our understanding of
the ordered spin structure in the antiferromagnetic insu-
lating (AFI) phase, since the sign and magnitude of the
spin-spin superexchange couplings are dependent on the
orbital occupancy. More recently, Rice (1995) stressed
that the interaction between orbital and spin degrees of
freedom is strong and mutually frustrating, so that the
paramagnetic phases may have strong spin and orbital
fluctuations which are unrelated to the ordered phase.
This may explain the first-order nature of the magnetic
order transition because, in general, two competing or-
der parameters easily trigger a first-order transition, as
can be seen in the Landau free-energy expansion. Rice’s
conjecture has been confirmed in a recent inelastic neu-
tron scattering measurement by Bao et al. (1997). The
momentum dependence of the spin fluctuation in the
PM state is not related at all to that of the spin ordering
in the AFI state, where the orbital ordering effect is
supposed to be important.

The pioneering and extensive work by McWhan and
coworkers (McWhan et al., 1973) demonstrated that
there is an empirical scaling relating the addition of Ti31

(Cr31) and external pressures, 0.4 GPa per 0.01 addition
of Ti31 and 0.4 Gpa per 0.01 removal of Cr31. It had
been anticipated that the doping of Cr or Ti would not
alter the electron counting of the V sites but rather
would affect the one-electron bandwidth via a slight
modification of the lattice. In the case of Cr doping, the
three 3d electrons on the impurity Cr-site may be tightly
bound, so the above hypothesis holds fairly well. By con-
trast, the doped Ti atom can be in a mixed valence be-
tween 31 and 41 , indicating a possible change in the
band filling. Thus the Ti-doping-induced MIT is not
purely a BC-MIT but has the character of an FC-MIT.

A difference between Ti doping and application of
pressure is seen in the ground state of the metallic state:
The Ti-doped metallic crystal (0.06,x,0.30) undergoes
an antiferromagnetic transition at 10–50 K (Ueda et al.,
1979), though this is not shown in Fig. 70. Ueda, Kosuge,
and Kachi (1980) also found that an electronic phase
diagram similar to the case of Ti doping occurs for O-
rich (or equivalently V-deficient) samples (V22yO3):
The AFI abruptly disappears with y.0.02 and instead
the antiferromagnetic metal (AFM) phase is present be-
low 8–10 K up to y50.05, beyond which the sample
shows a phase separation.

The spin structure in the AFM phase was recently
determined by neutron scattering for an O-rich crystal
(Bao et al., 1993; Bao, Broholm, et al., 1996). The phase
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
diagram for a V22yO3 system as a function of both pres-
sure (P) and y is displayed in Fig. 71. Notably, the me-
tallic V22yO3 develops a spiral spin-density wave
(SDW) below TN59 K (in the AFM phase), with incom-
mensurate wave vector q'1.7c* . The incommensurate
spin structure is depicted in Fig. 72: The ordered spin for
y50.027 is in the basal plane with a magnitude of
0.15mB , forming a perfect planar honeycomb antiferro-
magnet, and spins in the nearest-neighbor plane are al-
most perpendicular. More recently, a nearly identical

FIG. 71. Phase diagram for V22yO3 system as a function of
both pressure (P) and y (Carter et al., 1993, 1994). From Bao
et al., 1993.

FIG. 72. Incommensurate spin structure of V22yO3. From Bao
et al., 1993.
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spin structure and moment were confirmed to be present
in the AFM phase for a Ti-doped (x50.05) crystal.

In contrast with the robust helical SDW phase against
y in V22yO3, pressure above 2 GPa transforms a neat
V2O3 crystal to the low-temperature metallic state with-
out magnetic order (McWhan et al., 1973; Carter et al.,
1994). Importantly, there is no sign of superconductivity
down to 350 mK in this BC-MIT (Carter et al., 1994).
The magnetic properties of such a pressurized metallic
state were investigated by measurements of the 51V
NMR Knight shift and the spin-lattice relaxation rate
(1/T1 ; Takigawa et al., 1996). [At 1.83 GPa, the highest
pressure attainable in that measurement, a major frac-
tion of the sample showed the MIT around 70 K, while a
finite fraction (about 4%) of the PM phase remained at
the lowest temperature for unidentified reasons but not
due to the presence of impurities or nonstoichiometry.]
The spin susceptibility deduced from the Knight-shift
data has a maximum at 40 K. Also, a peak was observed
in the 1/T1T versus T curve at 8 K. These phenomena
resemble the spin-gap behavior observed in lightly
doped (underdoped) cuprate superconductors (see Sec.
IV.C.3), although the temperature scale differs by nearly
one order of magnitude. At the moment, it is not clear
whether this ‘‘gap’’ behavior arises from the spin contri-
bution or the orbital one due to orbital degeneracy (Cas-
tellani et al., 1978a, 1978b, 1978c; Rice, 1995). Such an
anomalous metallic state in pressurized V2O3 is particu-
larly interesting in light of the possibility of a spin-
gapped metal or an orbital contribution and warrants
further study.

The Ti-doping-induced or V-deficiency-induced MIT
is easier to investigate experimentally than the undoped
case, which needs relatively high pressure. However, the
robust presence of the SDW in the AFM phase compli-
cates the interpretation of T50 MIT in terms of the
canonical Hubbard model. Nearly a quarter of a century
ago, McWhan and co-workers (1971) found that the
T-linear term in the heat capacity in the Ti-doped (x
50.08) metallic state was very large (g580 mJ K22 per
mol. of V2O3) and that the Wilson ratio x/g51.8. On
the other hand, the Hall coefficient for the metallic V2O3
both under pressure (2 GPa, T54.2 K) and at ambient
pressure (T5150 K), is 1(3.560.4)31024 cm3/C, indi-
cating nearly one hole-type carrier per V site. Such a
large mass enhancement effect has been interpreted as a
clear manifestation of Brinkman-Rice-type mass renor-
malization on the verge of the BC-MIT. One may no-
tice, however, that the low-temperature metallic state is
different for the different cases, namely, those under
pressures of more than 2 GPa and those induced by Ti
doping (or V deficiency). The critical behavior of g as
well as of the Hall coefficient was reinvestigated recently
by Carter and her co-workers (1993, 1994). Figure 73
shows the Hall coefficient versus temperature for (a) a
series of barely metallic V-deficient crystals and (b) an
insulating crystal driven to metallic under pressure.
[Note that both cases show the SDW phase below about
10 K in the measured composition (y) and pressure re-
gion. See also the phase diagram in Fig. 71.] The respec-
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
tive Hall coefficient versus temperature curves show
maxima at around the SDW transition temperature
(;10 K). As the paramagnetic high-temperature state
approaches the SDW transition with decrease of tem-
perature, the Hall coefficient is critically enhanced from
the high-temperature value (3 –431024 cm3/C), which
is comparable with the value observed for a pressure-
driven metallic V2O3 (20 GPa, 4.2 K; McWhan et al.,
1973). Such an anomalous enhancement of the Hall co-
efficient is reminiscent of the high-temperature super-
conducting cuprates (see Sec. IV.C), although the en-
hanced amplitude is substantially smaller than that in
the high-Tc cuprates. The enhancement ceases as the
temperature is decreased below TN .

Another notable feature in Fig. 73 is that the V defi-
ciency y , or equivalently the change in the band filling,
remarkably suppresses such an enhancement of the Hall
coefficient, which is nearly linear with y around TN . The
observed behavior bears a qualitative resemblance to
the case of the hole-doped cuprates, e.g., La22xSrxCuO4
(see Sec. IV.D), in which the Hall coefficient shows a
strong temperature dependence in the underdoped re-
gion and the enhanced coefficient nearly scales with 1/x
rather than the inverse band filling (12x)21. One might
speculate that the two systems share a common under-
lying physics caused by strong antiferromagnetic spin
fluctuations. However, we need careful and further
analyses, because the enhanced amplitude is consider-
ably different (typically by an order of magnitude).

The critical behavior of the electronic specific-heat co-
efficient g is shown in Fig. 74 as a function of y (at
ambient pressure) as well as of pressure P for the spe-
cific (y50.013) crystal (Carter et al., 1993). In the light
of the phase diagram depicted in Fig. 71, the metallic
crystal whose g is shown in Fig. 74 is in the SDW state
and not in the paramagnetic phase. The aforementioned
large g for the Ti-doped (x50.95) crystal that was re-
ported by McWhan et al. (1971) must also be for the
SDW state. As seen in Fig. 74, the g for the pressurized

FIG. 73. Temperature dependence of Hall coefficient for (a) a
series of V-deficient crystals in the metallic phase and (b) an
insulating crystal driven to metallic with pressure. From Carter
et al., 1993, 1994.
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system is steeply increased as the compound approaches
the metal-insulator (AFI-AFM) phase boundary. This
was considered as a hallmark of Brinkman-Rice-type
mass enhancement, although the Brinkman-Rice model
does not consider the SDW-like spin order. The critical
behavior is given by g5g0@12(U/Uc)#21, where g0 is
the g expected for the noninteracting V 3d in a band
and U is the intra-atomic Coulomb interaction with the
value Uc at the MIT (Brinkman and Rice, 1970). The
data presented in Fig. 74 are consistent with the assump-
tion that the ratio U/Uc varies linearly with P/Pc .

In the case of an FC-MIT, on the other hand, the g
decreases as the V deficiency y approaches the MI phase
boundary. Carter et al. (1993) compared the different
cases, variations of y and P , by sorting the g into con-
tributions from the spin-fluctuation term (Moriya, 1979)
and the Brinkman-Rice term. Then the result could be
explained by assuming that the spin-fluctuation term in-
creases in proportion to the doping y , while the
Brinkman-Rice term is nearly unchanged. However, it is
not conceptionally clear whether the g can be consid-
ered as a sum of the two terms, which must have the
same physical origin, i.e., electron correlation. If further
doping were possible, the g would eventually show a
peak at the AFM(spin-density wave)-PM phase bound-
ary and then steeply decrease, as observed in another
doped Mott-Hubbard system, La12xSrxTiO3 (see Sec.
IV.B.1). In a real V22yO3 system, however, the spin or-
dering in the AFM phase is robust against y and no
paramagnetic metallic state at T50 K emerges up to the
chemical phase separation (y'0.06; Ueda, Kosuge, and
Kachi, 1980; Carter et al., 1991). When the filling is con-
trolled for the AFM phase to approach the Mott insula-
tor by fixing U/t , g should rather decrease because
the electron and hole pockets with small Fermi surfaces
shrink further. This is in contrast to the mass divergence
expected for the MIT between the PM and AFI phases.
As discussed in Secs. II.C, II.G.1, and II.G.8, metal-
insulator transitions between the AFI and AFM phases
are categorized as @I-1↔M-1# where the carrier number
vanishes at the MIT, and g may decrease toward the
MIT in three dimensions due to a vanishing density of
states at the band edge. When U/t is increased with fixed
filling, on the other hand, the mass and g may be quan-

FIG. 74. T-linear electronic specific-heat coefficient g vs the
oxygen deficiency y at ambient pressure as well as vs the pres-
sure P at y50.013. From Carter et al., 1993, 1994.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
titatively and strongly enhanced simply due to correla-
tion effects. However, we know of no reason for diver-
gence of g at the AFM-AFI boundary. The experimental
results shown in Fig. 74 appear to be consistent with
these arguments.

The effect of electron correlation in V2O3 and the re-
sultant temperature- and filling-dependent change in the
electronic state are also manifested by the optical con-
ductivity, as reported by Thomas et al. (1994) and Ro-
zenberg et al. (1995). Figure 75 shows the optical con-
ductivity spectra (essentially of the T50 limit) for the
insulating V22yO3 phase with MIT critical temperatures
Tc5154 K (y50) and Tc550 K (perhaps y50.13,
though not specified in the original report). Although
the experimental data were analyzed based on the cal-
culated result for a BC-MIT of the infinite-dimensional
Hubbard model, the experimental conditions imply that
the dominant character may not be BC-MIT but FC-
MIT.

The temperature-dependent MIT in pure V2O3 be-
tween the low-temperature antiferromagnetic insulating
phase and the high-temperature paramagnetic metallic
phase was studied using a high-resolution photoemission
technique as shown in Fig. 76 (Shin et al., 1995). In the
insulating phase below T5155 K, the total width of the
lower Hubbard band was ;3 eV, considerably larger
than that (;0.5–1 eV) deduced from the optical study
by Thomas et al. (1994). The low-intensity region near
EF in the insulating phase has a width of ;0.2 eV, much
smaller than the band gap (;0.6 eV) deduced from an
optical study of a sample with the same transition tem-
perature but twice the transport activation energy (;0.1
eV; McWhan and Remeika, 1970). Since the insulating
phase of V2O3 is a p-type semiconductor due to a small
number of V vacancies, the Fermi level should be lo-
cated closer to the top of the occupied valence band

FIG. 75. Optical conductivity spectra of V22yO3 in the metallic
phase (full lines) at T5170 K (upper) and T5300 K (lower).
The inset contains the difference of the two spectra Ds(v)
5s170 K(v)2s300 K(v). Diamonds indicate the measured dc
conductivity. Dotted lines indicate s(v) of insulating phase
with y50.013 at 10 K (upper) and y50 at 70 K (lower). From
Rozemberg et al., 1995.
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than to the bottom of the unoccupied conduction band
and should thus be separated from the top of the va-
lence band by a p-type transport activation energy. The
origin of the small discrepancy between the photoemis-
sion gap (;0.2 eV) and the activation energy ;0.1 eV
is not clear but might be due to a polaronic effect, which
generally increases the photoemission gap compared to
the transport gap for p-type semiconductors. In the in-
sulating phase, the spectrum shows a shoulder on the
low-binding-energy side of the lower Hubbard band, i.e.,
at ;0.5 eV below EF , which may correspond to the co-
herent part of the spectral function as predicted by
Hubbard-model calculations for the Mott insulating
phase (Shin et al., 1995). In the metallic phase (T
.155 K), the gap is closed and finite spectral weight
appears at EF . However, the lower Hubbard band per-
sists in the metallic phase without significant change in
its line shape from that in the insulating phase, except
for a broadening by ;0.5 eV. This indicates that elec-
tron correlation remains substantial even in the metallic
phase, in accordance with the strong mass renormaliza-
tion of conduction electrons. If we attribute the spectral
weight near EF , which appeared above the MIT tem-
perature, to that of quasiparticles, the quasiparticle spec-
tral weight Z[mb /mv [Eq. (2.73c)] is as small as ;0.05.
On the other hand, the spectral intensity at EF
@5(mk /mb)Nb(m)# is only 10–20 % of Nb(m) deduced
from the band-structure calculation (Ashkenazi and
Weger, 1973). Thus the effective mass m* /mb
5(mk /mb)(mv /mb);224, which is consistent with
m* /mb.5 deduced from the electronic specific heat of
the metallic phase of V2O3 (stabilized at low tempera-
tures by pressure or V vacancies). The small quasiparti-
cle weight Z;0.05 indicates that the metallic carriers
are largely incoherent in V2O3, consistent with the
largely incoherent optical conductivity spectra (Thomas
et al., 1994).

The high-temperature MIT in Cr-doped samples be-
tween the high-temperature paramagnetic insulating
(PI) phase and the low-temperature paramagnetic me-
tallic (PM) phase was studied by photoemission by
Smith and Henrich (1994). They found the spectral in-

FIG. 76. High-resolution photoemission spectra of V2O3 above
and below the MIT temperature (Shin et al., 1995). The Fermi
edge disappears below the transition temperature.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
tensity at EF to be reduced again above the transition,
but the high-temperature insulating phase had a larger
bandwidth than that of the low-temperature insulating
phase, which would partly be due to thermal broadening
and partly due to the absence of magnetic ordering.

As mentioned above, most of the theoretical studies
on V2O3 (Ashkenazi and Weger, 1973; Castellani, Na-
toli, and Ranninger, 1978a, 1978b, 1978c; Hertel and Ap-
pel, 1986) employed a model in which one electron oc-
cupied the eg level and the other electron occupied the
a1g level. Here, the a1g electrons were assumed to form
a Heitler-London-type singlet bond between the two ad-
jacent V atoms along the c axis (or equivalently, two
electrons occupied the bonding state formed between
the a1g orbitals of the two V ions). Thus the remaining
eg electron contributed to the magnetic and transport
properties and the Hubbard model, with one electron
per site used as an appropriate starting point for V2O3.
Recently, based on their LDA1U band-structure calcu-
lations, Czyzyk and Sawatzky (1997) proposed a new
model in which the two d electrons occupy the eg orbit-
als, forming a high-spin (S51) state. Then the experi-
mental value of the ordered magnetic moment, 1.2mB , is
naturally explained by the reduction of the high-spin
moment (2mB) due to a covalency effect. Indeed, the
nearest-neighbor V-V distance is elongated compared to
that of the ideal corundum structure, implying that the
neighboring V ions do not form a chemical bond. This
model was supported by recent V 2p x-ray absorption
spectroscopy (Park et al., 1997b). If this model is correct,
the whole scenario of V2O3 should be fundamentally
modified. Further experimental and theoretical studies
are necessary to confirm this point in the future.

2. NiS22xSex

The pyrite system NiS22xSex has long been one of the
typical compounds for BC-MIT systems. The progress
up to the mid 1980s was thoroughly reviewed by Wilson
(1985). A more concise review on the MIT in NiS22xSex
was also given by Ogawa (1979), who with his co-
workers had done pioneering work on this system. Here,
let us confine ourselves to the nature of the metallic
state on the verge of the BC-MIT in NiS22xSex .

The end member NiS2 shows a pyrite structure, in
which Ni and S2 form a NaCl-type lattice. Due to strong
intradimer bonding, the S2 pair accepts only two elec-
trons in the bonding state and hence serves as a single
anion S2

22. Ni in the pyrite is hence formally divalent
with two dg electrons. As we shall discuss below, ac-
cording to the renewed view on the correlated electronic
structure, NiS2 is a charge-transfer insulator (Fujimori,
Mamiya, et al., 1996). The other end compound NiSe2,
which is isostructural with NiS2, is a paramagnetic metal
over the whole temperature range. This is because the p
orbital of the Se2

22 ion has larger spatial extent than
that of S2

22 and hence larger p-d and p-p transfer in-
teractions. Thus NiSe2 may be viewed as derived from a
charge-transfer insulator by closing of the CT gap.
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The solid solution NiS22xSex with amalgamated p
bands undergoes the BC-MIT around x50.8 at room
temperature and around x50.45 at low temperatures
below about 100 K (Wilson and Pitt, 1971; Bouchard
et al., 1973; Jarrett et al., 1973; Czjzek et al., 1976), as
shown in Fig. 60 and also reproduced in the top panel of
Fig. 77 (Miyasaka et al., 1998). The antiferromagnetic
metal phase is present in between the antiferromagnetic
insulator and paramagnetic metal phases, which bears
some analogy to the case of V2O3 (see Sec. IV.B.1). The
AFI-AFM transition is weakly first order, while the
AFM-PM transition is second order. The AFI state of
NiS2 shows a complicated spin structure (Miyadai et al.,
1978; Panissod et al., 1979), which is a superposition of
two kinds of sublattice structures, M1 and M2. In the
AFM phase, only the M1-type (MnTe2-type) magnetic
structure appears to be preserved through the AFI-
AFM transition and the averaged staggered moment
shows a gradual decrease with x , for example, from
'1.0mB for x50 (AFI) to '0.5mB for x50.65 (AFM)
(Miyadai et al., 1983).

The electronic structure of NiS2 and NiS22ySey as well
as of the pyrite-type chalcogenides of Fe and Co has
been studied by photoemission and inverse-
photoemission spectroscopy for decades. Figure 78
shows combined photoemission and BIS spectra of the
nonmagnetic semiconductor FeS2 (Mamiya et al.,
1997b). There is a large gap between the occupied pp
band and the unoccupied antibonding ps* band, both

FIG. 77. The x dependence of x, A , and residual resistivity
(r0) for NiS22xSex . From Miyasaka et al., 1997.
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originating from the corresponding molecular orbitals of
the S2

22 molecule. The narrow t2g band of Fe 3d origin
is completely filled and located within the pp-ps* gap;
the relatively wide eg band is empty and overlaps the
empty ps* band. In going from FeS2 to CoS2 to NiS2,
the t2g band is progressively broadened and an addi-
tional feature due to the occupation of the eg band ap-
pears near EF . The transition-metal ions in the pyrite-
type compounds tend to take low-spin configurations:
S50 for Fe21(d6), S51/2 for the Co21(d7) ion, and S
51 for Ni21(d8). [No low-spin (S50) ground state is
possible for the d8 ion in a cubic crystal field.] Earlier
photoemission studies utilized ligand field theory (van
der Heide et al., 1980), molecular-orbital calculations on
MS6 clusters (E. K. Li et al., 1974) and band-structure
calculations (Krill and Amamou, 1980; Folkerts et al.,
1987) and the structures within ;4 eV from EF , were
attributed to metal 3d states. A recent resonant photo-
emission study of NiS2 (Fujimori, Mamiya, et al., 1996),
however, showed that 3p-to-3d resonance enhancement
occurs at 5–10 eV below EF rather than in the ‘‘d-band’’
region near EF , indicating that NiS2 is a charge-transfer
insulator. In going from NiS2 through CoS2 to FeS2, the
near-EF region becomes more strongly enhanced, indi-
cating that the system gradually changes from charge-
transfer-like to Mott-Hubbard-like because of the in-
creasing D (and decreasing U). The photoemission
spectra of NiS2 were analyzed using the CI cluster model

FIG. 78. Photoemission and inverse-photoemission (BIS)
spectra of FeS2 (Mamiya et al., 1997b) compared with the
band-structure calculation (Folkerts et al., 1987). Good agree-
ment is found between theory and experiment.
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(Fujimori, Mamiya, et al., 1996). The electronic structure
parameters were obtained as D51.8 eV, U53.3 eV,
and the charge transfer energy (pds)51.5 eV, confirm-
ing the p→d charge-transfer nature of the band gap. We
note that the global spectral line shape does not change
very much across the Se-substitution-induced MIT ex-
cept for a slight narrowing of the photoemission main
(d8LI final-state) peak in the metallic phase and overall
shifts of the empty d and ps* bands in the inverse-
photoemission spectra toward EF in going from the me-
tallic to the insulating phase by 0.2–0.3 eV (Mamiya
et al., 1997b) due to closure of the band gap.

Viewed from the paramagnetic metallic side, the MIT
is accompanied by strong enhancement of the electronic
specific heat(g), the paramagnetic susceptibility (x), and
the coefficient of the T2 term (A) in the temperature-
dependent resistivity, as noted by Ogawa (1979) and re-
cently reinvestigated by Miyasaka et al. (1998). The x
dependence of x, A , and the residual resistivity (r0) is
summarized in Fig. 77 (Miyasaka et al., 1998). In the PM
phase (1.0,x,2.0), g increases critically with decreas-
ing x down to the PM-AFM phase boundary (x51.0)
from 10 mJ/mol K2 for x52.0 (NiSe2) to 28 mJ/mol K2.
On the other hand, the Hall coefficient in the PM phase
is almost temperature independent and approximately
1024 cm3/C with positive sign, as shown in the x.1 data
of Fig. 79, which is consistent with a large Fermi surface
containing '2 carriers per atom of Ni. These results
clearly indicate mass renormalization as the insulator
phase is approached, while the Fermi surface is pre-
served in volume. In accord with this, the nearly
temperature-independent x is also enhanced (Ogawa,
1979) and the Wilson ratio x/g is around 2, nearly con-
stant against x .

The T2 coefficient A of the resistivity also reflects
such an x-dependent mass-renormalization effect, as
shown in the third panel of Fig. 77. Except for the region

FIG. 79. Temperature dependence of Hall coefficient in the
PM phase for x.1 of NiS22xSex . From Miyasaka et al., 1998.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
near the AFM-PM phase boundary, A is nearly propor-
tional to g2, obeying the Kadowaki-Woods relation for a
strongly correlated Fermi liquid (Kadowaki and Woods,
1986). The T2 dependence of the resistivity in the PM
phase is seen up to relatively high temperatures (say,
200 K), yet the deviation of the T2 law above some tem-
perature is conspicuous near the PM-AFM phase
boundary (x51.0) and the resistivity follows the T1.5

dependence rather than T2 dependence down to low
temperatures. In the immediate vicinity of the AFM-PM
phase boundary, T1.5 dependence persists down to
liquid-helium temperatures and hence the T2 coefficient
tends to diverge (Ogawa, 1979), as seen in the third
panel of Fig. 77. This is in line with the SCR theory
(Ueda, 1977; Moriya, 1995) and can be ascribed to
strong spin fluctuations, as discussed in Secs. II.D.1 and
II.D.8. The T1.5 dependence in this framework is derived
in Eq. (2.118). All these observations are consistent with
the canonical view of a Fermi liquid with strong electron
correlation. Because A diverges while g remains finite,
the Kadowaki-Woods relation discussed in Sec. II.D.1 is
clearly not satisfied near the AFM-PM boundary.

Let us now turn to the feature in the AFM phase near
the MI phase boundary. Hall coefficients in the AFM
phase (Fig. 79, Miyasaka et al., 1998) show a remarkable
increase with lowering of temperature. The low-
temperature value increases with decrease of x , imply-
ing that in the AFM phase the carrier number decreases
as the AFI phase is approached. It is worth noting that
the temperature-dependent enhancement of the Hall co-
efficient is discernible in the high-temperature PM phase
above TN , perhaps due to antiferromagnetic spin fluc-
tuations. Such a shrinkage of the Fermi surface in the
AFM phase is also reflected in a change in the residual
resistivity, as shown in the bottom panel of Fig. 77. The
residual resistivity, which is free from renormalization
effects of electron correlation, can be expressed with a
Fermi surface area SF and mean impurity distance Li as
(Rice and Brinkman, 1972)

r05~e2SFLi/12p3!21. (4.1)

In the high-pressure measurements, of which results are
plotted with open circles in the figure, Li was kept con-
stant and hence r0 directly probed the Fermi surface
size SF . In this system, the application of pressure was
equivalent to Se substitution for bandwidth control, as
the scaling relation indicates on the upper scale of Fig.
77 for the x50.7 crystal. The residual resistivity under
pressure remained constant in the paramagnetic metal
phase (P.2 GPa) irrespective of the x-dependent mass
renormalization, indicating that the carrier density was
essentially unchanged in the PM phase. By contrast, the
residual resistivity in the AFM phase (P,2 GPa) in-
creased rapidly towards the metal-insulator phase
boundary, indicating shrinkage of the Fermi surface or
reduction in carrier density, in accordance with the Hall
coefficient.

As the AFI-AFM phase boundary (x50.45) is ap-
proached from the metallic side, the T2 coefficient of the
resistivity (A) is again enhanced by the Brinkman-Rice
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mechanism (Husmann et al., 1996). In the low-
temperature region below 1 K near the MI phase bound-
ary, however, the conductivity s shows the T1/2 depen-
dence that is characteristic of a MIT by disorder due to
Anderson localization under the electron-electron inter-
actions, as discussed in Sec. II.G.2 (Lee and Ramakrish-
nan, 1985; Belitz and Kirkpatrick, 1994). However, in
the pressure-tuned AFM phase on the verge of the MI
phase boundary (at a distance with DP5P2Pc
,0.2 Kbar), the conductivity shows a T0.22 dependence.
Husmann et al. (1996) argued that this supports viola-
tion of hyperscaling for the AFM-AFI transition. Such a
violation had indeed been discussed in connection with
the mapping to the random-field problem (Kirkpatrick
and Belitz, 1995). For theoretical aspects of this issue,
see Sec. II.G.2.

The temperature-induced MIT in NiS22ySey with x
;0.5 has been the subject of recent high-resolution pho-
toemission studies. The angle-integrated spectra of
NiS1.55Se0.45 near EF shown in Fig. 80 exhibit spectral
weight transfer from the near-EF region to 0.2–0.4 eV
below it as the temperature increases from below Tt;60
K (AFM) to above it (PI) (Mamiya et al., 1997a). (This
can be more clearly seen by comparing the solid curve,
which represents the 15-K spectrum temperature-
broadened to 300 K, with the actual 300-K spectrum in
Fig. 80). The peak at ;50 meV below EF in the AFM
state may correspond to the quasiparticle spectral
weight, as predicted by the calculations for the Hubbard
model in three and higher dimensions discussed in
Sec. II.E.6 for the infinite-dimensional approach
(Georges et al., 1996; Ulmke et al., 1996). However, it
should be noted that the calculations were done for the
paramagnetic metal state and not for the AFM. A simi-
lar change in the spectrum near EF can be identified in a
composition-dependent MIT, between the AFM (x
.0.5) and AFI (x,0.5). In the one-electron band pic-
ture, energy bands of the paramagnetic phase are folded
into the antiferromagnetic Brillouin zone, and accord-
ingly a gap or a pseudogap tends to open at EF . Al-
though this picture contrasts with the observation of the
50-meV peak, the pseudogap at EF might collapse, if

FIG. 80. Photoemission spectra of NiS1.55Se0.45 in the antifer-
romagnetic metallic state (15 K) and the paramagnetic insulat-
ing state (300 K) (Mamiya et al., 1997a). The solid curve is the
15-K spectrum broadened with a Gaussian to ‘‘300 K.’’
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
band narrowing due to electron correlation near EF
were strong enough. The 50-meV peak was observed to
be even sharper and only very weakly dispersing in the
angle-resolved photoemission study of NiS1.5Se0.5 by
Matsuura et al. (1996; Fig. 81), indicating that the band
narrowing is indeed very strong. The spectrum of the PI
phase in Fig. 80 shows no gap at EF in spite of the fact
that the electrical conductivity is of the activated p type
with an activation energy of ;75 meV. This means that
the activated transport comes from the mobility, consis-
tent with the observed low mobility !1 cm2 V21 sec21,
which is in the range of small polaron hopping (Kwizera
et al., 1980; Thio and Bennett, 1994). Indeed, the Hall
coefficient is small and temperature independent in the
high-temperature paramagnetic insulator phase, mean-
ing that the carrier number is large (;2 hole/Ni; Mi-
yasaka et al., 1997). For pure NiS2 also, the photoemis-
sion spectrum shows almost no gap at EF , implying that
the transport activation energy (;300 meV at 300 K) is
mostly due to the mobility.

3. RNiO3

The interest in RNiO3 has recently been revived by a
systematic study on MITs by Torrance et al. (1992). The
MI phase diagram as a function of the perovskite toler-
ance factor (or equivalently the p-d transfer interaction)
was shown (Fig. 63) in Sec. III.C as a prototypical ex-
ample of a BC-MIT. The metal-insulator phase diagram
qualitatively resembles that of V2O3 (Fig. 68) or the the-
oretical prediction for the infinite-dimensional Hubbard
model, although the insulating state of RNiO3 should be
classified as a charge-transfer (CT) insulator rather than
a Mott-Hubbard insulator. Among charge-transfer-type

FIG. 81. Angle-resolved photoemission spectra of NiS1.5Se0.5
in the antiferromagnetic phase (Matsuura et al., 1996). The
spectra label the analyzer angle. The shaded feature due to a
narrow Ni 3d band shows little dispersion.
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compounds, the high valency of the Ni31 ions in RNiO3
makes its charge-transfer energy D as small as ;1 eV
and stabilizes its low-spin configuration t2g↑

3 t2g↓
3 eg↑ , as

shown by CI cluster-model analysis of photoemission
spectra (Barman et al., 1994; Mizokawa et al., 1995). Be-
cause of the small D, the ground state is a strong mixture
of d7, d8LI , and d9LI 2 configurations, resulting in a net
d-electron number as large as nd57.8. On the other
hand, the Ni magnetic moment is calculated to be
;0.91mB , in good agreement with experiment, and is
not strongly reduced from the ionic value, 1mB . This is
because for the low-spin Ni31 ion charge transfer occurs
from O 2p orbitals to eg↑ and eg↓ orbitals.

Since there is nominally one electron in the eg orbital,
as in LaMnO3, one may expect a Jahn-Teller distortion
and associated orbital ordering in the insulating RNiO3
compounds. Indeed, the unusual spin ordering struc-
tures in PrNiO3 and NdNiO3 was attributed to the for-
mation of an orbital superlattice (Garcı́a-Muñoz et al.,
1992), but so far no evidence for Jahn-Teller distortion
has been found. The magnetic ground state, described
by a commensurate k5(1/2,0,1/2) spin-density wave,
shown schematically in Fig. 82, was determined from a
neutron-scattering study by Garcı́a-Muñoz et al. (1992).
The 3D magnetic ordering consists of alternating in-
verted bilayers: AA(AA)AA(AA)... along the [001] di-
rection, with A representing the magnetic arrangement
of Ni moments in one (001) plane (Fig. 82). The tem-
perature dependence of the magnetic moment for both
compounds is shown in Fig. 83. Reflecting the first-order
nature of the transition, the abrupt appearance of the
ordered moment ('0.9mB) is observed at the metal-
insulator transition. The coexistence of F and AF inter-
actions, which manifest themselves in the ordered spin
structure, suggests the existence of an orbital superlat-
tice, such as regular occupation of either d3z22r2 or
dx22y2 type orbitals, as shown in Fig. 82. The nominal
Ni31 in RNiO3 indicates one electron accommodated in
the doubly degenerate eg orbital. Thus one should con-
sider the orbital degree of freedom (or orbital pseu-
dospin; Kugel and Khomskii, 1973, 1982) on an equal

FIG. 82. The magnetic and orbital order structure of RNiO3
determined by a neutron-scattering study by Garcı́a-Muñoz
et al. (1992).
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
footing with the spin (S51/2) degree of freedom, as dis-
cussed in Sec. II.I.1. Hartree-Fock band-structure calcu-
lations were made to investigate the possibility of orbital
ordering in these materials using the parameters D, U ,
and (pds) deduced from a cluster-model analysis of the
photoemission spectra (Mizokawa et al., 1995; Mi-
zokawa and Fujimori, 1995). The ground states with
various spin- and orbital-ordered structures (ferromag-
netic and G-, A-, and C-type antiferromagnetic order-
ing) were found to fall within a narrow energy range of
;70 meV/Ni, indicating that the complicated orbital or-
dering proposed by the neutron study, which can be
viewed as a combination of these spin-orbital ordered
structures, is quite likely. However, the Hartree-Fock
calculations predicted that an orbital superlattice of the
x2-y2 –3z2-r2-type would have an energy lower than the
above spin-orbital-ordered states. A possible cause for
the absence of Jahn-Teller distortion in RNiO3 is hy-
bridization of the eg and t2g orbitals as a result of the
pair-transfer term (ct2g↑

† ct2g↓
† ceg↑ceg↓ and its Hermitian

conjugate) in the degenerate Hubbard-model Hamil-
tonian [Eq. (2.6e)]: The Hartree-Fock approximation
gives terms of the type ct2g↑

† ceg↑ , which cause a one-
electron hybridization between the t2g and eg orbitals on
the mean-field level. There is no pair-transfer contribu-
tion in the high-spin Mn31 ion because the spin is fully
polarized.

Torrance et al. (1992) discussed the metal-insulator
transition in terms of a closing of the charge-transfer gap
with increase of p-d hybridization. To substantiate this,
Arima and Tokura (1995) investigated optical conduc-
tivity spectra at room temperature for a series of RNiO3
(metallic for R5La and Nd and insulating for R5Sm
and Y) as shown in Fig. 84. In accord with the metal-
insulator phenomena in dc conductivity, the R5Sm and
Y compounds showed decreasing optical conductivity as
v approached zero, that is, the gap feature. On the other
hand, the optical conductivity appeared to remain at a
finite value for the metallic (R5La and Nd) compounds.
The spectral feature was not a simple Drude form, but
the 2p –3d interband transitions seemed to contribute

FIG. 83. Temperature dependence of the magnetic moment
for RNiO3. From Gracı́a-Muñoz et al., 1992.
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down to the low-energy part of the conductivity spectra.
A point to be noted is the conspicuous change in the
conductivity spectra over a wide energy region up to
several eV with variation of R site: This change in the
conductivity spectra is apparently accompanied by the
isosbetic (namely, equal-absorption) point at 3.5–4.0 eV,
across which the spectral weight is transferred from
high- to low-energy regions upon closing of the CT gap.
Such a large energy scale arises from the large-energy
quantities that govern the opening and closing of the CT
gap, namely, 3d electron correlation and the p-d trans-
fer interaction. Thus collapse of the CT gap with in-
crease of the tolerance factor (e.g., from R5Sm to R
5La) is obviously not a simple closing of the gap like
that expected for a semiconductor-to-semimetal transi-
tion, but accompanies a reshuffle of the whole electronic
structure relating to the 3d –2p states.

Among the RNiO3 compounds, LaNiO3 remains me-
tallic down to low temperature, and shows features of a
correlated metallic system (Mohan Ram et al., 1984;
Vasanthacharya et al., 1984; Sreedhar et al., 1992). The
resistivity shows T2 dependence, r5r01AT2, below
50–70 K, although the (r0 ,A) values are scattered in
reports (Sreedhar et al., 1992; Xu et al., 1993), perhaps
because of difficulty in the characterization of the
sample quality (particularly the oxygen content). The
heat capacity data below 10 K can be fitted to the rela-
tion (Sreedhar et al., 1992)

C5gT1bT31dT3 lnT . (4.2)

The last term arises as a consequence of spin fluctua-
tions (Pethick and Carneiro, 1973). The electronic
specific-heat coefficient g514 mJ/mol K2 and the Pauli
magnetic susceptibility x55.131024 emu/mol are en-
hanced well above their free-electron gas values. The
Wilson ratio g/x for LaNiO3 is 2.4, which is typical of a
correlated system.

As shown in the MI phase diagram (Fig. 63), RNiO3
metals (R5Pr, Nd, Sm, and Eu) undergo a MIT with
decrease of temperature. Among them, PrNiO3 and
NdNiO3 exhibit a transition from the paramagnetic
metal (PM) to the antiferromagnetic insulator (AFI) at
around 135 K and 200 K, respectively. The MIT is first
order with thermal hysteresis (Granados et al., 1992) and

FIG. 84. Optical conductivity spectra at room temperature for
a series of RNiO3. From Arima and Tokura, 1995.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
accompanied by a subtle increase in the cell volume by
'0.02% (Torrance et al., 1992). A more detailed
neutron-diffraction study (Garcı́a-Muñoz et al., 1994) re-
vealed that the lattice transition is accompanied by
coupled tilts of NiO6 octahedra, which implies changes
in the Ni-O-Ni angles (by 20.5°) governing the transfer
interaction between the Ni eg and O 2p orbitals. How-
ever, the structural change with the transition is a subtle
one and the MIT may be viewed as electronically driven.

The control of the p-d transfer interaction by changes
in the tolerance factor can be mimicked by application
of external pressure (Canfield et al., 1993; Obradors
et al., 1993; Takagi et al., 1995). We show an example of
the pressure dependence of the r(T) curves for PrNiO3
(Obrandors et al., 1993) in Fig. 85. The metal-insulator
phase boundary under pressure for PrNiO3 and NdNiO3
can be related to the phase diagram shown in Fig. 63 by
assuming that the pressure effectively increases the Ni-
O-Ni angle (or tolerance factor). It is also noted in Fig.
85 that the r(T) curve shows an apparent reentrant fea-
ture like the M-I-M transition in the vicinity of the
pressure-induced disappearance of the AFI phase. This
was ascribed to the nature of the first-order phase tran-
sition (Obradors et al., 1993): The first-order phase
transformation occurring at TMI is incomplete due to a
slowdown of the growth rate of the insulating phase, and
the metallic phase remains dominant, producing reduced
resistivity at low temperatures.

Another important aspect of the MIT to be kept in
mind is the complicated ordered spin structure for the
AFI phase of PrNiO3 and NdNiO3 and possible orbital

FIG. 85. Pressure dependence of r(T) for PrNiO3. From
Obradors et al., 1993.
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ordering. It is essential to consider the orbital contribu-
tion to the total free energy not only for bandwidth-
controlled MITs in RNiO3 but also possibly for electron
properties in the metallic phase.

We show in Fig. 86 the temperature dependence of
the optical conductivity spectrum of NdNiO3 (Katsufuji,
Okimoto, Arima, Tokura, and Torrance, 1995), which
undergoes the PM-to-AFI transition at TMI5200 K.
Drude-like increase of the optical conductivity as v→0
is suppressed, and the opening of the charge gap is ob-
served below TMI . The missing spectral weight in the
low-energy part is redistributed over the energy region
above 0.3 eV, but such a change in spectral features in
the course of a thermally induced MIT is obviously dif-
ferent from the case of an MIT with variation of the R
site (Fig. 84) affecting the energy scale for the spectral
weight transfer. The evolution of the gap below TMI is
gradual with temperature, which appears to be well fit-
ted with the BCS function (Katsufuji, Okimoto, Arima,
Tokura, and Torrance, 1995). The feature is reminiscent
of the SDW gap, whose ground-state magnitude should
be 2D(0)'3.5kB (Overhauser, 1962). However, what
happens in NdNiO3 is beyond this picture. In the case of
Cr metal, which is a prototypical SDW system, the ex-
perimentally observed peak energy relevant to the gap
structure in the conductivity spectrum is 5.2kBTc . This
was interpreted in terms of a slight modification of the
mean-field theory by the phonon-scattering effect
(Barker et al., 1968). By contrast, the peak conductivity
energy for NdNiO3 at 9 K is '20kBTc as can be seen in
Fig. 86. This is much larger than the value expected for a
simple SDW transition and implies that electron corre-
lation plays an important role in producing the AFI
phase. The effect of the simultaneous formation of an
orbital superlattice may also be relevant to the large-gap
feature in the low-temperature phase of NdNiO3.

4. NiS

The hexagonal form of NiS (b-NiS) undergoes a first-
order phase transition from an antiferromagnetic non-
metal to a paramagnetic metal with temperature or un-

FIG. 86. Temperature dependence of optical conductivity
spectra of NdNiO3. From Katsufuji et al., 1995.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
der pressure (Sparks and Komoto, 1967; Anzai and
Ozawa, 1968). Figure 87 shows the pressure-
temperature phase diagram (McWhan et al., 1972). The
discovery of the MIT in NiS has attracted considerable
attention because the transition is not accompanied by a
change in the symmetry of the crystal structure and is
therefore a candidate for a Mott transition driven by
electron-electron interaction. The b-NiS, which is a
metastable phase at room temperature and can only be
obtained by quenching from high temperatures above
;600 K, crystallizes in the NiAs structure as shown in
Fig. 88. Here the NiS6 octahedra shares edges within the
ab plane and share faces along the c direction. The
Ni-Ni distance along the c direction is therefore short,
dNi-Ni52.65–2.7 A, making the Ni-Ni interaction along
the c axis important. At the MIT, the hexagonal lattice

FIG. 87. Pressure-temperature phase diagram of NiS samples:
circles, Tt5230 K; squares, Tt5210 K. Open symbols repre-
sent increasing pressures and closed symbols decreasing pres-
sures. From McWhan et al., 1972.

FIG. 88. Crystal structure of NiS (Matoba et al., 1991). Small
circles, Ni atoms; large circles, S atoms.
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parameters a (.3.45 A) and c (.5.3–5.4 A) decrease
by 0.3% and 1%, respectively, in going from the nonme-
tallic phase to the metallic phase, resulting in a volume
collapse as large as ;2%.

Electrical resistivity as a function of temperature
shows a jump by a factor of ;20 at the MIT temperature
Tt , as shown in Fig. 89 (Anzai and Ozawa, 1968; Sparks
and Komoto, 1968; Anzai et al., 1986). Above Tt , the
resistivity is as low as 1025 –1024 V cm and increases
with temperature. Below Tt , the resistivity is nearly
temperature independent in the 1023 V cm range down
to T;0, in contrast to typical semiconductors or insula-
tors, indicating that the low-temperature phase is a semi-
metal (White and Mott, 1971; Koehler and White, 1973)
or a degenerate semiconductor (Ohtani, Kosuge, and
Kachi, 1970; Barthelemy, Gorochov, and McKinzie,
1973). Accordingly, we refer to the low-temperature
phase as the ‘‘nonmetallic’’ phase rather than the insu-
lating or semiconducting phase. The nonmetallic phase
is always doped with holes due to a small concentration
of naturally present Ni vacancies (typically x50.002 in
Ni12xS). Tt5260 K for nearly stoichiometric samples
and decreases with Ni vacancies.

The Hall coefficient RH of Ni12xS with small x
(0.004,x,0.017) is positive in the nonmetallic phase
and n51/eRH is nearly equal to 2x per unit formula,
which indicates that one Ni vacancy produces two hole
carriers (Ohtani, Kosuge, and Kachi, 1970; Ohtani,
1974). The mobility is small (53 cm2 V21 sec21) and
nearly temperature independent, indicating transport in
a narrow band. The Hall coefficient in the metallic phase
is smaller than in the nonmetallic phase by a factor of
;40 and becomes negative (Barthelemy, Gorochov, and
McKinzie, 1973), meaning that in going from the non-
metallic to the metallic phase, the number of carriers
dramatically increases. Presumably the character of the
Fermi surfaces changes from ‘‘small’’ hole pockets to
‘‘large’’ electronlike (Luttinger) Fermi surfaces. Ther-

FIG. 89. Electrical resistivity of NiS12ySey : Open symbols are
for heating runs, closed symbols for cooling runs. From Anzai
et al., 1986.
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moelectric power is positive and relatively large below
Tt and becomes negative and small above Tt , consistent
with the sign of the Hall coefficient (Ohtani, 1974; Ma-
toba, Anzai, and Fujimori, 1986). Below Tt , the Seebeck
coefficient is roughly proportional to the temperature, a
characteristic of a degenerate semiconductor, with some
phonon-drag contribution. Above Tt , the Seebeck coef-
ficient is negative and small, but again is proportional to
the temperature, showing more typical metallic behav-
ior. If there is one type of carrier in each of the metallic
and nonmetallic phases, the jump of the resistivity at the
MIT by a factor of ;20 and that of the Hall coefficient
by a factor of ;40 means that the mobility in the metal-
lic phase is similar to, or somewhat smaller than, that in
the nonmetallic phase. However, according to band-
structure calculations, the metallic phase has several
Fermi surfaces (Mattheiss, 1974; Nakamura et al.,
1994b), and the simple relation n51/eRH may not hold
in the metallic phase.

According to neutron-diffraction studies (Sparks and
Komoto, 1968; Coey et al., 1974), the magnetic moment
of Ni in NiS is 1.5–1.7mB at T54.2 K and it is ferromag-
netically coupled within the ab plane and antiferromag-
netically coupled along the c axis. The magnetic suscep-
tibility of NiS is flat below Tt and abruptly decreases at
T5Tt , as shown in Fig. 90 (Anzai et al., 1986). The sus-
ceptibility above Tt is not typical Pauli paramagnetism
and has a positive slope (dx/dT.0). (Unfortunately,
measurements above ;300 K are prohibited by the
phase instability). The magnetic susceptibility of single
crystals has shown that the susceptibility x' perpendicu-
lar to the magnetization axis (c axis) is very small below
Tt (Koehler and White, 1973); therefore the exchange
coupling constant J between two Ni atoms along the c
direction (5NmB

2 /2zx' , where z52 is the number of
nearest-neighbor Ni ions) is as large as 0.14 eV. An in-

FIG. 90. Magnetic susceptibility of NiS12ySey . Open circles
are for heating runs, filled circles for cooling runs. From Anzai
et al., 1986.
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elastic neutron-scattering study indeed revealed a high
spin-wave velocity along the c axis and J50.1 eV was
obtained (Hutchings, Parisot, and Tocchetti, 1978).
From this J value, the Néel temperature was predicted
to be TN;1000 K, which is much higher than Tt
5260 K. This indicates that the antiferromagnetic-to-
paramagnetic transition is not driven by a spin disorder-
ing along the c axis but by a spin disorder within the ab
plane or by the appearance of the metallic phase itself.
The strong exchange coupling J suggests the existence of
antiferromagnetic correlation in the paramagnetic me-
tallic state and is possibly the origin of the positive slope
in the magnetic susceptibility of the metallic phase. This
has some analogy with the metallic phase of high-Tc cu-
prates, although in NiS the electronic transport is three
dimensional and the magnetic correlation is rather one
dimensional.

A pressure-induced MIT is an ideal BC-MIT, for
which interpretation of experimental data is most
straightforward. On the other hand, it is rather difficult
to obtain a set of accurate experimental data under high
pressure. Substitution of Se for S causes an effect almost
identical to pressure as far as the electronic phase dia-
grams are concerned (see Fig. 87 and the x50 curve in
Fig. 91). However, it should be noted that Se substitu-
tion increases the crystal volume rather than decreases it
(Barthelemy et al., 1976). NiS12ySey is a charge-transfer-
type compound (see below) whose band gap is formed
between the occupied chalcogen p and empty Ni 3d
states. Since the Se 4p band is higher than the S 3p
band, Se substitution reduces the band gap and drives
the system toward the metallic phase. The transition
temperature Tt and the magnitude of the resistivity
jump at Tt decrease with Se substitution in NiS12ySey .
In fact, Tt is completely suppressed above y.0.13,
where the electrical resistivity of the metallic phase can
be studied down to T;0. The resistivity of Ni0.98S12ySey
shows a T2 behavior at low temperatures and is ana-
lyzed using the formula r5r01AT2 (Fig. 92) (Matoba
and Anzai, 1987). The coefficient A , however, shows

FIG. 91. Composition dependence of the transition tempera-
ture Tt in Ni12xS12ySey (Matoba, Anzai, and Fujimori, 1991).
Solid symbols are cooling runs and open symbols heating runs.
The inset shows a schematic T-x-y phase diagram.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
only a weak composition (y) dependence and does not
show an increase towards the MIT (y50.1 in
Ni0.98S12ySey). This is contrasted with the A of
NiS22ySey in the PM phase, which exhibits divergent
behavior towards the PM-AFM transition, as predicted
by spin-fluctuation theory (Moriya, 1985). Presumably,
the first-order composition-dependent MIT in Se-
substituted NiS has prevented our approaching the criti-
cal region. Indeed, the discontinuity of the lattice pa-
rameters at the y-dependent MIT is substantial at T;0.
Figure 90 shows that the magnetic susceptibility as well
as the positive slope dx/dT in the metallic phase de-
creases with Se concentration (Matoba, Anzai, and Fuji-
mori, 1991). This may indicate that the antiferromag-
netic spin fluctuations are weakened as the system is
driven away from the MIT boundary into the metallic
region. (The y dependence of r0 was explained as due to
disorder scattering.)

An FC-MIT in NiS can be studied in Ni12xS (Sparks
and Komoto, 1968). The MIT temperature Tt decreases
with x in a manner analogous to that for pressure and Se

FIG. 92. Electrical resistivity of Ni0.98S12ySey . (a) Tempera-
ture vs resistivity curves; (b) its low-temperature part is fitted
to r5r01AT2 and A and r0 are plotted against Se concentra-
tion y . From Matoba and Anzai, 1987.
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substitution, and Tt is completely suppressed at x
.0.033. This can be seen from the phase diagram of the
Ni12xS12ySey system shown in Fig. 91: 4x and y show
almost the same effect on Tt . The changes in the ther-
moelectric power of NiS12ySey with Se content (Ma-
toba, Anzai, and Fujimori, 1991) are also almost identi-
cal to those of Ni12xS (Ohtani, 1974) if ‘‘4x-y scaling’’ is
applied. It should be noted that the Ni vacancies not
only introduce holes but also decrease the volume, so
that the Ni12xS system is influenced by a combination of
filling and bandwidth control. The volume contraction of
Ni12xS in going from x50 to x50.033 corresponds to
that of NiS under pressure of ;10 kbar, which is half of
the pressure (23 kbar) necessary to induce the MIT in
NiS.

There have been studies of another type of substitu-
tion carried out on NiS, namely, 3d transition-metal sub-
stitution for Ni. It is not clear a priori whether this kind
of substitution belongs to the BC type or the FC type;
various experimental results and chemical consider-
ations have been combined to estimate the number and
sign of carriers in the substituted materials. Substituted
Fe and Co are considered to form Fe21 and Co21 ions
from the chemical point of view. This is consistent with
the increase of Tt for Fe and the decrease of Tt for Co
because FeS is more insulating and CoS more metallic
(Coey and Roux-Buisson, 1979; Futami and Anzai,
1984). Substitution of Ti, V, or Cr for Ni is more subtle,
since these elements can take various valence states in
sulfides, although Ti and V tend to take valences higher
than two (Anzai, Futami, and Sawa, 1981). Chemical
shifts of core-level x-ray photoemission spectroscopy
peaks indicated that Ti, V, and Cr are in the trivalent
state and act as donors. Indeed, thermoelectric power in
the nonmetallic phase changes the sign from positive to
negative at around 2–5% V or Cr substitutions, indicat-
ing n-type doping to the NiS host (Matoba, Anzai, and
Fujimori, 1994). Thermoelectric power in the metallic
phase, on the other hand, remains negative, probably
indicating that the transport properties of the metallic
state with large Fermi surfaces is not sensitive to a small
change in the band filling.

Now, we characterize more quantitatively the proper-
ties of conduction electrons in the metallic phase of NiS.
The electronic contribution to the specific heat of NiS in
the metallic phase is difficult to estimate because of the
high MIT temperature. Brusetti et al. (1980) estimated
the gT term by subtracting calculated lattice contribu-
tions from the measured entropy change at the MIT.
The deduced value was g.6 mJ mol21 K22, which was
incidentally close to the g value of Ni12xS with x50.04
20.05, in which Tt is suppressed to zero. On the other
hand, the magnetic susceptibility decreases with increas-
ing Se concentration, as shown in Fig. 90. Thus the Wil-
son ratio (pkB

2 /3mB
2 )(x/g) decreases from ;2.9 for NiS

(x52.3631024 emu mol21) to ;2.1 for the 18% Se-
substituted sample (x51.7531024 emu mol21) if the
same g is assumed. The g and x of Ni0.98S12xSex were
recently studied over the wide range of 0.1,x<1 by
Wada et al. (1997) and are plotted in Fig. 93, where one
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can see that the g is constant and that the magnetic sus-
ceptibility is weakly enhanced near x50, resulting in a
weak enhancement of the Wilson ratio near x50. If we
compare the g and the DOS at EF deduced from an
LDA band-structure calculation in the nonmagnetic
state (Terakura, 1987), we obtain a mass enhancement
factor m* /mb51.7. If A for Ni0.98S12ySey with y;0.1 is
employed, we obtain a Kadowaki-Woods ratio of A/g2

;531025 mV cm(mol K/mJ)2, which is closer to
(though significantly larger than) the strong-correlation
limit 1.031025 rather than the weak correlation limit
0.431026.

Direct information about low-energy excitations was
obtained in an infrared optical reflection study by
Barker and Remeika (1974). Figure 94(a) shows the op-
tical conductivity spectra obtained from the Kramers-
Kronig analysis of the reflectivity data. The spectrum of
the nonmetallic phase shows a threshold at 0.14 eV and
a peak at 0.4 eV due to gap excitations. If the minimum
band gap is an indirect one, the transport gap (indirect
gap) can be much smaller than the optical gap. A non-
self-consistent band-structure calculation by Mattheiss
(1974) predicts a direct gap of 0.15 eV, whereas the
minimum gap of indirect type is vanishingly small [Fig.
94(b)]. The ratio between the magnitude of the gap and
that of the transition temperature, 2D(0)/kBTt , is ;6 if
we take the threshold energy 2D(0)50.14 eV or ;18 if
we take the peak energy 2D(0)50.4 eV. This indicates
that the gap cannot be an ordinary SDW gap and that its
opening involves electron correlation. Figure 94(a) also
shows that the spectrum changes over a wide energy

FIG. 93. Magnetic susceptibility x at 300 K, the electronic
specific-heat coefficient g, and the Wilson ratio for
Ni0.98S12xSex . From Wada et al., 1997.
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range (even above hn;1 eV) between the two phases,
indicating that the MIT reorganizes the electronic struc-
ture up to high energies. The Drude peak in the metallic
phase is broad and the scattering rate of charge carriers
is estimated to be as high as 1/t;0.3 eV (if one ignores
the frequency dependence of 1/t). The width of the
Drude peak in the nonmetallic phase is an order of mag-
nitude smaller than that in the metallic phase: 1/t
;0.03 eV. From the mobility ratio between the metallic
(M) and nonmetallic (NM) phases, mM /mNM;1/2 (if we
assume n51/eRH in both phases) and from the scatter-
ing rate ratio tM /tNM;1/10, we may deduce the effec-
tive mass ratio mM* /mNM* ;1/5.

In order to explain the unusual transport and mag-
netic properties of NiS and its MIT mechanism, various
models of the electronic structure have been proposed
(White and Mott, 1971; Koehler and White, 1973).
These models consider the eg band of Ni near EF in the
nonmagnetic and magnetic states, with the t2g and S 3p
bands completely occupied. Earlier band-structure cal-
culations (Tyler and Fry, 1971; Kasowski, 1973) did not
take into account the magnetic ordering and were not

FIG. 94. Optical conductivity and band structure of NiS: (a)
Optical conductivity. Solid curve, metallic phase; dashed curve,
nonmetallic phase (Barker and Remeika, 1974). (b) Band
structure of NiS in the antiferromagnetic state calculated by
Mattheiss (1974). The arrows show direct gaps while the indi-
rect gap is vanishingly small.
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able to predict the insulating behavior of the antiferro-
magnetic phase, whereas the calculated DOS well ex-
plains the overall line shape of the photoemission spec-
tra (Hüfner and Wertheim, 1973). Mattheiss (1974)
simulated the antiferromagnetic state within the non-
self-consistent augmented plane-wave (APW) method
by introducing a potential difference (6Vs) between
the muffin-tin spheres of the spin-up and spin-down Ni
sites and succeeded in opening a gap as described in Fig.
94(b). More recently, Terakura (1987) performed LSDA
calculations for the antiferromagnetic as well as for the
paramagnetic state, using the self-consistent linearized
APW (LAPW) method. However, the self-consistent so-
lution converged to a nonmagnetic state for the experi-
mental lattice constants. In order to obtain the antifer-
romagnetic solution with a finite band gap, an external
staggered magnetic field was applied, but the induced
magnetic moment was still as small as ;1mB , compared
to the experimental value of 1.5–1.7mB (Fujimori, Tera-
kura, et al., 1988). Figure 95(a) shows that although the
calculated DOS of the paramagnetic state is in rather
good agreement with experiment, the DOS for the anti-
ferromagnetic state is quite different from the experi-
mental line shape. The discrepancy was traced back to
the exchange splitting as large as ;2 eV of the Ni 3d
band in the calculated antiferromagnetic DOS, which
vanishes in the nonmagnetic state.

As many difficulties are encountered in the band-
theoretical description of the electronic structure of NiS,
a different approach has been taken based on the NiS6
cluster model, in which electron correlation is fully
taken into account within a small cluster (Fujimori,
Terakura, et al., 1988), in analogy with the local cluster
picture of NiO. Figure 95(b) shows that the theoretical
photoemission spectrum calculated using the CI cluster
model and the measured photoemission spectrum are in
good agreement with each other. The result shows that
the peak located from 0 to ;3 eV below EF , which was
previously assigned to the Ni 3d band, is now assigned
to the d8LI charge-transfer final states, and the d7 final
states appear as satellites 5–10 eV below EF (Hüfner,
Riesterer, and Hulliger, 1985). Although the cluster
model is too crude to describe the electronic structure
near EF , such as the semiconducting band gap of order
0.1 eV and the Fermi surfaces, it well describes the spec-
tral weight distribution on the coarse energy scale of 1
eV to several eV. The calculated magnetic moment at
the Ni site is found to be 1.7mB , in good agreement with
experiment. This means that the reduction of the mag-
netic moment from the ionic value of Ni21 ion is largely
due to p-d covalency and we do not need to invoke
itinerant-electron antiferromagnetism as previously sug-
gested (Coey et al., 1974).

Since the CI cluster model can describe localized elec-
tronic states with a finite local magnetic moment, the
good agreement between the experimental and theoret-
ical photoemission spectra and the magnetic moment in-
dicates that the electronic structure of the nonmetallic
phase of NiS is essentially that of a Mott insulator. On
the other hand, the loss of local magnetic moment in the
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FIG. 95. Photoemission spectra of NiS in the metallic (T
5300 K) and nonmetallic (T580 K) phases compared with (a)
the band-structure DOS of the nonmagnetic and antiferromag-
netic states and (b) the CI cluster-model calculation (Fujimori
et al., 1988). Best-fit parameters are D52, U54, and (pds)
521.5 eV.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
metallic phase would naturally cast doubt upon the va-
lidity of the model in that phase, even though the calcu-
lated and measured photoemission spectra are in good
agreement with each other. In order to reconcile the
spectroscopic data and the nonmagnetic behavior, one
could argue that the local magnetic moment exists on
the time scale of photoemission (10215 sec), but its fast
quantum fluctuations lead to the Pauli paramagnetism.
The unusual paramagnetic metallic state has been cor-
roborated by an exact diagonalization study of a Ni4X4
cluster, where X is a sulfur atom in the present case and
the degeneracy of the eg orbitals is taken into account
(Takahashi and Kanamori, 1991). Takahashi and Kan-
amori found that between the insulating phase (for large
D), where the Ni ions are in the ‘‘high-spin’’ state
(^SNi

2 &;2) and are antiferromagnetically coupled, and
the metallic phase (for small D), where they are in the
‘‘low-spin’’ state (^SNi

2 &;0.4), there is an intermediate
phase where the local moment remains substantial
(^SNi

2 &;1) but the antiferromagnetic correlation be-
tween nearest neighbors is reduced. Calculated photo-
emission spectra do not significantly change between the
insulating and intermediate phases, which may explain
the result of the photoemission experiment.

The low-energy electronic structure and its tempera-
ture dependence were investigated using high-resolution
photoemission spectroscopy by Nakamura et al. (1994b).
Figure 96 shows the photoemission spectra near EF
taken with an energy resolution of ;25 meV. Starting
from the thermally broadened Fermi edge of the metal-
lic phase, a gap of ;10 meV is opened below Tt . A

FIG. 96. Photoemission spectra of NiS (Tt5260 K) and Fe-
substituted NiS (Tt;350 K) near the Fermi level compared
with LDA (paramagnetic metal), LSDA [AF(1): metallic;
AF(2): insulating], and LDA1U [AF(0)] band-structure cal-
culations. From Nakamura et al., 1994b.
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remarkable feature in the spectra of the nonmetallic
state is that the band edge is an almost resolution-
limited step function, whereas the band-structure calcu-
lation (the LSDA calculation with the applied staggered
magnetic field) predicts a much broader band edge. This
means that actual energy bands near the top of the va-
lence band are strongly narrowed compared to those
predicted by band-structure calculations, most probably
due to strong electron correlation. Comparison between
the band DOS and the photoemission spectra of the
nonmetallic phase shown in Fig. 96 suggests a band-
narrowing factor (mass enhancement factor) of m* /mb
*10. This value is larger than the mass enhancement
factor in the metallic phase (m* /mb51.7) estimated
from the electronic specific heat, and it is consistent with
the relationship mM* /mNM* ;1/5 deduced from the trans-
port and optical data above. It is tempting to view the
very narrow quasiparticle bands near the band edge of
the nonmetallic phase as reminiscent of a band structure
with a nearly k-independent SDW gap, which is opened
on the entire Fermi surfaces of the metallic states as in a
BCS superconductor, even though the nonmetallic
phase of NiS is not near a (hypothetical) second-order
MIT. Recently, Miyake (1996) showed, using Luttinger’s
sum rule and the Ward identity, that in any spatial di-
mension, if a continuous phase transition occurs be-
tween a paramagnetic metal and an antiferromagnetic
insulator, the Fermi surface should exhibit perfect nest-
ing at the MIT on the metallic side.

5. Ca12xSrxVO3

Both SrVO3 and CaVO3 exhibit metallic conductivity,
as shown in Fig. 97, and nearly T-independent paramag-
netism (apart from the increase at low temperatures
probably due to impurities), as shown in Fig. 98 (Onoda,
Ohta, and Nagasawa, 1991; Fukushima et al., 1994; In-

FIG. 97. Electrical resistivity of CaVO3 and SrVO3. From
Onoda, Ohata, and Nagasawa, 1991.
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oue et al., 1997b). Stoichiometric SrVO3 crystallizes in a
cubic perovskite structure, while CaVO3, because of the
small ionic radius of Ca21 compared to Sr21, forms a
GdFeO3-type orthorhombic structure. Although they do
not show a metal-insulator transition, magnetic order-
ing, or superconductivity, these compounds (and their
alloy system Ca12xSrxVO3) allow us to deduce impor-
tant information about the nature of electron correlation
in the normal metallic states when the d-band width is
continuously varied. Both compounds are thought to be
in the Mott-Hubbard regime (for details see below), and
the V 3d bands are occupied by one electron per V
atom. The on-site d-d Coulomb repulsion U is thought
to be nearly the same for each of the two compounds
because of the same valencies of the V ions. The differ-
ence between SrVO3 and CaVO3 lies in the different
V-O-V bond angles, u5180° in SrVO3 and 155° –160° in
CaVO3, which should lead to a decrease in the one-
electron d-band width W}cos2u by ;15% in going from
SrVO3 to CaVO3, or equivalently an increase in the
bare band mass mb by ;15%.

For CaVO3, from the T-independent spin susceptibil-
ity x52.331024 emu mol21 (corrected for the core
diamagnetism and the Van Vleck susceptibility)
and the electronic specific-heat coefficient g
59.25 mJ mol21 K22 (Inoue et al., 1997a), we obtain a
Wilson ratio of (pkB

2 /3mB
2 )(x/g)51.8, a value similar to

those found for La12xSrxTiO3 and Y12xCaxTiO3
(Tokura, Taguchi, et al., 1993; Taguchi et al., 1993). As
for SrVO3, x51.6531024 emu mol21 and g
58.18 mJ mol21 K22, Inoue et al. (1997a, 1997b) give
(pkB

2 /3mB
2 )(x/g)51.5, which is smaller than the ratio of

CaVO3 by ;20%. Electrical resistivity shows a nearly
T2 behavior (Fig. 97), indicating electron-electron scat-
tering, but surprisingly the T2 behavior persists up to
room temperature. The Kadowaki-Woods ratio is A/g2

50.931025 and 1.231025 mV cm(mol K/mJ)2 for
CaVO3 and SrVO3, respectively, in the same range as
heavy fermions in the case of perovskite-type Ti oxides
(Tokura, Taguchi, et al., 1993). In going from SrVO3 to

FIG. 98. Magnetic susceptibility of Ca12xSrxVO3. From Inoue
et al., 1997b.
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CaVO3, since the electronic specific heat indicates that
the quasiparticle mass m* increases by ;15% and the
bare band mass mb increases by ;15%, the mass en-
hancement factor m* /mb does not increase. This is con-
trary to the general belief that the effective mass is en-
hanced (or even diverges) as one approaches the BC-
MIT point with increasing U/W . As further evidence for
normal Fermi-liquid behavior, the Hall coefficient of
SrVO3 is negative and has a nearly T-independent
value, which corresponds to one electron per unit cell, as
in La12xSrxTiO3 with x*1 (Eisaki, 1991). An NMR
study of SrVO3 (Onoda, Ohta, and Nagasawa, 1991)
showed a nearly T-independent Knight shift and a con-
stant T1T .

Further insight into the mass renormalization in
SrVO3 and CaVO3 was obtained from a series of photo-
emission studies (Fujimori, Hase, et al., 1992a; Inoue
et al., 1995; Morikawa et al., 1995). Figure 99 shows com-
bined photoemission and BIS spectra of SrVO3 and
CaVO3. They show a typical Mott-Hubbard-type elec-
tronic structure as in V2O3: The V 3d band is located
around EF and the filled O 2p band well (3–10 eV)
below EF . It should be noted, however, that the ‘‘V 3d
band’’ is not a simple V 3d band in the original Mott-
Hubbard sense but is made up of states split off from the
O 2p continuum due to strong p-d hybridization as in
the case of V2O3. Since D’s for V41 compounds are
smaller than those for V31 compounds, SrVO3 and
CaVO3 fall into the D,U region, meaning that the ad-
mixture of states with O 2p character into the ‘‘V 3d

FIG. 99. Photoemission and inverse-photoemission spectra of
SrVO3 and CaVO3 in the V 3d band region compared with a
LDA band-structure calculation of Takegahara (1994). From
Morikawa et al., 1995.
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band’’ is even more substantial. A comparison between
the photoemission spectra and the band-structure DOS
of the t2g subband of V 3d is made in Fig. 99. Spectral
features from ;20.7 to 11.5 eV correspond to the V
3d band in the LDA band structure and are therefore
attributed to the coherent contribution or the quasipar-
ticle part of the V 3d-derived spectral function. The
peak at ;21.6 eV has no corresponding feature in the
band-structure DOS and is therefore attributed to the
incoherent part of the spectral function, reminiscent of
the lower Hubbard band. The photoemission spectra of
Ca12xSrxVO3 shown in Fig. 100 indicate a systematic
spectral weight transfer with increasing U/W . The V 3d
spectral weight is transferred from the coherent part to
the incoherent part of the spectral function (Inoue et al.,
1995), in good agreement with the dynamic mean-field
calculation of the Hubbard model (Zhang, Rozenberg,
and Kotliar, 1993). However, there is an important dif-
ference between the dynamic mean-field calculation and
the experimental results. That is, with increasing U/W ,
the quasiparticle band is narrowed in the calculation
whereas the overall intensity of the quasiparticle band
decreases without significant band narrowing in the
measured spectra. A high-resolution photoemission
study has confirmed the absence of a sharp quasiparticle
peak at EF (Morikawa et al., 1995).

The deviation of the spectral function r(v) from the
LDA band structure can be expressed in terms of a self-
energy correction S(k,v) to the LDA eigenvalues «0(k)
as described in Sec. II.D.1. The spectral intensity at EF ,
r(m), differs from that of the LDA calculation by a fac-
tor mk /mb , where mk is the k mass defined by the mo-
mentum derivative of the self-energy [Eq. (2.73e)]. The
quasiparticle mass m* , which is inversely proportional
to the coherent bandwidth and is equal to the thermal
(and transport) masses, is given by m* /mb5(mv /
mb)(mk /mb), where mv is the v mass defined by the

FIG. 100. Photoemission spectra of Ca12xSrxVO3 in the V 3d
band region (Inoue et al., 1995). The upper panel shows the
DOS derived from LDA band-structure calculation.
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energy derivative of the self-energy [Eq. (2.73d)]. Here,
we have assumed that the quasiparticle residue Zk(v)
[Eq. (2.70)] does not vary significantly within the quasi-
particle band (Zk(v)[mb /mv). Then the coherent-to-
incoherent spectral weight ratio is given by mb /mv :(1
2mb /mv). The remarkable spectral weight transfer
from the coherent part to the incoherent part in going
from SrVO3 to CaVO3 means that mv increases as the
system approaches the Mott transition from the metallic
side. The observed simultaneous decrease in spectral in-
tensity at EF indicates that mk decreases towards the
Mott transition: for SrVO3, mk /mb.0.25, mv /mb.6,
and m* /mb.1.5; for CaVO3, mk /mb.0.07, mv /mb
.20, and m* /mb.1.4. Almost the same m* for the two
compounds is consistent with the specific heat g and the
effective electron numbers (}1/m* ) deduced from an
evaluation of the optical conductivity at about 1.5 eV
(Dougier, Fan, and Goodenough, 1975).

B. Filling-control metal-insulator transition systems

1. R12xAxTiO3

The perovskitelike RTiO3 (where R is a trivalent
rare-earth ion) and its ‘‘hole-doped’’ analog
R12xAxTiO3 (where A is a divalent alkaline-earth ion)
are among the most appropriate systems for experimen-
tal investigations of the FC-MIT. The end member
RTiO3 is a typical Mott-Hubbard (MH) insulator with
Ti31 3d1 configuration, and the A (Sr or Ca) content (x)
represents a nominal ‘‘hole’’ concentration per Ti site,
or equivalently the 3d band filing (n) is given by n
512x .

The electronic and magnetic phase diagram for
R12xSrxTiO3 is depicted in Fig. 101. The crystalline lat-
tice is an orthorhombically distorted perovskite (of the
GdFeO3 type; see Fig. 61). As described in detail in Sec.
III.C.1, the Ti-O-Ti bond angle distortion, which affects

FIG. 101. Electronic and magnetic phase diagram for the
R12xSrxTiO3.
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the transfer energy (t) of the 3d electron or the one-
electron bandwidth (W), depends critically on the ionic
radii of the (R ,A) ions or the tolerance factor. For ex-
ample, the Ti-O-Ti bond angle is 157° for LaTiO3 but
decreases to 144° (ab plane) and 140° (c axis) for
YTiO3 (MacLean et al., 1979), which causes a reduction
in W of the t2g state by as much as 20%, according to an
estimate by a simple tight-binding approximation
(Okimoto et al., 1995b). The W value can be finely con-
trolled by use of the solid solution La12yYyTiO3 or in
RTiO3 by varying the R ions. The abscissa in Fig. 101
thus represents the effective correlation strength U/W .

On the end (x50) plane, the variation of the antifer-
romagnetic (AF) and ferromagnetic (F) transition tem-
peratures is plotted for La12yYyTiO3 (Goral, Greedan,
and MacLean, 1982; Okimoto et al., 1995b). Due to or-
bital degeneracy and orbital ordering, the x50 insula-
tors with large U/W value or a Y-rich (y,0.2) region
show a ferromagnetic ground state. In fact, a recent
study using polarized neutrons showed the presence of
t2g orbital ordering associated with a minimal Jahn-
Teller distortion of TiO6 octahedron (Akimitsu et al.,
1998).

Figure 102 shows the optical conductivity spectrum of
the gap excitations in YTiO3 (Okimoto et al., 1995b):
The onset of the Mott-Hubbard gap transition can be
clearly seen around 1 eV, while the rise in optical con-
ductivity around 4 eV is ascribed to the charge-transfer
gap between the O 2p filled state and the Ti 3d upper
Hubbard band. The observation of the two kinds of gap
transition and their relative positions indicate that
RTiO3 is a Mott-Hubbard insulator rather than a CT
insulator in the scheme of Zaanen, Sawatzky, and Allen.
The U/W dependence of the Mott-Hubbard gap magni-
tude (Eg) normalized by W , which was obtained by op-
tical measurements of La12yYyTiO3 (Okimoto et al.,
1995b), is plotted in the x50 end plane of Fig. 101. The
Mott-Hubbard gap magnitude changes critically with a
rather gentle change (520%) of W . A similar W de-
pendence of the Mott-Hubbard gap was also observed
for a series of RTiO3 (Crandles et al., 1994; Katsufuji,

FIG. 102. Optical conductivity in YTiO3. From Okimoto et al.,
1995b.
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Okimoto, and Tokura, 1995; Katsufuji, Okimoto, Arima,
Tokura, and Torrance, 1995).

Before considering the electronic structure of
R12xAxTiO3, it is necessary to understand the elec-
tronic structure of the parent Mott insulators RTiO3.
Neither the local spin-density approximation nor the
generalized gradient approximation is sufficient to ex-
plain the insulating nature of these compounds within
one-electron band theory; calculations on the level of
the Hartree-Fock or LDA1U approximation, in which
the spin and orbital degrees of freedom are taken into
account on an equal footing, are found to be necessary
(Mizokawa and Fujimori, 1995, 1996b; Solovyev, Ha-
mada, and Terakura, 1996b). With decreasing size of the
R ion, RTiO3 changes from an antiferromagnetic insula-
tor (LaTiO3) to a ferromagnetic insulator (YTiO3). Ac-
cording to the Hartree-Fock calculation (which includes
the Ti 3d spin-orbit interaction), the t2g

1 configuration in
the nearly cubic LaTiO3 is in the quadruply degenerate
spin-orbit ground state, out of which two states with an-
tiparallel orbital and spin moments [both directed in the
(111) direction] are alternating between nearest neigh-
bors, resulting in a G-type antiferromagnetic state (see
Fig. 38). Larger GdFeO3-type distortion [see Figs. 38(a)
and 61] induces greater hybridization between neighbor-
ing xy , yz , and zx orbitals, which makes the antiferro-
orbital exchange as well as ferromagnetic exchange
larger through the Hund’s-rule coupling. The ordering
stabilizes the Jahn-Teller distortion of type d (see Fig.
38) and the t2g level is split into two lower-lying levels
and one higher-lying level (for example, for an octahe-
dron elongated along the x direction, the energies of the
xy and zx orbitals are lowered relative to the yz or-
bital). At each site, one of the two low-lying orbitals is
occupied so that the neighboring orbitals are approxi-
mately orthogonal to each other with the spins ferro-
magnetically aligned. This is why the G-type antiferro-
magnetic order and the small Jahn-Teller distortion in
LaTiO3 is changed to ferromagnetic order with d-type
Jahn-Teller distortion in YTiO3. It has always been con-
troversial whether orbital ordering is driven by electron-
electron interaction or by electron-lattice interaction
(the Jahn-Teller effect). Considering the small Jahn-
Teller distortion in the present Ti perovskites, the or-
bital ordering would be largely of electronic origin.

Filling control in the 3d band can be achieved by par-
tially replacing the trivalent ions with divalent Ca or Sr
ions. The solid solution can be formed for an arbitrary
R/A ratio and hence the filling (n) can be varied from 1
to 0. Figure 103 shows the temperature dependence of
the resistivity for LaTiO31d/2 or La12xSrxTiO3 and for
Y12xCaxTiO3 near the FC-MIT. For LaTiO3, which has
relatively weak electron correlation, several % of hole-
doping is sufficient to destroy the antiferromagnetic or-
dering and cause the MIT. To control the filling on a fine
scale, nonstoichiometry (d/2) of oxygen is also utilized,
as shown in the figure: n512d . The upturn or inflection
point in the resistivity curve corresponds to the antifer-
romagnetic transition temperature. For YTiO3 with
larger U/W , by contrast, the insulating phase persists up
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
to x50.4, though ferromagnetic spin ordering disap-
pears around x50.2 (see also Fig. 101; Taguchi et al.
1993; Tokura, Taguchi, et al., 1993). In the immediate
vicinity of the MIT, the resistivity curve of Y12xCaxTiO3
shows a maximum around 150–200 K. The resistivity be-
havior below the temperature for the maximum is ac-
companied by thermal hysteresis, indicating the occur-
rence of a first-order insulator-metal transition, although
this feature is blurred, perhaps due to the inevitable ran-
domness of a mixed-crystal system. A similar tempera-
ture dependence or reentrant MIT with change of tem-
perature was observed in Sm12xCaxTiO3 near the FC-
MIT (Katsufuji, Taguchi, and Tokura, 1997). However,
no structural transition has been detected so far near the
hysteresis.

Metallic compounds, La12xSrxTiO3 for x.0.05 and
Y12xCaxTiO3 for x.0.4, show strongly filling-
dependent properties near the metal-insulator phase
boundary (Kumagai et al., 1993; Taguchi et al., 1993;
Tokura, Taguchi, et al., 1993). The upper panel of Fig.

FIG. 103. Temperature dependence of the resistivity for
LaTiO31d/2 or La12xSrxTiO3 and for Y12xCaxTiO3. From Kat-
sufuji and Tokura, 1994.



1167Imada, Fujimori, and Tokura: Metal-insulator transitions
104 shows the x dependence of the electronic specific-
heat coefficient (g) and the Pauli paramagnetic suscep-
tibility (x) in the metallic region of La12xSrxTiO3 and
Y12xCaxTiO3. In the lower panel of the figure, the ef-
fective carrier number per Ti site (nc), deduced from
the Hall coefficient (RH) via the relation RH51/ncec , is
shown as a function of x5(12n). Thus the estimated
value of nc approximately equals the filling n , as indi-
cated by a solid line in the lower panel of the figure.
Such a relation is consistent with a simple band picture.
On the other hand, g shows a critical increase as the
system approaches the Mott-Hubbard insulator phase
(x.0). The x dependence of x is almost parallel with
that of g, showing a nearly constant Wilson ratio of
about 2. Provided that the band is parabolic with a con-
stant effective mass m* , g or the density of states at the
Fermi level (EF) should be proportional to n1/3, as
shown by a solid line in the upper panel of Fig. 104. The
critical enhancement of g and x as compared with this
reference line is ascribed to the increase of m* as the
system approaches the Mott-Hubbard insulator phase.
Such a filling-dependent mass renormalization is a ge-
neric feature of the FC-MIT, as predicted theoretically
(Furukawa and Imada, 1992; Imada, 1993a; see Sec.
II.G). The mass enhancement observed in the experi-
ments also is consistent with the result in infinite dimen-
sions (Rozenberg, Kotliar, and Zhang, 1994; see for a
review, Georges et al., 1996). The observed Wilson ratio
is clearly not inconsistent with the d5` result, as dis-
cussed in Sec. II.D.6. In the case of Y12xCaxTiO3, a
large mass enhancement in metals near x;0.4 may be
associated with orbital fluctuations instead of spin fluc-
tuations.

FIG. 104. Upper panel, x-dependence of the electronic
specific-heat coefficient (g) and the Pauli paramagnetic suscep-
tibility (x) in the metallic region of La12xSrxTiO3 and
Y12xCaxTiO3; Lower panel, the effective carrier number per
Ti-site (nc), deduced from the Hall coefficient (RH) as a func-
tion of x5(12n) (Tokura et al., 1993; Taguchi et al., 1993).
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The temperature dependence of the resistivity in me-
tallic La12xSrxTiO3 can be well expressed up to 300 K
by the relation r5r01AT2, as can be seen in Fig. 105.
The T2 dependence of the resistivity is reminiscent of
the dominant electron-electron scattering process as de-
rived in Eq. (2.83) (see Sec. II.E.1). The coefficient A is
also enhanced as the Mott-Hubbard insulator is ap-
proached from the metallic side. In the inset of the fig-
ure, the relation between A and g is shown for the
samples near the metal-insulator boundary. The well-
known relation for heavy-fermion systems, A5Cg2

(Kadowaki and Woods, 1986), also seems to hold ap-
proximately in this system, with C@51.0
310211 V cm(mol K/mJ)2# , which is nearly the same as
the universal constant (Tokura, Taguchi, et al., 1993).
This proportional constant seems to be in agreement
with the infinite-dimensional result (Moeller et al.,
1995).

Such a critical enhancement of the carrier effective
mass near the MIT phase boundary can also be probed
by Raman spectroscopy. According to the theory of
Mills, Maradudin, and Burstein (1970) for phonon Ra-
man scattering in metals, the scattering cross section of
an even-parity phonon is given by

d2I

dV dv
}$gph /@gph

2 1~v2vph!2#%udxu2, (4.3)

where vph is the phonon frequency and gph is the width
of the phonon spectrum. dx is the modulation of the
charge susceptibility caused by the atomic displace-
ments. It was shown by a crude approximation (Katsu-
fuji and Tokura, 1994) that dx is proportional to the
Drude weight, nc /m* . The Raman process in metals is
mediated by particle-hole excitations across the Fermi
level, while that in insulators is mediated by interband
transitions. Thus, roughly speaking, the spectral inten-
sity of the phonon is proportional to (nc /m* )2 or the
square of the Drude weight in metals. [However, we

FIG. 105. Temperature dependence of the resistivity in metal-
lic La12xSrxTiO3. From Tokura et al., 1993.
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need more careful analysis on the frequency depen-
dence. As we shall discuss later, the true Drude weight is
very small, with a presumably smaller frequency width
than the phonon frequency vph in the Raman process.
In the frequency range out of the Drude-dominant fre-
quency, s(v) is governed by the incoherent charge dy-
namics discussed in Secs. II.F.1 and II.G.9. Therefore,
strictly speaking, the intensity picks up the incoherent
weight of intraband excitations.] We show in Fig. 106 the
variation of phonon Raman intensities for the Ti-O
bending A1g mode as a function of x in La12xSrxTiO3
and Y12xCaxTiO3. This mode becomes Raman active as
a result of the orthorhombic distortion of the crystalline
lattice, which is present for x,0.4 in La12xSrxTiO3 and
for the whole compositional range in Y12xCaxTiO3. As
can be seen in the figure, the spectral intensity in the
metallic regions steeply decreases as the metal-insulator
phase boundary (vertical dotted lines) is approached,
and almost disappears in the insulating regions. This in-
dicates that this phonon Raman mode is activated in the
metallic state via coupling with the intraband excitation
across the Fermi level, as described above, but not in the
insulating state with a charge gap larger than the phonon
energy. The phonon intensity can be corrected by the
x-dependent orthorhombic distortion. It decreases to
zero with decreasing x , indicating that the intraband re-
sponse at vph vanishes as the MIT is approached. As is
noticed by Katsufuji and Tokura (1994), this x depen-
dence of the phonon intensity is roughly scaled by @(1
2x)/g#2 where g is the specific-heat coefficient. Al-
though the simple interpretation of dx as the Drude
weight needs caution as discussed above, it is interesting
to note that dx appears to follow the scaling (12x)/g ,
implying that the low-energy incoherent weight given by
the v-independent prefactor for the incoherent part of
s(v) follows the same scaling as 1/g near x50.

The FC-MIT causes a change in electronic structure
over a fairly large energy scale. In particular, spectral

FIG. 106. Variation of phonon Raman intensities for the Ti-O
bending A1g mode as a function of x in La12xSrxTiO3 and
Y12xCaxTiO3. From Katsufuji and Tokura, 1994.
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weight transfer from the correlation gap (Mott-Hubbard
or CT gap) excitations to the inner gap excitations with
carrier doping is a common feature of FC-MIT systems.
The doping-induced changes in the optical conductivity
spectra in R12xSrxTiO31y or R12xCaxTiO31y (where
R5La, Nd, Sm, and Y and y is a small oxygen non-
stoichiometry, mostly ,0.02; Katsufuji, Okimoto, and
Tokura, 1995) are shown in Fig. 107. The spectra of the
respective samples are labeled with the nominal hole
concentration d, where d5x12y512n , and with the
value of the one-electron bandwidth W̃ normalized by
that of LaTiO3. The open circles show the magnitude of
the dc conductivity, s(v50), at room temperature. In
the case of R5Nd (Nd12xCaxTiO3), for example, s(v)
for d50 (n51) shows negligible spectral weight below
0.8 eV but steeply increases above 0.8 eV due to the
onset of the Mott-Hubbard gap excitations. The spectral
weight of the Mott-Hubbard gap excitations is reduced
with increase of d, while that inside the gap increases.
The spectral weight appears to be transferred gradually
one from the above-gap region to the inner-gap region
across an isosbetic (equal-absorption) point around 1.2
eV.

It is remarkable in Fig. 107 that, though s(v) changes
with d in a similar way irrespective of the element R , the
evolution rate of the inner-gap excitation (quasi-Drude
part) with d is critically dependent on the magnitude of
W . That is, spectral weight transfer into the quasi-Drude
part decreases with a decrease of W . In quantitative
terms, the effective number of electrons is

Neff~v!5
2m0

pe2N E
0

v

s~v8!dv (4.4)

where m0 is the free-electron mass and N the number of

FIG. 107. Optical conductivity spectra in R12xSrxTiO31y or
R12xCaxTiO31y (R5La, Nd, Sm, and Y). From Katsufuji,
Okimoto, and Tokura, 1995.
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Ti atoms per unit volume. Neff(v) is nearly independent
of d, with v52.5 eV, which includes the spectral weight
of both the inner-gap and the Mott-Hubbard-gap excita-
tions. The sum of these two parts is nearly conserved
under a variation of d, but the spectral weight is trans-
ferred from the Mott-Hubbard part to the inner-gap
part across the isosbetic point \vc ('1.1 eV for
Nd12xCaxTiO3). Thus the value defined as ND
5Neff(vc)d2Neff(vc)d50 is the low-energy spectral
weight transferred from the higher-energy region with
doping. In Fig. 108, ND , which is normalized to ND0 ,
the value of ND for U50 and d50 (n51), is plotted as
a function of d. The observed linear increase of ND with
d,

ND /ND05Cd , (4.5)

is consistent with theoretical studies of the Hubbard
model in d5` (Jarrell, Fredericks, and Pruschke, 1995),
provided that ND is interpreted as the Drude weight at
v50. However, because ND also includes incoherent
excitations up to vc , this d dependence is dominated by
that of the intraband kinetic energy and hence domi-
nated by the incoherent charge response discussed in
Sec. II.F.1. In fact, the optical conductivity shown in Fig.
107 shows a rather similar feature to the incoherent re-
sponse s(v).(12e2bv)/v discussed in Secs. II.F.1,
II.G.9, and II.M.2 because both have a long tail at large
v roughly scaled as 1/v , although s(0);1/T2 seen in
Fig. 105 does not fit this form. This implies that the true
Drude weight associated with T2 resistivity is very small,
only prominent around v;0, while the dominant weight
in the observed s(v) is exhausted in the incoherent part
with the long tail up to large v;1 eV. This is in contrast
with the theoretical results in d5` and similar to the
incoherent response discussed in Secs. II.F.1 and II.G.9.
The integrated intensity itself (namely, the kinetic en-

FIG. 108. ND to ND0 as a function of d (Katsufuji, Okimoto,
and Tokura, 1995) for La12xSrxTiO3.
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ergy of the intraband part containing both the true
Drude and the incoherent responses) seems to be scaled
by the doping level and is consistent with both the scal-
ing theory in Sec. II.G.9 and the d5` result (Kajueter
and Kotliar, 1997).

Figure 109 (lower panel) shows the W21 (strength of
electron correlation) dependence of C21, while the up-
per panel shows the value of 2D/W (the optical energy
gap normalized to the bandwidth) as well as the normal-
ized activation energy (2Dact /W) of the resistivity. The
solid line, which is a linear fit to the data points of
2Dact /W , crosses the 2D50 line (abscissa) at a finite
value of W('0.97) corresponding to the critical value
for the BC-MIT @(U/W)c# at which the charge gap
closes and the Mott transition occurs. The relation Dact
}@U/W2(U/W)c#

a with the exponent a;1 implies
that the critical exponents of a BC-MIT here are char-
acterized by nz;1 where n and z are the correlation
length and dynamic exponents, respectively, as is dis-
cussed in Sec. II.F.4 [see Eq. (2.332)].

On the other hand, the lower panel of Fig. 109 indi-
cates that C21 decreases linearly with a decrease in
W21. It is to be noted that the value of W21 at which
C21 becomes zero nearly coincides with the value at
which 2D becomes zero. This means that the rate of evo-
lution of the low-energy incoherent part with d is criti-
cally (divergently) enhanced as the electron correlation
(U/W) approaches the critical value (U/W)c for the
BC-MIT, following the relation

C}@~U/W !2~U/W !c#
21. (4.6)

Strictly speaking, the MIT is defined as the point where
the true Drude weight vanishes. However, it is interest-
ing to note that the weight of the broad incoherent part

FIG. 109. Lower panel, the W21 (strength of electron correla-
tion) dependence of C21: upper panel, the value of 2D/W (the
optical energy gap normalized to the bandwidth) as well as the
activation energy (2Dact) of the resistivity for R12xCaxTiO3.
From Katsufuji, Okimoto, and Tokura, 1995.
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with the 1/v tail also more or less vanishes at the BC-
MIT point because Neff(vc)d50 is small. Since Neff mea-
sures the kinetic energy when v is taken to be large, C
measures approximately the singular part of the kinetic
energy near the MIT. The exponent in Eq. (4.6) contra-
dicts that in the Gutzwiller approximation given in Eq.
(2.198), which implies the breakdown of the mean-field
treatment in 3D.

A proper microscopic description of mass enhance-
ment near the FC-MIT is an important step in elucidat-
ing the nature of the Mott transition, as reflected by the
specific heat and the magnetic susceptibility mentioned
above. Photoemission spectroscopy gives such informa-
tion in the same way as was described for the
bandwidth-control system Ca12xSrxVO3 (Sec. IV.A.5).
For filling-control systems, in addition to the spectral
weight transfer between the coherent quasiparticle part
and the incoherent part, spectral weight should be trans-
ferred between the occupied (v,m) and unoccupied
(v.m) portions of the spectral function because of the
sum rule that *2`

m dvr(v) is equal to the number of
electrons [see Eq. (2.58)].

Spectral weight transfer in the photoemission spectra
has been studied for La12xSrxTiO3 (Fujimori, Hase,
et al., 1992b; Aiura et al., 1996), R12xBaxTiO3 (R5Y,
La, and Nd) (Robey et al., 1993), Nd12xSrxTiO3 (Robey
et al., 1995) and Y12xCaxTiO3 (Morikawa et al., 1996).
These systems differ from each other in the magnitude
of W and hence of U/W . Figure 110 shows the photo-
emission spectra of La12xSrxTiO3 (Fujimori, Hase, et al.,
1992b). The n51 (x50) end member is a d1 Mott in-
sulator and shows a broad peak centered at ;1.5 eV
below EF , which is assigned to the lower Hubbard band.
(The weak intensity at the Fermi edge is due to the me-
tallicity of the LaTiO31d sample with excess oxygen

FIG. 110. Photoemission spectra of La12xSrxTiO3. From Fuji-
mori et al., 1992b.
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studied in that work. Recent measurements on stoichio-
metric samples yielded a vanishing intensity at EF .)
With increasing x , i.e., with hole doping, the ;1.5 eV
peak loses its spectral weight without changing energy
position or line shape down to x;1, at which composi-
tion the peak almost disappears. The lost spectral weight
is transferred to above EF , as observed by O 1s x-ray
absorption and inverse photoemission spectroscopy. In
the metallic region (0&x&1 for La12xSrxTiO3), a weak
but finite Fermi-edge intensity is found, indicating that
upon hole doping a small portion of the spectral weight
is transferred from the lower Hubbard band to the qua-
siparticle band crossing EF . Qualitatively the same
spectral changes were observed for the other
R12xAxTiO3 systems, but the quasiparticle spectral
weight decreases with the decrease in ionic radius of the
A-site ion and hence with increasing U/W (Morikawa
et al., 1996). The changes in spectral weight distribution
as a function of both band filling n and interaction
strength U/W are schematically depicted in Fig. 111.

If we assume that the self-energy correction ((kW ,v) is
kW independent and therefore that m* /nb;Z21 (where
Z is the quasiparticle spectral weight), the experimen-
tally observed low quasiparticle weight in every
R12xAxTiO3 system is apparently incompatible with the
electronic specific heat, which implies m* ;mb except
for the vicinity of the Mott transition, where m* be-
comes as large as ;5mb (Tokura, Taguchi, et al., 1993).
This indicates the important role of nonlocal effects, i.e.,
of the momentum dependence of the self-energy correc-
tion, in the mass renormalization and enables us to
evaluate not only m* 5mkmv /mb but also mk and mv

separately, as in the case of Ca12xSrxVO3 (see Sec.
IV.A.5). In the present case, because such a decomposi-
tion of the spectra into the coherent and incoherent
parts is difficult owing to the weakness of the coherent

FIG. 111. Evolution of the single-particle density of states r(v)
as a function of U/W and band filling n , derived from the
photoemission and inverse-photoemission studies of Ti and V
perovskite oxides. From Morikawa et al., 1996.
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part, the quasiparticle DOS at EF , N* (m), obtained
from the electronic specific-heat coefficient g, is utilized
to estimate Z , using the relationship Z5r(m)/N* (m)
[Eq. (2.126)]. Because of the very low spectral intensity
at EF , one obtains Z&0.01 and ;0.05, respectively, for
metallic samples of Y12xCaxTiO3 and La12xSrxTiO3
(Morikawa et al., 1996). Since mk /mb5r(m)/Nb(m)
[Eq. (2.125)], the reduction of the spectral weight r(m)
in going from La12xSrxTiO3 to Y12xCaxTiO3 means that
Z and mk decrease with U/W not only for n51
(Ca12xSrxVO3) but also for 0,n,1.

The extremely low quasiparticle spectral weight ob-
served in the photoemission study seems consistent with
the overwhelmingly incoherent response in s(v). Al-
though the results of finite-size calculations using the
Hubbard model indicate a relatively sharp peak of large
quasiparticle spectral weight (of order 0.1–1) for a real-
istic U/W (or U/t) values (Dagotto et al., 1991; Bulut,
Scalapino, and White, 1994a; Eskes et al., 1994; Ulmke
et al., 1996), the real coherent weight of the quasiparticle
near the Mott insulating phase could be only a tiny por-
tion of this as discussed in Sec. II.F.2. This view seems to
be consistent with the above observation, at least for a
metal near the Mott insulator. However, this does not
explain the low weight at small electron fillings. In order
to explain the strong reduction of the spectral weight at
EF in the bandwidth control d1 Mott-Hubbard system
Ca12xSrxVO3, Morikawa et al. (1995) proposed that it
was the effect of the long-range Coulomb interaction,
which is neglected in the Hubbard model. The effect of
the long-range Coulomb force could be one origin of
small Z even far away from the integer filling because
the screening becomes progressively ineffective at low
electron filling. Another origin of low Z could be disor-
der. A recent dynamic mean-field approach has shown
that the typical quasiparticle weight can be reduced even
far away from half filling if disorder and strong correla-
tion coexist (Dobrosavljević and Kotliar, 1997).

Some remarks should be made on the experimental
observation that the ;1.5 eV peak of the photoemission
spectra persists in x;1 (n;0) samples, where the d
band is nearly empty. This is an unexpected experimen-
tal result by itself, since in the limit of small band filling,
n!1, there should be only a small probability of
electron-electron interaction. A similar peak was ob-
served (but at somewhat lower binding energies of
;1.2 eV) for oxygen-deficient SrTiO32y (Henrich and
Kurtz, 1981; Barman et al., 1996). In order to explain
this behavior, two different models were proposed. One
was based on the potential disorder caused by the sub-
stituted A-ion sites (Sarma, Barman, et al., 1996). The
substitution of La for Sr lowers the potential at neigh-
boring Ti sites and, if the potential lowering is large
enough, produces a peak ;1 eV below EF even for a
small band filling (n!1). However, such a strong poten-
tial disorder may cause a localization of electrons and
hence seems difficult to explain the metallic conductivity
observed for the low n (especially for La12xSrxTiO3).
On the other hand, Dobrosavljević and Kotliar (1997)
have shown, using dynamical mean-field theory, that
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
metallic conductivity may remain finite up to a consid-
erable degree of potential disorder. In the other model,
one considers the interaction of doped electrons with
the lattice distortion through both short-range and long-
range interactions, which are usually described by the
Holstein and Fröhlich Hamiltonians, respectively (Fuji-
mori, Bocquet, et al., 1996). In this model, a doped elec-
tron is self-trapped due to the polaronic effect with a
small binding energy (and hence a small transport acti-
vation energy) but, when the electron is emitted in the
photoemission process, the lattice is left with a large ex-
cess energy of ;1 eV, giving rise to the deep d-derived
photoemission peak. This approach also has a problem,
namely, that the observed metallic transport remains to
be explained using models with the tendency for self-
trapping.

2. R12xAxVO3

La12xSrxVO3 has long been known as a FC-MIT sys-
tem among the 3d transition-metal oxide perovskites
and was discussed in the earlier version of Mott’s text
book (Mott, 1990). The end compound RVO3, where R
is a trivalent rare-earth ion, possesses V31 ions with 3d2

configuration (S51). The crystalline lattice of RVO3 is
tetragonal for R5La and Ce, while for the others it is of
GdFeO3 type with orthorhombic distortion (Sakai, Ada-
chi, and Shiokawa, 1977). Therefore the one-electron
bandwidth (W) must decrease with decreasing radius of
the R ion, as in the case of RTiO3 (Sec. IV.B.1). RVO3
is typically a Mott-Hubbard insulator and undergoes an
antiferromagnetic transition at 120–150 K. The antifer-
romagnetic phase is accompanied by a spin canting, giv-
ing rise to weak ferromagnetism.

The insulating nature of the parent RVO3 compounds
is again insufficiently explained by LSDA band-
structure calculations. LaVO3 and YVO3 show C-type
and G-type antiferromagnetic ordering, respectively.
They are also accompanied by a Jahn-Teller distortion
as in RTiO3, but of the a type for LaVO3 and d type for
YVO3. These phenomena were explained by Hartree-
Fock (Mizokawa and Fujimori, 1996b) band-structure
calculations. For the ideal cubic lattice, the lowest-
energy Hartree-Fock solution is the C-type antiferro-
magnetic state in which two adjacent V atoms have
(xy)1(yz)1 and (xy)1(zx)1 configurations, which favors
the a-type Jahn-Teller distortion. Here, the occupation
of the xy orbital at every site induces antiferromagnetic
coupling within the ab plane, while the alternating oc-
cupation of the yz and zx orbitals induces ferromag-
netic coupling along the c axis. (One can ignore the
spin-orbit interaction, unlike the case of LaTiO3, be-
cause the Jahn-Teller distortion is substantial in the
RVO3 compounds.) For the d-type Jahn-Teller distor-
tion, either the yz or the zx orbitals are occupied along
the c axis, resulting in antiferromagnetic coupling along
the c direction and hence G-type antiferromagnetic or-
dering. Generalized density gradient band-structure cal-
culations also explained the C-type antiferromagnetism
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of LaVO3 but failed to explain the G-type antiferromag-
netism in YVO3 (Sawada et al., 1996).

With hole doping by partial substitution of divalent
ions (Sr or Ca) for the rare-earth ions, the insulating
antiferromagnetic phase eventually disappears, as shown
in Fig. 112 for the case of La12xSrxVO3 (Mahajan et al.,
1992; Inaba et al., 1995). As compared with the case of
V2O3 (Sec. IV.A.1), doping with more nominal holes is
necessary to produce the metallic state. In the case of
La12xSrxVO3 the FC-MIT takes place around xc'0.2
(Dougier and Casalot, 1970; Dougier and Hagenmuller,
1975; Inaba et al., 1995), while in Y12xCaxVO3 it takes
place around xc'0.5 with smaller W (Kasuya et al.,
1993).

FIG. 112. Phase diagram of La12xSrxVO3 (Mahajan et al.,
1992; Inaba et al., 1995).

FIG. 113. Resistivity of La12xSrxVO3. From Inaba et al., 1995.
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Figure 113 presents the data for the temperature de-
pendence of the resistivity in arc-melted polycrystals
(which suffer less from grain boundary effects than ce-
ramics samples) of La12xSrxVO3 (Inaba et al., 1995).
The conductivity in the insulating region (x,0.15)
shows a thermal activation type at relatively higher tem-
peratures above the antiferromagnetic transition tem-
perature TN (Fig. 112), and the thermal activation en-
ergy, '0.15 eV for LaVO3, decreases steeply but
continuously with x . Variation of the activation energy
of La12xSrxVO3 is shown to follow (xc2x)1.8 (Dougier
and Hagenmuller, 1975). Mott (1990) argued that the
critical variation in the form of (xc2x)z with z51.8 is in
contradiction to the simple scenario, i.e., z51, of the
Anderson localization and that some kind of mass en-
hancement, such as a consequence of the formation of
spin polarons, must be taken into account. At lower
temperatures below TN in the region of 0.05,x,0.15,
the compound shows a variable-range hopping type of
conduction. Again, Sayer et al. (1975) reported that the
critical exponent for the localization length is z50.6 in-
stead of the expected value z51.

The FC-MIT and resultant change of the electronic
structure show up clearly in the optical spectra. Figure
114 shows the low-energy part of the optical conductiv-
ity spectra at room temperature for La12xSrxVO3 to-
gether with the inset for a broader energy region (Inaba
et al., 1995). In LaVO3 a Mott-Hubbard gap between the
lower and upper Hubbard bands and a charge-transfer
(CT) gap between the occupied O 2p band and the up-
per Hubbard band are observed at 1.1 eV and 3.6 eV,
respectively; these can be discerned as rises in the opti-
cal conductivity in the inset of Fig. 114. With hole dop-
ing by substitution of Sr (x), the CT gap shifts to lower

FIG. 114. Optical conductivity spectra at room temperature
for La12xSrxVO3. From Inaba et al., 1995.
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energy mainly due to the shift in the 2p band, and the
Mott-Hubbard gap is closed. As for the doping-induced
change in the low-energy region, the spectral weight is
first increased in the gap region and eventually forms the
inner-gap absorption band. In barely metallic samples (
x50.20 and 0.22) at room temperature (see Fig. 113),
the conductivity spectra show a non-Drude-like shape,
indicating a dominant contribution from the incoherent
motion of the charge carriers. However, the spectra for
x.0.3 are typical of a metal. In contrast with the case of
R12xAxTiO3 (Sec. IV.B.1), the spectral weight does not
appear to be transferred from the gap excitation but
from a higher-lying p-d interband transition, since no
isosbetic point can be observed near the Mott-Hubbard
gap energy. A similar feature of the evolution of the
inner-gap excitation with doping is observed for
Y12xCaxVO3 (Kasuya et al., 1993) but at a higher dop-
ing level, probably reflecting stronger electron correla-
tion.

Figure 115 shows the resistivity of the compounds
near the metal-insulator phase boundary as a function of
T1.5 (Inaba et al., 1995). Apart from the upturns at low
temperatures (probably below TN), the temperature de-
pendence of the resistivity (r) can be well expressed by
the relation r5r01AT1.5 in the metallic region. The in-
set of Fig. 115 shows a magnification of the low-
temperature region for the x50.28 sample, indicating
that the above relation holds good at least down to 2.5
K. The coefficient A critically increases as the metal-
insulator phase boundary is approached from the
higher-x (metallic) region. Inaba et al. (1995) inter-
preted this to mean that the enhanced T1.5 dependence
was due to antiferromagnetic spin fluctuations. The self-
consistent renormalization (SCR) theory (Moriya, 1995;
Ueda, 1977; see also Secs. II.E.1 and II.E.8) indicates
that the low-temperature resistivity near the critical
boundary between the antiferromagnetic metal and nor-
mal metal deviates from the normal T2 law and shows
T1.5 dependence, as discussed in Sec. II.E.8. The T1.5

FIG. 115. Resistivity of La12xSrxVO3 near the MI phase
boundary as a function of T1.5. From Inaba et al., 1995.
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dependence of the resistivity can be interpreted in terms
of the strong Curie-like enhancement of the spin suscep-
tibility x(Q) as derived in Eq. (2.118). This T22T1.5

crossover has clearly been observed near the antiferro-
magnetic metal-normal metal phase boundary, for ex-
ample in the case of the BC-MIT system NiS22xSex , as
described in Sec. IV.B.2. In La12xSxVO3, however, it is
not yet clear whether the antiferromagnetic metallic
state is present around x'0.2. Furthermore, the mea-
surement of the NMR relaxation rate T1

21 by Mahajan
et al. (1992) shows a conventional Korringa behavior
and no indication of antiferromagnetic fluctuation, at
least for x>0.4. Detailed neutron-scattering and NMR
measurements using single-crystalline La12xSrxVO3
samples in the immediate vicinity (x'0.2) of the MIT
are obviously needed to detect and characterize possibly
anomalous magnetic fluctuations near the FC-MIT.

The evolution of electronic states in the R12xAxVO3
system with x should be different from that in
R12xAxTiO3 in that the parent insulator RVO3 is a Mott
insulator with d2 configuration, where there is a Hund’s
rule coupling between the d electrons, and the x→1
(100% hole doping) limit still has one d electron per V
site. The photoemission and oxygen 1s x-ray absorption
spectra of RVO3 (R5La,Y) revealed lower and upper
Hubbard bands, respectively, corresponding to the d2

→d1 and d2→d3 spectral weight (Edgell et al., 1984; Ei-
saki, 1991; Pen et al., 1998). Upon hole doping, new
spectral weight grows rapidly just above EF , which cor-
responds to the d1→d2 spectral weight induced by hole
doping, as in the high-Tc cuprates. At the same time the
lower Hubbard band loses its spectral weight. As the
system becomes metallic (x.0.5 for R5Y and x.0.2
for R5La), a Fermi edge is developed in the photoemis-
sion spectra. If one starts from the x51 (d1) limit of the
system La12xSrxVO3 and increases the band filling, the
remnant of the lower Hubbard band increases its inten-
sity while the quasiparticle band in the photoemission
and inverse photoemission spectra loses its intensity
(Tsujioka et al., 1997). The decrease of the quasiparticle
weight as the system deviates from integer filling is op-
posite to what has been theoretically predicted for a
fixed U/W (Kotliar and Kajueter, 1996; Rozenberg
et al., 1996), and would be attributed to the increase in
U/W with decreasing x . Here it should be noted that in
R12xAxVO3 not only does the band filling n ([22x)
decrease but also U/W decreases with x , since U/W
,1 in the metallic AVO3 while U/W.1 in the insulat-
ing RVO3.

C. High-Tc cuprates

1. La22xSrxCuO4

The discovery of high-Tc cuprate superconductors
was brought about by the observation of a supercon-
ducting transition for the compound La22xMxCuO4 with
M5Ba by Bednorz and Müller (1986). The lattice struc-
ture of this compound was soon identified as the K2NiF4
type, namely, the layered perovskite structure shown in
Fig. 116 (Takagi, Uchida, Kitazawa, and Tanaka, 1987).
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Although a large number of compounds have been dis-
covered as high-Tc cuprate superconductors since then,
they all have a common structure of stacking of CuO2
layers sandwiched by block layers, as shown schemati-
cally in Fig. 117. The superconductivity itself has been
an attractive and extensively studied subject. The sym-
metry of the pairing order parameter of the high-Tc cu-
prates now appears to be settled as the dx22y2 symmetry
after enormous combined effort involving magnetic
resonance experiments, Josephson junctions, etc. (see

FIG. 116. The layered perovskite structure of La22xMxCuO4;
large open circles, La(M); small open circle, Cu; large filled
circle, O.

FIG. 117. Conceptual illustration of stacking of CuO2 layers
sandwiched by block layers.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
for a review Scalapino, 1995; Annett et al., 1996). How-
ever, in this review article, we focus on the unusual
normal-state properties of high-Tc compounds; proper-
ties in the superconducting state are beyond the scope of
this article.

Before going into a detailed discussion of experimen-
tal data, we first outline the basic electronic structure
and the phase diagram in the plane of doping concentra-
tion x and temperature T . Because of the two-
dimensional anisotropy of this lattice structure, CuO6
octahedra are slightly elongated along the direction per-
pendicular to the CuO2 layer. This means that the dis-
tance from Cu to the apex oxygen is slightly longer than
the distance to the in-plane oxygen, which may be
viewed as a Jahn-Teller-type distortion. This distortion
lifts the degeneracy of the eg orbitals of Cu 3d electrons
to the lower-lying dz22r2 and higher-lying dx22y2 orbit-
als. Because the parent compound La2CuO4 has the va-
lence of Cu21, and hence as the nominal d9 state the
above crystal-field splitting leads to fully occupied t2g
orbitals and d3z22r2 orbital, while the dx22y2 orbital re-
mains half-filled, the Fermi level lies in a band con-
structed mainly from the dx22y2 orbital, relatively close
to the level of the 2ps oxygen orbital, compared with
other transition-metal oxides. In La2CuO4, since the 2ps

band lies within the Mott-Hubbard gap, it is a charge-
transfer (CT) insulator, as discussed in Secs. II.A and
III.A. La2CuO4 is a typical insulator with antiferromag-
netic long-range order. Up to the present time, all the
cuprate superconductors with high critical temperatures
are known to be located near the antiferromagnetic
Mott insulating phase. La2CuO4 is, in fact, a Mott insu-
lator with the Néel temperature TN;300 K. Because
the dx22y2 band is half-filled, it is clear that the insulat-
ing behavior experimentally observed even far above TN
is due to strong correlation effects.

La22xMxCuO4 with M5Sr and Ba provides a typical
example, with a wide range of controllability of carrier
concentration, from the antiferromagnetic Mott insulat-
ing phase to overdoped good metals, by the doping of
Sr, Ba, or Ca. Therefore La22xMxCuO4 is a good ex-
ample of an FC-MIT system with 2D anisotropy. The
basic electronic structure of the cuprate superconductors
in all regions, from insulator to metal, is believed to be
described by the d-p model defined in Eqs. (2.11a)–
(2.11d). The parameters deduced from photoemission
(Shen et al., 1987; Fujimori, Takekawa, et al., 1989),
LDA calculations (Park et al., 1988; Stechel and Jenni-
son, 1988; Hybersten, Schlüter, and Christensen, 1989;
McMahan, Martin, and Satpathy, 1989), and s(v) give
overall consistency with Udd.6 –10 eV, tpd.1 –1.5 eV,
D.1 –3 eV, Upp.1 eV, and Vpd;1 –1.5 eV. The de-
tails of methods for determining the model parameters
are given in Sec. III.B.

With increasing x , La22xSrxCuO4 very quickly under-
goes a transition from an antiferromagnetic insulator to
a paramagnetic metal with a superconducting phase at
low temperatures. The phase diagram of La22xSrCuO4
is shown in Fig. 118. At sufficiently low temperatures, it
is believed that the MIT with x is actually a
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superconductor-insulator transition. Above the super-
conducting transition temperature, the normal metallic
phase shows various unusual properties which are far
from the standard Fermi-liquid behavior, especially for
small x . These anomalous aspects will be described in
detail below. The superconducting transition tempera-
ture Tc has the maximum Tc;40 K around x;0.15 for
La22xSrxCuO4 and decreases with further doping. The
doping concentration x5xm which shows the maximum
Tc is frequently called the optimum concentration while
the region x,xm is called the underdoped region and
x.xm the overdoped region. Anomalous metallic be-
havior observed in the underdoped region gradually
crosses over to more or less standard Fermi-liquid be-
havior in the overdoped region. Another point to be
discussed in the global phase diagram is the existence of
structural phase transitions between the tetragonal
structure at high temperatures and the orthorhombic
one at low temperatures, as illustrated in Fig. 118. At
x50, the transition occurs at around 560 K and it
quickly decreases with increasing x . In the orthorhombic
phase, the unit of octahedron CuO6 is slightly tilted in a
staggered way. In the overdoped region, x.xm , Tc de-
creases continuously at least up to x50.20 (see the
phase diagram). On the other hand, the possibility of
phase separation and a discontinuity between under-
doped and heavily doped regions around x50.20 on a

FIG. 118. The phase diagram of La22xSrxCuO4 in the plane of
the doping concentration x and temperature T . The Néel tem-
perature TN , superconducting transition temperature Tc ,
transition temperature between high-temperature tetragonal
(HTT) and low-temperature orthorhombic (LTO) structures,
TTO , and spin-glass transition temperature Ts-glass are plotted
from various experimental data (by courtesy of T. Sasagawa
and K. Kishio).
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microscopic level was discussed by Fukuzumi et al.,
(1996).

Below we discuss physical properties in the plane of x
and T in more detail. The existence of antiferromagnetic
long-range order below TN;300 K at x;0 is clearly ob-
served in neutron-scattering experiments as well as in
magnetic susceptibility measurements. Other quantities
such as NMR and Raman scattering also show anoma-
lies. The structure of the antiferromagnetic order was
determined by neutron-scattering experiments, as shown
in Fig. 119. The driving force of the antiferromagnetic
order is of course the superexchange interaction of
neighboring Cu spins mediated by intermediate states of
the bridging 2ps orbital. The localized spins at the Cu
site have a moment ;0.4mB , which is a consequence of
the reduction due to a strong quantum effect and strong
covalency. The ordered spins are primarily aligned in
the basal CuO2 plane (Vaknin et al., 1987; Yamada
et al., 1987). To understand the detailed structure of the
ordering vector, however, we need to consider small tilt-
ing of the CuO6 octahedron as well as the spin-orbit
interaction to generate a small Dzyaloshinski-Moriya in-
teraction, which leads to an anisotropic interaction for
the ordering vector. This leads to a slight canting of the
spin vector out of the CuO2 plane with a small ferromag-
netic moment. (Fukuda et al., 1988; Kastner et al., 1988;
Thio et al., 1988; Yamada et al., 1989; Koshibae, Ohta,
and Maekawa, 1993, 1994).

Aside from this slight anisotropy, the basic magnetic
interaction in the Mott insulating phase is well described
within the framework of the spin-1/2 Heisenberg model.
The antiferromagnetic exchange interaction J deter-
mined from two-magnon Raman scattering is J
;1100 cm2151600 K (Lyons, Fleury, Remeika, Coo-
per, and Negran, 1988; Cooper et al., 1990b; Tokura, Ko-
shihara, et al., 1990), while J5135 meV, equivalent to
1570 K, is identified from the dispersion in the neutron-
scattering data (Aeppli et al., 1989), which has one of the
largest antiferromagnetic exchanges among d-electron
systems. There are two reasons for the large J . One is
that the transfer between the neighboring Cu dx22y2 or-

FIG. 119. The structure of the antiferromagnetic order in
La22xSrxCuO4. From Yamada et al., 1989.
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bital and O2ps orbital tpd is large, ;1 eV because of the
large overlap of these two orbitals. The second is that
the level splitting D5u«d2«pu is relatively small,
;1 –3 eV, as shown in Eqs. (2.11a)–(2.11d) and the
paragraph below these equations. Then in the fourth-
order perturbation, J may be large because it is propor-
tional to tpd

4 /u«d2«pu3 when the Coulomb interaction at
the oxygen site, Upp , and the intersite Coulomb inter-
action Vpd are neglected while Udd is taken large
enough. The Néel temperature TN is much smaller than
J because of the strong two-dimensionality and resulting
quantum fluctuation effects. In fact, in single-layer 2D
systems, TN is theoretically expected to be zero, while
small interlayer exchange coupling drives TN to a finite
temperature. Short-ranged antiferromagnetic correla-
tions are developed even well above TN , as observed in
neutron-scattering experiments and NMR measure-
ments. The growth of antiferromagnetic correlations
with decreasing temperature is qualitatively described
both by a renormalization-group study of the nonlinear
sigma model (Chakravarty, Halperin, and Nelson, 1989)
and by a modified spin-wave theory (Takahashi, 1989) as
discussed in the neutron-scattering results (Aeppli et al.,
1989; Yamada et al., 1989; Keimer et al., 1992). (The
prefactor of the exponential dependence is not repro-
duced by the spin-wave theory). At low temperatures
above TN , as discussed in Sec. II.E.4, the antiferromag-
netic correlation length is expected to grow as

j;
0.27\c

2prs
expS 2prs

T D S 12
T

4prs
1¯ D (4.7)

with the spin stiffness constant rs.1.15J (Chakraverty,
Halperin, and Nelson, 1989; Hasenfratz and Nieder-
mayer, 1991, 1993). The experimentally observed tem-
perature dependence of j appears to agree with the
above prediction of the nonlinear sigma model in the
renormalized classical regime (Keimer et al., 1992; Bir-
geneau et al., 1995). The energy dispersion of spin exci-
tations determined by high-energy inelastic neutron-
scattering experiments shows overall agreement with the

FIG. 120. Doping concentration dependence of antiferromag-
netic correlation length j suggested by neutron scattering of
La22xSrxCuO4 (Birgeneau et al., 1988). j appears to follow the
mean hole distance 3.8 Å/Ax .
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spin-wave theory of the Heisenberg model (Hayden
et al., 1991b; S. Itoh et al., 1994).

When Sr, Ba, or Ca are substituted for La, as in
La22xAxCuO4 with A5Sr or Ba, holes are doped into
CuO2 planes. A remarkable feature of the hole doping is
that it causes a quick collapse of the antiferromagnetic
order and a MIT. When the doping concentration is low
enough, the system is still insulating for x<0.05, as illus-
trated in the phase diagram Fig. 118, while antiferro-
magnetic long-range order is destroyed around x
50.02, where the localization effect due to disorder is
serious. For 0.02,x,0.05, the spin-glass state is realized
at low temperatures (see, for example, Chou et al.,
1995). In any case, antiferromagnetic long-range order is
absent in the metallic region, x.0.05. The antiferromag-
netic correlation length j becomes progressively shorter
and shorter when the doping concentration is increased.
In the early stage of neutron studies on La22xSrxCuO4,
it was shown that j is approximately given by j;a/Ax ,
where a is the lattice constant, and hence j is nothing
but the mean hole distance, as shown in Fig. 120 (Birge-
neau et al., 1988).

In the metallic region x.0.05, the periodicity of
short-ranged antiferromagnetic correlations is known to

FIG. 121. Short-ranged incommensurate spin correlation ob-
served by neutron-scattering experiments for Im x(q,v) in
La22xSrxCuO4 above Tc at v53 meV taken from the scan A
illustrated in the top panel. The closed circles in the top panel
denote the peak positions of the incommensurate structure.
The incommensurate peak observed above Tc (top panel) be-
comes invisible below Tc (lower panel) at this energy v
53 meV. From Yamada et al., 1995.
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shift from (p,p) to fourfold-incommensurate wave vec-
tors @p(16d),p# and @p ,p(16d)# , as can be seen in
Fig. 121 (Yoshizawa et al., 1988; Thurston et al., 1989,
1992; Cheong et al., 1991; Yamada, Endoh, et al., 1995;
Yamada, Wakimoto, et al., 1995). The hole doping
quickly increases d at x.0.05 upon metallization; it
seems that d approaches the value d5x at 0.05<x
<0.1, as can be seen in Fig. 122 (Yamada et al., 1998).
At x50.15 and 0.075, inelastic neutron-scattering ex-
periments show that the width D, the peak height
S(Q ,v), and the intensity *dq S(q ,v) around the in-
commensurate peak depend on temperature for the en-
ergy v,4 meV, that is, the peak grows and is sharpened
with lowering temperature when measured at T
,100 K, while the incommensurate peak structure is
more or less independent of temperature for v
>4 meV (Cheong et al., 1991; Thurston et al., 1992; Ya-
mada, Wakimoto, et al., 1995) above Tc . This suggests
that rather sharp incommensurate peaks grow only in
the low-energy range v,4 meV at x;0.15 due presum-
ably to a Fermi-surface effect combined with imperfect
but finite nesting effects of the Fermi surface. This
growth of incommensurate peaks may be ascribed to the
growth of the coherent part of the magnetic response, as
discussed in Secs. II.E.4 and II.F.10. Recent studies us-
ing high-quality samples show that the incommensurate
peak decreases and disappears with decreasing tempera-
tures below Tc at low energies (Mason et al., 1992, 1993;
Yamada, Wakimoto, et al., 1995). This is consistent with
the opening of a superconducting gap at the incommen-
surate wave number. The wave-number dependence ap-
pears to be consistent with dx22y2 symmetry of the su-
perconducting gap. Another remarkable feature below
Tc is that the incommensurate peak grows and becomes
more prominent and sharpened on the high-energy side
(*7 meV) with very long correlation length (.50 Å;
Mason et al., 1996). This may be related to the compat-
ibility of antiferromagnetic correlation, especially in the
d-wave superconductor (see, for example, Assaad,
Imada, and Scalapino, 1997; Assaad and Imada, 1997).

FIG. 122. The doping concentration (x) dependence of the
incommensurability d [deviation of the peak position from
(p,p)] in spin correlations observed in neutron-scattering ex-
periments for La22xSrxCuO4 (Yamada et al., 1998). Incom-
mensurability appears in the metallic phase. The inset shows
the half width at half-maximum G.
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An overall feature of Imx(q ,v) for La2CuO4 and
La1.85Sr0.15CuO4 up to high energies was measured by
high-energy pulsed neutron inelastic scattering (Ya-
mada, Endoh, et al., 1995; Hayden et al., 1996). The
magnetic scattering intensities around (p,p) due to anti-
ferromagnetic fluctuations were clearly observed up to
v5120 meV. In addition, when the nonmagnetic com-
ponent was subtracted, the magnetic signals remained
up to 300 meV.

Here, it should be noted that a careful analysis of the
neutron and NMR data is required for interpretation of
spin fluctuations. As clarified in Secs. II.E.4 and II.F.10,
the dynamic spin susceptibility is phenomenologically
given as the sum of coherent and incoherent contribu-
tions. Although the coherent part may depend on tem-
perature due to the Fermi-surface effect, the antiferro-
magnetic correlation length j must be determined from
the incoherent part, and it appears to be temperature
insensitive, as discussed in Sec. II.E.4. The incoherent
contribution becomes more and more dominant over the
coherent contribution as the doping concentration is
lowered.

At low doping concentration, *Imx(q,v)dq follows a
single-parameter scaling

E Im x~q ,v!dq5g~bv!, (4.8)

with g(x);12e2x or tanh x as in Fig. 123 (Keimer
et al., 1992; Hayden et al., 1991a). The same scaling was
also observed in a YBa2Cu3O72y compound, as dis-
cussed in Sec. IV.C.3. As discussed in Secs. II.E.4 and
II.G.2, this scaling is consistent with both a marginal
Fermi liquid (see Sec. II.G.2; Varma et al., 1989) and a
view in terms of a totally incoherent response as in Eqs.
(2.294) and (2.362) (see Secs. II.F.10 and II.E.4; Imada,
1994a; Jaklič and Prelovšek, 1995a). It should be noted
that this single-parameter scaling is experimentally not
satisfied at higher doping at low temperatures (Matsuda
et al., 1994). A general tendency appears to be that the

FIG. 123. Single-parameter scaling of * Im x(q,v)dq for vari-
ous choices of T and v for La1.96Sr0.04CuO4. From Keimer
et al., 1992.
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single-parameter scaling by bv is satisfied in the region
of incoherent charge dynamics at low doping or at high
temperatures, namely at T.Tcoh (see Fig. 34), which is
consistent with the region of incoherent charge and spin
dynamics discussed in the theoretical argument in Secs.
II.E.4 and II.F.10. In addition, it is clear that this single-
parameter scaling is not satisfied when the supercon-
ducting gap (or pseudogap with nodes) is open, as is
observed by (Yamada, Wakimoto, et al., 1995). The scal-
ing appears not to be satisfied in the pseudogap region
above Tc in the Y compounds, as discussed in Sec.
IV.C.3. However, the boundary of the region of single-
parameter scaling by bv in the plane of x and T has not
yet been completely clarified experimentally, although it
is important to establish the correct interpretation and
theory.

When the doping concentration x is around 1/8,
La22xBaxCuO4 and La22xSrxCuO4 are known to show
anomalies in their transport properties. In particular,
La22xBaxCuO4 with x;0.125 shows a marked decrease
in Tc as compared with the other region, and it becomes
even insulating in the region close to x50.125. This may
be due to the charge ordering of doped holes accompa-
nied by spin ordering, as observed by muon (Kumagai
et al., 1994), nuclear quadrupole resonance, and
neutron-scattering measurements. The periodicity of the
charge ordering is commensurate to the CuO2 lattice
structure. In particular, recent neutron measurements
for La1.62xNd0.4SrxCuO4 at around x50.12 showed that
a commensurate charge- and spin-ordered stripe phase
is stabilized (Tranquada, Sternlieb, et al., 1995).

Nuclear magnetic resonance provides us with another
powerful tool for investigating spin correlations in
La22xMxCuO4. The longitudinal relaxation time of
nuclear magnetization, T1 , is inversely proportional to
the dynamic spin susceptibility as

1
T1

5
gn

2kBT

2mB
2 (

q
(

a5x ,y
uAq

au2
Im xaa~q ,v0!

v0
, (4.9)

where v0 is the frequency of the NMR field applied in
the z direction. The frequency v0 is usually very small
and it may be viewed as the limit v→0 for the magnetic
response in which we are interested. The shift of the
NMR frequency due to the hyperfine interaction be-
tween nuclei and electrons, called the Knight shift K , is
given as the sum of the orbital part Korb and the spin
part Kspin . The spin part is given by

Kspin5
1

mB
Aq50Re x~q50,v50 !, (4.10)

where x(q50,v50) is the uniform magnetic suscepti-
bility. Korb is usually assumed to be temperature inde-
pendent. For the isolated Cu21 ion, anisotropy of the
dx22y2 wave function causes very anisotropic Korb ,
which well accounts for the experimental data (Taki-
gawa et al., 1989). The nuclear form factor Aq is deter-
mined from the hyperfine interaction. The anisotropy
between Aq50

c and Aq50
ab is accounted for by considering

a transferred hyperfine interaction through the hybrid-
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ization of the 4s orbital and the Wannier orbital of
dx22y2 extended to the neighboring site, as proposed by
Mila and Rice (1989). The q dependence of the nuclear
form factor Aq has a large weight around q5(p ,p) for
the Cu site, while the weight around q5(p ,p) is vanish-
ing in the case of Aq at the in-plane O site. At the Cu
site, the nuclear form factor is such that the antiferro-
magnetic fluctuation around (p,p) is selectively picked
up in 1/T1 .

Comprehensive measurements of the NMR nuclear
spin-lattice relaxation time T1 at the Cu site were per-
formed in the range 0<x,0.15 and T<900 K, as shown
in Fig. 124 (Imai et al., 1993). At the moment its inter-
pretation is not unique. However, at least several points
should be noted concerning on the T1 results. For the
mother material La2CuO4, 1/T1 shows striking enhance-
ment with decreasing temperature, in agreement with
the exponential growth of the antiferromagnetic corre-
lation length j in the renormalized classical regime of
the nonlinear sigma model. As doping proceeds, the en-
hancement of 1/T1 is rapidly suppressed, giving way to
more or less temperature independent 1/T1 for T
.100–200 K with gradual crossover to 1/(T1T);const
at lower temperatures for x;0.1–0.15. This temperature
dependence has been interpreted from several different
viewpoints. One interpretation is that 1/(T1T) follows
the Curie-Weiss law 1/(T1T);C/(T1Q) [see Eq.
(2.115)] which comes from a temperature-dependent an-
tiferromagnetic correlation length j; 1/AT1Q , as dis-
cussed in Secs. II.D.1 and II.D.8 and stressed by spin-
fluctuation theories (Millis, Monien, and Pines, 1990;
Moriya, Takahashi, and Ueda, 1990). Another is the in-
terpretation from marginal Fermi-liquid theory (see Sec.
II.G.2) where Im x;tanh bv is consistent with 1/T1
;const for T.200 K at d;0.1–0.15. The NMR data are
also consistent with the discussion of the neutron data
above when we take the limit v0→0. A completely dif-

FIG. 124. Temperature dependence of inverse of NMR
nuclear spin-lattice relaxation time T1 at the Cu site for
La22xSrxCuO4: filled circle, x50; open circle, x50.04; open
square, x50.075; filled square, x50.15. The inset shows the
scaling in the insulating phase. From Imai, Slichter,
Yoshimura, and Kosuge, 1993.
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ferent interpretation related to the marginal Fermi-
liquid hypothesis is that the dynamic structure factor
S(q,v) is basically temperature independent and the
temperature dependence of Im x(q,v)5(12e2bv)S(q,v)
comes solely from the Bose factor 12e2bv, as suggested
from the temperature-independent j and the incoherent
character of spin correlations in numerical studies
(Imada, 1994a; Jaklič and Prelovšek, 1995b). This view-
point is discussed in Secs. II.E.4 and II.F.10. The cross-
over from 1/T1;const to 1/(T1T);const has been at-
tributed to the crossover from the incoherent charge and
spin dynamics to coherent dynamics, which are sepa-
rated by an anomalously suppressed coherence tempera-
ture Tcoh as discussed in Sec. II.F.10. 1/T1 at site O does
not show appreciable influence from antiferromagnetic
fluctuations because of the vanishing contribution from
the part around (p,p), as is evident from the nuclear
form factor of the oxygen site. This is more or less well
described by Korringa-type behavior 1/(T1T);const
over a wide range of temperatures. However, a puzzle
remains in the temperature dependence when the peak
is at deeply incommensurate wave numbers, because the
NMR at Cu and O sites both show a substantial contri-
bution from those incommensurate wave numbers, while
the temperature dependences of those sites are differ-
ent.

The Gaussian decay rate 1/TG associated with the
nuclear spin-spin relaxation time measures the real part
of the static spin susceptibility x(q,v50). In particular,
1/TG at the Cu site was measured in Tl2Ba2CuO61d ,
YBa2Cu3O72y , and YBa2Cu4O8, which selectively picks
up x(Q) with the staggered wave vector Q5(p ,p). Ex-
cept for the pseudogap region discussed below, the scal-
ing 1/(T1T)}x(Q);(1/TG)2 was suggested in a limited
temperature range around 200 K (Y. Itoh et al., 1994b;
Y. Itoh, 1994). This behavior again can be interpreted in
two ways. From the viewpoint of spin-fluctuation theo-
ries, this scaling is due to Eqs. (2.114) and (2.115), where
x(Q)}(T1T)21 is satisfied in 2D. The other interpreta-
tion is that both x(Q,v50) and Imx(q,v)/v are basi-
cally scaled by the above-mentioned Bose factor
limv→0@(12e2bv)/v# , which leads to similar behavior
between x(Q) and Imx(Q,v). This is because the factor
b also remains for Rex after the Kramers-Kronig trans-
formation for T not much smaller than the frequency
cutoff for the main contribution of Im x. Since TG and
T1 do not seem to follow a universal relation over a
wide temperature range, the scaling does not uniquely
determine the mechanism.

The uniform magnetic susceptibility x(q50,v50)
can be measured by bulk magnetization measurements
as well as by the Knight shift. In an undoped compound,
it has a pronounced peak at high temperatures >1000 K
and decreases with decreasing temperatures, in agree-
ment with the behavior of the 2D Heisenberg model
(Okabe and Kikuchi, 1988). When carriers are doped,
the peak temperature Tx decreases (Tx;400–500 K at
d;0.15). However the peak structure with a rather re-
markable decrease at lower temperatures is retained, as
shown in Fig. 125 (Johnston, 1989; Takagi, Ido, et al.,
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1989; Takagi, Uchida, and Tokura, 1989; Nakano et al.,
1994). The peak structure and decrease at low tempera-
tures appear to be more pronounced in the low-doping
region d;0.1 than in the undoped case. The doping de-
pendence of the peak temperature Tx is similar to the
crossover temperature TH where the Hall coefficient
shows a sharp increase with decreasing temperature, as
discussed below. As a possible interpretation, this
anomaly was analyzed as the effect of preformed singlet
pairing fluctuations or antiferromagnetic fluctuations
(Imada, 1993a, 1994b) which start below Tx in the me-
tallic region as is discussed in Sec. IV.C.3.

This ‘‘pseudogap’’ behavior is seen in other quantities
such as the specific heat g. From far above Tc , g and
hence the electronic entropy itself are anomalously sup-
pressed in the low-doping region as in Fig. 126. (Loram
et al., 1997). The crossover temperature Tg is above 300
K at low doping. This suppression of g at low tempera-
tures T!Tg in the underdoped region was also pointed

FIG. 125. Temperature dependence of the uniform magnetic
susceptibility of La22xSrxCuO4 for various x . From Nakano
et al., 1994.

FIG. 126. Temperature dependence of specific heat g for
La22xSrxCuO4. The numbers indicate the doping concentra-
tion in % (Loram et al., 1997). The entropy is released at
higher temperatures at lower dopings.
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out by Wada, Nakamura and Kumagai (1991) and by
Nishikawa, Takeda, and Sato (1994). It is in striking con-
trast with the critical enhancement of g for (La,Sr)TiO3
discussed in Sec. IV.B.1. From the specific-heat data, a
large entropy remaining above Tg&Tx is suggested from
the picture of a mass-diverging Mott transition at higher
temperatures with crossover to vanishing carrier number
below Tg due to the formation of a pseudogap, as dis-
cussed in Sec. II.F (Imada, 1993a, 1994b). This means a
crossover of the scaling for the MIT between two differ-
ent universality classes. We discuss the pseudogap be-
havior and the significance of Tx and Tg in greater detail
for the case of Y compounds in Sec. IV.C.3.

The transport properties of this compound are also
unusual in terms of standard Fermi-liquid theory (see,
for other reviews, Iye, 1990; Ong, 1990). One of the most
unusual properties is the temperature dependence of the
resistivity. As we have discussed in Sec. II.D.1, standard
Fermi-liquid theory predicts that the temperature de-
pendence of the resistivity r is given as r5r01AT2 [see
Eq. (2.83)] with correlation effects contained in the T2

term. In contrast to this, this compound especially
around optimum doping x;0.15 shows robust T-linear

FIG. 127. Temperature dependence of the in-plane resistivity
for various doping concentrations of La22xSrxCuO4 for single
and poly crystals (Takagi et al., 1992a) T-linear resistivity is
seen in a wide region.
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dependence, r;r01A8T , in a wide range from Tc to
800 K, as shown in Fig. 127. The residual resistivity r0
appears to vanish for samples of higher quality. This
T-linear behavior is widely observed in other high-Tc
cuprates around optimum doping. In the overdoped re-
gion, the resistivity roughly follows the form

r5r01A9Tp, (4.11)

with 2>p.1, where p increases with increasing doping
(Takagi, Batlogg, et al., 1992a). In the underdoped re-
gion, r has a feature around Tx , in which the linear law
r;r01A8T changes slope: A8 increases and r0 de-
creases in going from the high-temperature region T
.Tr.Tx to below Tr , as shown in Fig. 127. Recent
measurements of r at low temperatures in the under-
doped region revealed that r eventually shows insulating
behavior (logarithimic T dependence) at sufficiently low
temperatures if the superconductivity is suppressed
(Ando et al., 1995).

Various mechanisms for this T-linear behavior have
been proposed. We discuss here only some of these sug-
gestions. Although the mechanism is not yet fully under-
stood, it is useful to list some of the proposed ap-
proaches to make connections with the recent extensive
theoretical efforts discussed in Sec. II.

From the Fermi-liquid point of view, the spin fluctua-
tion theory discussed in Secs. II.D.1 and II.D.8 ascribes
this behavior to control of the carrier relaxation time t
by the scattering of carriers (quasiparticles) by paramag-
netic excitations. The T-linear resistivity in this ap-
proach is obtained in Eq. (2.121) and, as discussed in the
derivation of (2.121), is ascribed to the contribution of
antiferromagnetic excitations which follows the Curie-
Weiss form (2.114) (Millis, Monien, and Pines, 1990;
Moriya, Takahashi, and Ueda, 1990). Near the critical
point, Q;0, Im S and hence the inverse relaxation time
of the quasiparticles becomes proportional to T follow-
ing the form of Eqs. (2.110), (2.111), and (2.114).

In the scenario of spin-charge separation, discussed in
Sec. II.D.7, the slave-boson approximation with cou-
pling between spinons and holons treated by the gauge
field leads to the T-linear resistivity due to the incoher-
ent character of the holons. (Ioffe and Wiegmann, 1990;
Ioffe and Larkin, 1989; Lee and Nagaosa, 1992). The
T-linear resistivity is also obtained from marginal
Fermi-liquid theory, where Im S is indeed proportional
to T , as discussed in Sec. II.G.2.

As discussed in Sec. II.E.1, recent numerical results of
an exact diagonalization for the 2D t-J model by Jaklič
and Prelovšek (1995a) succeeded in reproducing this
T-linear behavior; the prefactor A8 was in quantitative
agreement with the experimental data shown in Fig. 127,
although the temperature achieved by the numerical
method was at least a few hundred K. It was suggested
that this T-linear resistivity could be due solely to inco-
herent charge dynamics, which should be observed
above the coherence temperature of the carriers. The
conductivity is in fact consistent with incoherent charge
dynamics of the form (2.274) with a broad C(v), of the
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order of an eV, which implies that the current-current
correlation decays very quickly over the time scale
eV21. Such anomalous suppressions of coherence are
consistent with the anomalous criticality of the Mott
transition with the large dynamic exponent z54, as dis-
cussed in Sec. II.E.9 (Imada, 1995b; see Sec. II.F.9).

The anisotropy of the resistivity shows another un-
usual property. The resistivity in the CuO2 plane, rab , is
smaller by a factor of 200 than that along the c axis
(out-of-plane), rc , at optimum doping in the room-
temperature region (Ito et al., 1991). The anisotropy in-
creases for smaller x as well as for smaller T . Because
the LDA calculation predicts a mass anisotropy of only
28 (Allen, Pickett, and Krauer, 1987), this large anisot-
ropy has to be ascribed to strong electron correlations.
Even more remarkable is that, in the low-doping and
low-temperature region, there exists a region where rab
shows metallic while rc shows insulating temperature
dependence. Roughly speaking this region is T,Tr . We
discuss the anisotropy of r further in Sec. IV.C.3.

The Hall coefficient RH also shows anomalous char-
acter in terms of standard Fermi-liquid theory. In the
standard theory of weakly correlated systems, RH is in-
dependent of temperature, and the amplitude is given by
RH;1/nec with carrier density n . However, at low tem-
peratures, the observed RH in this compound is hole-
like, that is, positive with large amplitude roughly scaled
by 1/x for x,0.3, as shown in Fig. 128 (Ong et al., 1987;
Takagi, Ido, et al., 1989). This contradicts a naive expec-
tation from the Fermi-liquid picture because the carrier
number is given by 12x when the Luttinger theorem is
satisfied and the carrier should be electronlike. The sign
of RH is determined from the average of the curvature
over the Fermi surface in the weak-correlation picture
and therefore the sign itself can be determined from a
subtle balance of the electronic band structure. How-

FIG. 128. Doping concentration dependence of the Hall coef-
ficient at low temperatures for La22xSrxCuO4 and
Nd22xCexCuO4. Shaded windows show the superconducting
phase at low temperatures (Uchida et al., 1989). RH roughly
follows 1/x in the underdoped region.
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ever, the large amplitude in the underdoped region is
hard to explain from this approach. It has turned out
that the temperature dependence of RH is even more
peculiar because a large positive RH quickly decreases
above a certain crossover temperature TH.Tx , as
shown in Fig. 129 (Nishikawa, Takeda, and Sato, 1993,
1994; Hwang et al., 1994). The crossover temperature
TH is close to Tx for the uniform susceptibility and both
show similar x dependence. Above TH.Tx , RH decays
to a small amplitude consistent with the large Luttinger
volume given by 12x . As discussed above, this cross-
over at TH was predicted to occur due to the gradual
formation and fluctuations of a preformed singlet pair
below TH , as discussed in Sec. II.E.1 (Imada, 1993a,
1994b, 1995b), although the interpretation of the ob-
served behavior has not been uniquely established. In
other words, the crossover at TH reflects a change in the
character and the universality class of the Mott transi-
tion at small x , as discussed above for the anomalies of
the specific heat Tg and the susceptibility Tx . Another
interpretation of the existence of TH is the anomalous
Hall effect due to skew scattering arising from antiferro-
magnetic fluctuations. The effect of nesting has been dis-
cussed as the source of an anomalous contribution to RH
through a process similar to the Aslamazov-Larkin pro-
cess in superconducting fluctuations (Miyake and
Narikiyo, 1994a).

The optical conductivity s(v) shows a spectacular
change with increasing doping concentration, as illus-
trated in Fig. 130 (Uchida, et al., 1991). A charge-
transfer gap of the order of 1.5–2 eV is clearly observed
in La2CuO4, although it is accompanied by a tail up to
;1 eV whose origin is not uniquely identified. Upon
doping, the spectral weight is transferred from the re-
gion above the CT gap to the lower-frequency region. In
the low-doping region, it appears to develop a broad
structure around or below 0.5 eV, which is replaced by

FIG. 129. Temperature dependence of the Hall coefficient for
La22xSrxCuO4 (Nishikawa, Takeda, and Sato, 1994). The thin
line represents the nominal value of 1/nec at n51 per Cu.
Strong temperature dependence is seen in the underdoped re-
gion.



1182 Imada, Fujimori, and Tokura: Metal-insulator transitions
an overall 1/v dependence upon further doping. To un-
derstand the v dependence, two phenomenological ap-
proaches have been attempted using extended Drude
analyses (Thomas et al., 1988; Collins et al., 1989; see for
a review Tajima, 1997). In the first approach, s(v) is fit
with a single-oscillator model, while in the other ap-
proach a two-oscillator model has been employed. The
advantage of the single-oscillator model is that the
parameters—namely, the effective plasma frequency
vp* 54pne2/m* (v) and the relaxation time t(v)—are
uniquely determined by assuming an v-dependent effec-
tive mass m* and t, while the interpretation of the v
dependence is not straightforward for doped samples
because of the mid-IR structure. On the other hand, the
two-oscillator model fits the data better, while the pa-
rameters are not uniquely determined. Because the
mid-IR peak is absent in an untwinned Y compound, the
two-oscillator model probably needs to take account of
the impurity localization effect and polaron effects
(Thomas et al., 1991). In any case, the overall 1/v depen-
dence and the 1/T dependence at v50 are consistent
with the form (2.274) and (2.275) with weak v and T
dependence for C(v). The consistency of this form with
numerical results is discussed in Sec. II.E.1. The connec-
tion to the scaling theory of the Mott transition and the
marginal Fermi-liquid theory are given in Secs. II.F.9
and II.G.2, respectively. An important point is that ex-
perimental data that are well described by the form
(2.274) with weakly v-dependent C(v) should be the
consequence of incoherent charge dynamics with the
complete lack of the true Drude weight. We discuss this
incoherence further in the case of Y compounds in Sec.
IV.C.3. The out-of-plane conductivity sc(v) shows dif-
ferent charge dynamics from the in-plane one. A charge
gap is developed from T above Tc (Tamasaku, Naka-
mura, and Uchida, 1992). Below Tc , it is rather difficult
to observe the superconducting gap in the in-plane
sa ,b(v), because the reflectivity is almost 100% around
the gap energy, even in the absence of the superconduct-

FIG. 130. The in-plane optical conductivity s(v) at room tem-
perature for various choices of x in La22xSrxCuO4. From
Uchida et al., 1991.
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ing gap. Since the c-axis reflectivity is lower, it is easier
to distinguish from the gap region with 100% reflectiv-
ity. Because the cuprate superconductors can be viewed
as layered superconductors of CuO2 sheets coupled
weakly by Josephson tunneling through the interlayer
coupling, the plasma frequency vp of this Josephson-
coupled system may have a smaller value than the su-
perconducting gap D if the Josephson coupling is weak.
This situation, vp,D , is in sharp contrast with the usual
case where vp.0.5 eV@D is satisfied. Because vp is in
the gap region, the Josephson plasma oscillation hardly
decays. Various exotic electromagnetic phenomena due
to this low vp were predicted by Tachiki, Koyama, and
Takahashi (1994).

Below we shall discuss the electronic structure studied
by first-principles calculations together with results of
spectroscopic measurements. This compound is one of
the hardest cases for reproducing the correct electronic
states by band-structure calculation because of strong-
correlation effects and strong p-d covalency. In order to
explain the antiferromagnetic insulating state of the par-
ent compound La2CuO4, standard LDA calculations are
insufficient. The insulating state was correctly predicted
by LDA1U calculations (Anisimov et al., 1992), self-
interaction-corrected (SIC)-LDA calculations (Svane
and Gunnarsson, 1988a; Temmerman et al., 1993), and
parametrized Hartree-Fock calculations (Grant and Mc-
Mahan, 1991). The effect of hole doping on an antifer-
romagnetic insulator, however, is usually beyond the
scope of these band-structure calculations. The elec-
tronic structure of La22xSrxCuO4 with static (self-
trapped) holes was studied by Anisimov et al. (1992) us-
ing the LDA1U method applied to supercell
calculations. They showed that, even without lattice dis-
tortion, a hole is self-trapped within a small ferromag-
netic region where antiferromagnetic order is destroyed
by the doped hole. Then a localized state is split off from
the top of the valence band into the band gap. In spite of
the structural simplicity and the presence of a well-
defined parent insulator, La22xSrxCuO4 is complicated
in that doped holes enter not only the px ,y-dx22y2 anti-
bonding orbitals of the CuO2 plane but also the pz or-
bitals of the apical oxygen hybridized with the Cu 3dz2

orbital, as suggested theoretically (Kamimura and Suwa,
1993) and observed experimentally (Chen et al., 1992).

Experimentally, hole doping in La2CuO4 induces a
new spectral weight (the so-called ‘‘in-gap spectral
weight’’) within the charge-transfer gap, as first revealed
by oxygen 1s core absorption spectroscopy (Romberg
et al., 1990; Chen, Sette, et al., 1991). The in-gap spectral
weight is distributed mostly above EF , coming largely
from the doped holes themselves (as d9LI→d9 spectral
weight) but is also transferred from the upper Hubbard
band (d9→d10 spectral weight). A theoretical interpre-
tation of the doping-induced spectral weight transfer
above EF is beyond the framework of the t-J model,
since the model has no upper Hubbard band. Spectral
weight transfer has been studied using a strong-coupling
treatment (i.e., perturbation with respect to t/U) of the
Hubbard model (Eskes and Oleś, 1994; Eskes et al.,
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1994) and using numerical simulations of Hubbard clus-
ters (Dagotto et al., 1991; Li et al., 1991; Bulut et al.,
1994a). Decrease of the spectral weight below EF occurs
in the Zhang-Rice singlet band @d9→d9LI (1A1g) spec-
tral weight], which was regarded as the effective lower
Hubbard band when the high-energy part of the original
p-d Hamiltonian is projected out and the Hubbard
model or the t-J model is employed as the effective low-

FIG. 131. Density of states of La22xSrxCuO4 . (a) Photoemis-
sion and inverse-photoemission spectra near the Fermi level
(Ino et al., 1997c); (b) Schematic representation of the evolu-
tion of spectral weight with hole doping.
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energy Hamiltonian. The decrease in the spectral weight
of the Zhang-Rice singlet with hole doping is not easy to
detect because of the overlapping intense oxygen 2p
band. Figure 131(a) shows combined photoemission and
inverse-photoemission spectra of La22xSrxCuO4 (Ino
et al., 1997c). The doping-induced spectral weight is not
concentrated just above EF , as suggested by previous
x-ray absorption studies, but is distributed over the
whole band-gap region with the DOS peak ;1.5 eV
above EF . Thus spectral weight transfer occurs over a
relatively wide energy range, within a few eV of EF , and
the Fermi level is located at a broad minimum of the
DOS, as schematically shown in Fig. 131(b). The spec-
tral DOS at EF is much weaker than that given by LDA
band-structure calculations even for optimally doped
and overdoped samples, indicating that the quasiparticle
weight is very small: Z!1. In underdoped samples,
there is even a pseudogap feature at EF , which evolves
into the insulating gap at x50.

The EF or the electron chemical potential in
La12xSrxCuO4 deduced from the shifts of various core
levels exhibits an interesting behavior as a function of x
(Ino et al., 1997a). The chemical potential is shifted
downward with hole doping as expected, but the shift is
fast in the overdoped regime (x&0.15) and slow in the
underdoped regime (x*0.15), as shown in Fig. 132. It
appears that ]m/]x becomes vanishingly small within ex-
perimental errors for small x , implying a divergence of
charge compressibility/susceptibility towards x;0 as
predicted by Monte Carlo simulation studies of the 2D

FIG. 132. Chemical potential shift as a function of hole con-
centration in La22xSrxCuO4 (Ino et al., 1997a). Shifts expected
from band-structure calculation and the gT term in specific
heat (which is proportional to the quasiparticle DOS at EF)
are also plotted in (b).
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Hubbard model (Otsuka, 1990; Furukawa and Imada,
1993). This is also consistent with the scaling theory with
the dynamic exponent z54 (see Sec. II.F). On the other
hand, the electronic specific-heat coefficient g is de-
creased towards x;0 (Momono et al., 1994), meaning
that the effective mass of conduction electrons decreases
as discussed above. In the overdoped region, the results
of the chemical potential shift and the electronic specific
heat are consistently interpreted within Fermi-liquid
theory if the quasiparticle–quasiparticle repulsion is as-
sumed to be Fs

0;7. In the underdoped region, Fs
0 has to

be assumed small or even negative: Fs
0→21 if ]m/]x

→0, invalidating the original Fermi-liquid assumption.
Because the measurements were made in the normal
state, the results indicate that the normal state of the
underdoped cuprates is not a Fermi liquid but has a
(charge) pseudogap at EF . This observation would be
closely related to other aspects of pseudogap behavior in
the underdoped region discussed above as well as in
Secs. IV.C.3 and IV.C.4. In accord with other measure-
ments of the pseudogap discussed in other part of Sec.
IV.C, possible microscopic mechanisms for the observed
behavior may be (i) preformed Cooper pair fluctuations
above Tc , (ii) spinon pairing in the resonating valence
bond scenario, (iii) antiferromagnetic spin fluctuations
strong enough to destroy Fermi-liquid behavior, and (iv)
fluctuations of spin-charge stripes. Concerning of (iv),
Zaanen and Oleś (1996) argued that spin-charge stripes
pin the chemical potential for low hole concentrations if
the stripes become static and may continue to do so
even if the stripes are dynamic.

2. Nd22xCexCuO4

Since the discovery of electron-doping-induced super-
conductivity in R22xCexCuO4, where R may be Pr, Nd,
Sm, or Eu (Tokura, Takagi, and Uchida, 1989), the ex-
istence of high-Tc superconductivity for both hole and
electron doping has imposed a strong constraint on its
mechanism (Anderson, 1992). R22xCexCuO4 has the so-
called T8 structure (Fig. 133) in which the single CuO2
sheet without apical oxygen is sandwiched by fluorite-
type (R ,Ce)2O2 block layers. The Ce ion in the fluorite-
type block is tetravalent (41), and hence Ce doping (x)
changes the band filling in the opposite direction to that
in the so-called hole-doped superconductors such as
La22xSrxCuO4. In other words, high-Tc superconductiv-
ity emerges irrespective of the increase or decrease in
band filling from the CuO2-based half-filled Mott insula-
tor. Electron doping can only be performed for this type
of square CuO2 sheet without apical oxygens, while the
pyramidal or octahedral CuO2 sheet with apical oxygens
or halogens are mostly hole-dopable (Tokura and
Arima, 1990; Tokura 1992a, 1992b), probably due to
electrostatic reasons (i.e., Madelung-type energy origins
from the valence change of Cu or O).

In spite of extensive studies on normal and supercon-
ducting properties in these electron-doped supercon-
ductors, much less physics has been clarified than in the
cases of their hole-doped counterparts. This is simply
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
because high-quality filling-controlled single crystals (in
the sense of oxygen stoichiometry and distribution) have
been difficult to prepare. In particular, only minute oxy-
gen nonstoichiometry is determinant not only for the
appearance of superconductivity but for normal-state
transport and magnetic properties. For example, the 24–
25-K superconductivity is known to show up around x
50.15 for Nd22xCexCuO4 and Pr22xCexCuO4, only
when the compound is subject to a thermal annealing
procedure under reducing conditions (Takagi, Uchida,
and Tokura, 1989). In these compounds, the oxygen sto-
ichiometry corresponding to increase of Dy'0.01 is suf-
ficient to quench superconductivity completely (Idemoto
et al., 1990; Suzuki et al., 1990). This implies that minute
oxygen interstitials positioned on other than the in-plane
O(2) sites (Fig. 133) may serve as very effective carrier
scatterers or localization centers, in contrast with the
other cases where slight oxygen offstoichiometry plays
the role of fine filling control (see Sec. IV.B). According
to single-crystal neutron-diffraction structural studies
(Radaelli et al., 1994; Schultz et al., 1996), it is probable
that in as-grown crystals without a reducing procedure
interstitial oxygens may sit on the apical O(3) site imme-
diately above the Cu site.

Keeping in mind the remarkable but still puzzling role
of minute oxygen interstitials, let us survey the MIT-
related properties in R22xCexCuO4 (where R5Nd and
Pr). Figure 134 (Matsuda et al., 1992) shows the evolu-
tion of 3D antiferromagnetic (AF) spin order (TN
5160 K) for an as-grown Nd22xCexCuO4 (x50.15)
crystal (nonsuperconducting) and its near disappearance
for the reduced crystal (24-K superconducting). The
(1,0,1) Bragg-peak intensity is contributed to by both Cu
and Nd moments and its decrease below 50 K is due to
the onset of the Nd spontaneous moment. By the de-
composition procedure with the respective form factors,
the saturation Cu moment at the lowest temperature
was estimated as around 0.2mB or less (Matsuda et al.,

FIG. 133. Crystal structure of T8 phase.
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1992). The as-grown x50.15 crystal shows metallic be-
havior with resistivity r less than 1023 V cm, but the r
shows an upturn around the temperature corresponding
to TN (usually ranging from 120 to 160 K for the as-
grown x50.15 crystal). As shown in Fig. 134 and also
demonstrated by earlier mSR (Luke et al., 1989) and
NMR (Kambe et al., 1991) measurements, antiferromag-
netic order is extinguished by the reducing procedure,
which gives rise to superconductivity below Tc'24 K.

Such a robust behavior of the antiferromagnetic order
with electron-doping level x is in sharp contrast to the
case of hole-doped superconductors, La22xSrxCuO4. In
the latter compound, TN decreases at a rate of 160 K/
at. %, while in the T8-phase compounds (as-grown) the
rate of decrease is only '9 K/at. % (Thurston et al.,
1990). The slower collapse rate of the antiferromagnetic
order with doping in the T8-phase compounds is seem-
ingly in accordance with the simple site dilution model
(Matsuda et al., 1992), or intuitive scenario that a doped
electron forms the local nonmagnetic Cu11 species and
dilutes the original S51/2 Cu21 spins. However, such a
simplified model should not in principle be applicable to
the metallic state induced by electron-doping. In fact,
the minute change in the oxygen content brought about
by the reduction procedure seems to drive a weakly lo-
calized doped (or site-diluted) Mott antiferrromagnet to
a highly correlated metallic (at low temperatures, super-
conducting) state. The local square symmetry of the Ce
dopant may be broken by disorder, or a small amount of

FIG. 134. Upper panel: M/H vs temperature both before and
after reduction and annealing. The samples were cooled in
zero magnetic field. Lower panel: (101) Bragg-peak intensity
before and after reduction and annealing.
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interstitial oxygen may trigger long-range antiferromag-
netic order, which is incompatible with superconductiv-
ity, as observed in the spin-gapped Cu-O ladder com-
pounds (Sec. IV.D.1).

Figure 135 shows the temperature dependence of the
in-plane resistivity on single crystals of Pr22xCexCuO41y
(x50.15) after several annealing steps at low-oxygen
partial pressure (Brinkmann et al., 1996). With a reduc-
tion procedure, the superconducting transition tempera-
ture Tc steadily increases, accompanying a gradual de-
crease in residual resistivity (defined by the resistivity
immediately above Tc). In fact, the change of residual
resistivity scales linearly with that of Tc , implying that
the oxygen interstitials in the less reduced crystals play
the role of strong carrier scatterers as well as pair-
breaking impurities.

The resistivity in the normal state of 24-K supercon-
ductor Nd22xCexCuO42y is quadratic with temperature
at relatively low temperatures below 200 K and, at
higher temperatures, subject to the logarithmic correc-
tion characteristic of a 2D Fermi liquid (Tsuei, Gupta,
and Loren, 1989). This is in contrast with the well-
known T-linear behavior for optimally hole-doped su-
perconductors. Brinkmann et al. (1995) succeeded in ex-
tending the superconducting composition range to 0.04
<x<0.17 for Pr22xCexCuO42y using an improved re-
duction technique. In those crystals, they observed for
the normal state in the reduced superconducting crystals
that the resistivity was fitted using the empirical formula
r(T)5r01bTn and that the exponent n changed from
n'1.7 for high Ce concentration to n'1.3 for lower Ce
concentrations. A similar systematic change is known
for the overdoped concentration range of the hole-
doped superconductors (Takagi, Batlogg, et al., 1992a;
Kubo et al., 1991).

The long-standing problem is the nature of supercon-
ducting carriers in the electron-doped cuprates. The
Hall coefficient RH is quite sensitive, not only to the

FIG. 135. Electrical resistivity vs temperature for the
Pr1.85Ce0.15CuO41d crystals A (drawn lines) and A8 (dashed
lines) annealed in different oxygen atmospheres as given in the
figure. The inset shows the resistive superconducting transi-
tions for samples A and A8.
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doping x as in the hole-doped superconductors, but also
to the reduction procedure. In general, the RH is nega-
tive and its absolute magnitude scales roughly with x in
the lightly doped region, whereas in the nonsupercon-
ducting overdoped region x.0.17 the sign of RH is re-
versed to positive (Takagi, Uchida, and Tokura, 1989).
Apart from the opposite sign, the behavior is analogous
to the case of La22xSrxCuO4 (Ong et al., 1987; Takagi,
Ido, et al., 1989). However, it has been occasionally ob-
served for superconducting R22xCexCuO42y (R5Nd or
Pr) crystals with x'0.15 that RH increases steeply to
positive values with lowering temperature, say below 80
K (Wang et al., 1991; Jiang et al., 1994). These were in-
terpreted in terms of the two-band model in which both
holes and electrons participate in charge transport for
the superconducting phase.

Figure 136 displays the in-plane optical conductivity
spectra (at room temperature) of Pr22xCexCuO4 with

FIG. 136. Optical conductivity spectra of Pr22xCexCuO42y
with light polarization perpendicular to the c axis (in-plane).
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and without reduction procedures (Arima, Tokura, and
Uchida, 1993). Spectroscopically, the reduction proce-
dure appears to produce an effect similar to the
electron-doping x . With electron-doping, the spectral
weight arising from the CT gap transition around 1.5 eV
is transferred to the in-gap region (Cooper et al., 1990a),
as observed in the hole-doping case, La22xSrxCuO4
(Uchida et al., 1991). However, the broad infrared band
(the so-called in-gap state absorption) is far from the
conventional Drude spectrum and the charge dynamics
appears highly incoherent. The doping-induced change
was also observed in the O 2p-Cu 4s interband transi-
tion region (Arima, Tokura, and Uchida, 1993). A single
band around 5.0 eV in the x50 parent compound is split
and the spectral weight is gradually shifted to the lower-
lying band around 4.2 eV with doping. This was inter-
preted in terms of the formation of an occupied in-gap
state below the Fermi level. Therefore the energy differ-
ence between the upper edge of the occupied O 2p state
and the in-gap state is about 0.8 eV, nearly half of the
original CT band gap. This is contrary to the case of hole
doping, in which the in-gap state is formed predomi-
nantly above the Fermi level and hence is observable,
e.g., in the O 1s absorption spectroscopy, as the unoc-
cupied state (Chen et al., 1991).

Doping-induced changes in the single-particle DOS of
Nd22xCexCuO4 are thus different from those in
La22xSrxCuO4 in that the in-gap spectral weight appears
largely below EF (Anderson et al., 1993). It is then ex-
pected that the upper Hubbard band (d9→d10) loses its
spectral weight, although an increase of the spectral
weight was indeed observed by oxygen 1s x-ray absorp-
tion spectroscopy (Pellegrin et al., 1993). The position of
the Fermi level of the doped sample with respect to the
band gap of Nd2CuO4 has been a long-standing puzzle:
It was pointed out that EF is located below the mid-gap
of the parent compound if we consider the band gap of
FIG. 137. Fermi surface of Nd22xCexCuO4 determined by angle-resolved photoemission spectroscopy (King et al., 1993). Solid
curves are results of LDA band-structure calculations (Massida et al., 1989). G : (p,0); X : (p,p).
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Nd2CuO4 to be the optical gap of 2.0 eV (Allen et al.,
1990; Namatame et al., 1990). This is obviously incom-
patible with the common notion that the bottom of the
conduction band is the affinity level of the parent insu-
lator.

Angle-resolved photoemission studies of
Nd1.85Ce0.15CuO4 revealed a dispersing band which
crosses EF (Anderson et al., 1993; King et al., 1993). As
shown in Fig. 137, the Fermi surface thus determined is
a hole-like one centered at the (p,p) point of the Bril-
louin zone, in excellent agreement with band-structure
calculations for the nonmagnetic metallic state. The re-
sults also show that the Fermi surface volume changes
following the Luttinger sum rule with varying doping
level. There is a saddle point, not in the band dispersions
near EF , but a few hundred meV below it, unlike the
hole-doped cuprate superconductors. The angle-
resolved photoemission spectra show intense high-
binding-energy tails and background, indicating that the
spectral weight of the coherent quasiparticle Z is very
small.

3. YBa2Cu3O72y

This compound has the same layered structure as
La22xSrxCuO4 in the sense that it has a stacking of the
CuO2 planes and the block layers. The lattice structure
is shown in Fig. 138. A complexity in this compound is
that it has a chain structure of Cu and O embedded in
the so-called block layer sandwiched by the CuO2
planes. This Cu-O chain structure makes a minor contri-
bution to the dc conductivity.

The insulating compound of YBa2Cu3O72y with y
>0.6 has antiferromagnetic long-range order. The first
signature of the antiferromagnetic order was detected by
the muon-spin-rotation measurements (Nishida et al.,

FIG. 138. Lattice structure of YBa2Cu3O7.
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1987). An ordered structure similar to the case of
La2CuO4 was confirmed by subsequent neutron-
diffraction measurements (Tranquada et al., 1988). In
the region 0.6,y,1.0, holes are mainly doped into the
CuO chain sites, where excess oxygen added to y51.0 is
indeed introduced to the layers composed of separated
CuO chains. Therefore the doping concentration in the
CuO2 plane changes little by basically retaining the Cu21

valence and thereby retaining the antiferromagnetic in-
sulating phase. Below y50.6, holes start to be trans-
ferred to the CuO2 plane, which immediately destroys

FIG. 139. Fermi surfaces of YBa2Cu3O6.9 determined by angle-
resolved photoemission spectroscopy. (a) Results by Liu et al.,
1992a. Open circles denote Fermi level crossings and shaded
regions are calculated Fermi surfaces (Pickett et al., 1990). The
finite width of the shaded regions represents finite kz disper-
sion. The measurements on twinned samples have been done
for the half of the Brillouin zone shown here. X : (p,0), Y :
(0,p), S : (p,p). (b) Another interpretation of the same data by
Shen and Dessau (1995).
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the antiferromagnetic order and is accompanied by met-
allization. The Néel temperature in the insulating phase
is as high as 400 K. Because the electronic structure cal-
culation using the LDA shows the Fermi surface more
or less tilted by 45° from the case of La2CuO4, as illus-
trated in Fig. 139 (Liu et al., 1992a), simple nesting con-
dition is not satisfied in this case and thus strong corre-
lation effects should be crucial in realizing the
antiferromagnetic insulator. A pulsed high-energy neu-
tron measurement performed up to 250 meV shows that
the spin-wave theory of the Heisenberg model well de-
scribes the spin-wave dispersion with the in-plane ex-
change constant J i512565 meV and the inter-layer ex-
change J'51162 meV (Hayden et al., 1996).

Around y50.6, the compound becomes metallic and
the hole concentration in the CuO2 layer increases with
further decreasing y . This compound in the metallic
phase shows a unique process of doping due to the
transfer of holes between the Cu-O chain site and the
CuO2 layer (Tokura, Torrance, et al., 1988). In the re-
gion 0.3<y<0.6, the hole concentration in the CuO2
plane is kept low with relatively low superconducting
transition temperature Tc;60 K. Around y50.3 the
hole concentration is increased quickly to the overdoped

FIG. 140. Antiferromagnetic correlation observed in peak
structures of Im x(q,v) by neutron scattering for
YBa2Cu3O61x . From Rossat-Mignod et al., 1991a.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
or optimally doped region with Tc;90 K. Similarly to
the case of La22xSrxCuO4, short-range antiferromag-
netic correlations survive in the metallic phase. This en-
hancement of antiferromagnetic correlations is seen in
the diffuse neutron-scattering measurement around
(p,p). However, in contrast to the case of
La22xSrxCuO4, Imx(q,v) resulting from the neutron
data does not show clear incommensurate peaks in the
metallic phase. Instead, it has a broad peak around
(p,p), as is shown in Fig. 140 (Rossat-Mignod et al.,
1991a; Sternlieb et al., 1994). The origin of this differ-
ence in the peak structure between La and Y com-
pounds was ascribed to the difference in the shape of the
Fermi surface (Furukawa and Imada, 1992; Si et al.,
1993; Tanamoto, Kohno, and Fukuyama, 1993, 1994).
However, a signature of incommensurate structure was
recently detected also in Y compounds (Dai et al., 1998).

A single-parameter scaling by bv for *dq Imx(q,v),
analogous to the case of La22xSrxCuO4 as discussed in
Sec. IV.D.1, is observed in the underdoped region
(Sternlieb et al., 1993). However this single-parameter
scaling seems to break down at lower energies below
;12 meV at low temperatures. This may be related to
pseudogap formation, as discussed below.

Magnetic properties show rather different features be-
tween the underdoped (0.6>y>0.3) and the optimally
or overdoped (0.3>y>0) samples. The Knight-shift
measurement in NMR clearly shows this difference. In
overdoped samples with Tc;90 K, the Knight shift is
more or less constant at T.Tc , indicating that the uni-
form magnetic susceptibility x(q5v50) follows the
T-independent Pauli susceptibility of standard metals.
On the other hand, in the underdoped material, 0.3,y
,0.6, the uniform magnetic susceptibility derived from
the spin part of the Knight shift shows a rapid decrease
with decreasing temperatures, as shown in Fig. 141
(Takigawa et al., 1991). The observed decrease with low-
ering temperatures is in fact much more pronounced
than that seen in the 2D or 1D spin-1/2 Heisenberg
model (Bonner and Fisher, 1964; Okabe and Kikuchi,
1988; Makivić and Ding, 1991). This decrease appears to
be continuously and smoothly connected with the de-
crease below Tc , as seen in Fig. 141. Therefore it is
natural to speculate that formation of the pseudogap
structure due to preformed singlet pairing fluctuations
begins well above Tc . The peak structure of x(q5v
50) at T5Tx;500 K is qualitatively similar to that for
the case of La22xSrxCuO4 in the underdoped region.

However, if we look at 1/T1 , we notice that the situ-
ation is not so simple as naively expected from s-wave
preformed pairing. In overdoped or optimally doped
samples with Tc;90 K, 1/T1T at the copper site is more
or less similar to the case of La1.85Sr0.15CuO4, although
the experimentally accessible temperature range is lim-
ited to below 400–500 K because of the difficulty of con-
trolling oxygen concentration above it. A gradual cross-
over from 1/T1T;const to 1/T1;const appears to take
place from low to high temperatures. The underdoped
samples with Tc;60 K show remarkably different be-
havior, as shown in Fig. 142, where 1/T1T decreases be-
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FIG. 141. Temperature dependence of the Knight shift for YBa2Cu3O72y at y50 and y50.37. Various components of the Cu and
O Knight shift are plotted with different vertical scales and origins. Anisotropy obtained from the direction of the applied
magnetic field in ab , the ab-plane; c , c-axis; ax , the axial part; iso, the isotropic part (Takigawa et al., 1991). The Knight shift
starts decreasing from much higher temperature than Tc .
low 150–200 K as if it were under the influence of
pseudogap formation (Yasuoka et al., 1989). In fact,
these 1/T1T data were the first pioneering indication of
pseudogap behavior in the high-Tc cuprates well above
Tc . Similar pseudogap formation behavior is also ob-
served in other underdoped compounds such as
YBa2Cu4O8, and HgBa2CuO41d (Itoh et al., 1996). So
far, in La22xSrxCuO4, this pseudogap behavior in 1/T1T
is not clearly visible. The possible effect of randomness
was discussed for the suppression of the pseudogap in
1/T1T . In any case, the anomaly in the underdoped Y
compound appears to show up below TR;200 K, which
is substantially lower than Tx in the uniform magnetic
susceptibility but markedly higher than Tc . The same
type of anomaly has also been confirmed in neutron-
scattering experiments (Rossat-Mignod et al., 1991a,
1991b; Sternlieb et al., 1993), where Im x(q,v) shows
pseudogap behavior for q;(p ,p) below T;200 K for
the underdoped compound with Tc;60 K, as shown in
Fig. 143.

The origin of the difference between Tx in x(q5v
50) and TR in 1/T1T is not clear enough at the moment
and further studies are clearly necessary. Another puz-
zling feature of the pseudogap behavior is that the
Gaussian decay rate 1/TG does not show a gaplike de-
crease either at Tx or at TR (Itoh et al., 1992). This may
be related to the compatibility of antiferromagnetic cor-
relations and superconductivity; see Assaad, Imada, and
Scalapino (1997), where the above two puzzling features
are reproduced in a theoretical model.

Other indications of a pseudogap below T;200 K
were also suggested from the anomaly of the B2u pho-
non mode (Harashina et al., 1995) as well as from
anomalies in the Raman mode coupled to phonons
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
FIG. 142. Temperature dependence of 1/T1T at the Cu site for
several high-Tc compounds (by courtesy of H. Yasuoka, who
replotted various available data). They show indications of
pseudogap behavior well above Tc . The data are taken from
Machi et al., 1991; T. Imai et al., 1989; Goto et al., 1996; War-
ren et al., 1989; Takigawa et al., 1991; Y. Itoh et al., 1996.
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(Litvinchuk, Thomsen, and Cardona, 1993), where con-
sistency with coupling to d-wave pairing was proposed
theoretically (Normand, Kohno, and Fukuyama, 1995).
The energy shift of the phonons due to coupling to the
superconducting order parameter has been discussed
from a more general point of view by Zeyer and Zwick-
nagl (1988).

The origin of this pseudogap behavior is not fully un-
derstood. Experimentally, however, it has been con-
firmed in various cases, including the so-called single-
layer compound HgBa2CuO41d . The formation of a
pseudogap has also been detected by photoemission
measurements for underdoped Bi and La compounds, as
discussed in Secs. IV.C.1 and IV.C.4. Another important
indication of pseudogap behavior is a reduction of the
specific-heat coefficient g at low doping similar to the
case of La22xSrxCuO4 (Loram et al., 1994; Momono
et al., 1994; Liang et al., 1996).

Theoretically, several different explanations for this
unusual behavior have been proposed. The possibility of
preformed pairing fluctuations above Tc as the origin of
pseudogap behavior has been examined from various
approaches. This is a natural idea because the tempera-
ture for singlet pairing may in general be higher than Tc
itself when the MIT point is approached. Near a con-
tinuous MIT point, the coherence temperature Tcoh has
to decrease to vanish, while the energy scale for the pair-
ing energy may be independent of this reduction. This
idea is supported by the small coherence length of the
Cooper pair observed experimentally in the high-Tc cu-
prates. The short coherence length jcoh is easily deduced
from a large critical magnetic field Hc2 and the relation
jcoh51/A2pHc2. In YBa2Cu3O7, jcoh in the CuO2 plane
was estimated as ;10–20 Å, that is, only a few lattice
spacings, even in the plane direction. It is known that

FIG. 143. Im x(q,v), in arbitrary units, as a function of v at
q5(p ,p) for the underdoped compound YBa2Cu3O6.69. The
pseudogap structure is seen from the temperature above Tc .
The inset shows the temperature dependence or fixed \v58
meV. From Rossat-Mignod et al., 1991b.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
weak-coupling BCS superconductors may be continu-
ously connected to a strong-coupling region where the
picture of Bose condensation by preformed pairs be-
comes appropriate (Nozières and Schmitt-Rink, 1985).
When jcoh is small, the superconductivity is rather close
to the picture of the condensation of bosons. If this is
the case, the pairing temperature should be separated
from Tc itself. However, the naive picture of Bose con-
densation is not appropriate because the preformed pair
has d-wave character accompanied by antiferromagnetic
correlations with strong momentum dependence.

One scenario for preformed singlet pair fluctuations is
given by an unusual criticality near the Mott transition,
as discussed in Sec. II.F. Because of unusual suppression
of the coherence of the single-particle transfer process
due to strong spin and charge fluctuations near the Mott
transition point, we have to consider a higher-order pro-
cess of the transfer. In the Mott insulating phase, this
indeed makes the superexchange interaction in the or-
der of t2/U relevant. If the system is close to the Mott
insulator but in the metallic phase, other higher-order
processes of two-particle transfer contributes equally,
while the single-particle process is still suppressed due to
a large dynamical exponent z54 (Assaad, Imada, and
Scalapino, 1996). Near the Mott insulator this two-
particle process can be more relevant than the single-
particle process because of its small dynamical exponent
z52 (Imada, 1994c, 1995b). This means that, in contrast
to the single-particle process, the two-particle process is
not anomalously suppressed leading to a gain in the ki-
netic energy. This necessarily yields a pairing effect. An
important point here is a strong momentum dependence
of pairing fluctuations. The precursor of pairing starts
around (p,0) and (0,p) in the momentum space at higher
temperatures. For more detailed discussion of this
mechanism, see Sec. II.F.

There are several completely different ways of inter-
preting pseudogap behavior as an effect of preformed
pairing. Pairing through the magnetic polaron or con-
ventional lattice polaron effect was studied as a bipo-
laron mechanism (Micnas et al., 1990; Alexandrov, Brat-
kovsky, and Mott, 1994; Alexandrov and Mott, 1994). In
the cuprate superconductors, it is not likely that bipo-
laronic mechanisms and local-pairing mechanisms can
be compatible with the principal features of strong-
correlation effects. Fluctuating phase-separation effects
and dynamic charge-ordering effects (Emery and Kivel-
son, 1995, 1996; Zaanen and Oleś, 1996) were proposed
as sources of preformed pairing. A more general argu-
ment from the separation of the optimized Bose conden-
sation temperature and the pairing energy, as well as a
comparison of cuprate superconductors with other cases
such as heavy-fermion superconductors and C60 com-
pounds, was stressed by Uemura et al. (1989, 1991).

Another interpretation of pseudogap behavior is the
scenario assuming spin-charge separated excitations at
the low-energy level. Pseudogap formation is attributed
to the pairing of spinons without Bose condensation of
holons in the picture of the slave-boson formalism dis-
cussed in Sec. II.D.7 (Baskaran, Zou, and Anderson,
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1987; Kotliar and Liu, 1988; Suzumura, Hasegawa, and
Fukuyama, 1988; Tanamoto, Kohno, and Fukuyama,
1994). The spinon pairing is basically due to singlet for-
mation by the mean-field-type decoupling of the super-
exchange interaction JSi•Sj . From the Fermi-liquid ap-
proach the nesting condition has also been proposed as
the origin of pseudogap behavior (Miyake and Narikiyo,
1994b).

In neutron scattering at higher energies, as shown in
Fig. 144, another unusual behavior has been observed in
Im x(q,v), namely, a remarkable peak around v541
meV with dramatic growth below Tc (Mook et al., 1993;
Fong et al., 1995, 1997). The resonance energy decreases
monotonically with decreasing doping concentration. It
is clear that this excitation is strongly coupled to the
superconducting order parameter. Demler and Zhang
(1995) have proposed that this peak is related to a spe-
cial type of triplet pairing excitation, namely, the rota-
tional mode connecting the antiferromagnetic order pa-
rameter and the d-wave superconducting order
parameter under SO(5) symmetry (Zhang, 1997). The
enhancement of the resonance below Tc has some simi-
larity to the result in La compounds above 7 meV. These
all seem to indicate the compatibility of antiferromag-
netic correlation in the superconducting state. Similar
and consistent theoretical results were obtained in nu-
merical studies attempting to account for the two-
particle process explicitly (Assaad, Imada, and Scala-
pino, 1997; Assaad and Imada, 1997). The peak appears
to be the remnant of the antiferromagnetic Bragg peak
shifted to a finite frequency. In this context, the
pseudogap formation widely observed appears to start at
high temperatures as undifferentiated signatures of anti-
ferromagnetic and d-wave preformed pair fluctuations.

The transport properties of YBa2Cu3O72y show,
roughly speaking, behaviors similar to that of
La22xSrxCuO4 as described in Sec. IV.C.1 (Iye, 1990;
Ong, 1990). The in-plane resistivity rab is approximately
proportional to T near y50, that is, near the optimum
doping concentration, in the same way as in
La1.85Sr0.15CuO4. However, in the underdoped region it
shows substantial deviation from T-linear behavior. This

FIG. 144. Im x(q,v), in arbitrary units, as a function of v at
q5(p ,p) for the optimally doped compound YBa2Cu3O6.92
(Rossat-Mignod et al., 1991b). A prominent 41-meV peak is
observed below Tc .
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
deviation may be viewed as the reduction of r below the
temperature Tr , which increases with decreasing doping
concentration as seen in Fig. 145 (Ito, Takenaka, and
Uchida, 1993; Takenaka et al., 1994). As compared to
Tx.Tr in the case of La22xSrxCuO4, Tr in the Y com-
pounds appears to be low with weaker effects. Similarly
to the case of La22x SrxCuO4, the Hall coefficient shows
a rather sharp increase with decreasing temperature be-
low a similar temperature Tr or Tx (Ito et al., 1993;
Takeda et al., 1993; Nishikawa, Takeda, and Sato, 1994).

The temperature dependence of the Hall angle de-
fined by

cot QH5
sxx

sxy
(4.12)

was measured for YBa2Cu32pZnpO72y (Chien, Wang,
and Ong, 1991; Ong et al., 1991). For p50 and d;0,
cot QH appears to follow

cot QH.aT2. (4.13)

Anderson (1991a) introduced two different carrier re-
laxation rates, t tr and tH , where t tr is the longitudinal
relaxation rate for motion perpendicular to the Fermi
surface while tH is the transverse rate for the velocity
component parallel to the Fermi surface. In the usual
Fermi liquid, t tr5tH must hold, while the above experi-
mental result together with r;T suggests t tr;1/T and
tH;1/T2. Anderson interpreted this unusual tempera-
ture dependence as coming from a singular interaction
of two electrons located perpendicular to the Fermi sur-
face, and also proposed that it could yield similar behav-
ior to a 1D Tomonaga-Luttinger liquid.

Around y50, the c-axis transport is also metallic, in-
dicating T-linear behavior of rc , although the absolute
value is much larger than rab due to anisotropy. How-
ever, it shows insulating temperature dependence in the

FIG. 145. Temperature dependence of in-plane resistivity for
various choices of y for YBa2Cu3O72y , where the numbers in
the figure indicate 72y (Ito, Takenaka, and Uchida, 1993).
The CuO2-plane contribution is obtained by subtracting the
chain contribution deduced from the a- and b-axis resistivities
shown in the inset.
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low-doping region below certain temperatures. As tem-
peratures are lowered, rc decreases, with minima at a
temperature slightly higher but similar to Tr , and in-
creases as an insulating behavior below Tr as in Fig. 146
(Takenaka et al., 1994). It should be noted that this
anomaly occurs at a similar temperature to that for the
deviation of rab from T-linear behavior discussed above
and is again similar to the case of La22xSrxCuO4. In the
scenario of preformed singlet fluctuations, the reduction
of rab below Tr can be ascribed to the increasing coher-
ence of the fluctuating preformed pairs, while the charge
excitation in the c direction has a pseudogap because
interlayer hopping has to break the pair once if the pair-
ing originates from two-dimensionality, as in the sce-
nario of pairing due to large dynamic exponent z of the
2D Mott transition, discussed in Sec. II.F.9.

The effects of Zn doping on the anomalies below Tr

were examined (Mizuhashi, Takenaka, Fukuzumi, and
Uchida, 1995). There exists a range of Zn concentration
around 2% where the metallic and pseudogap-type tem-
perature dependence of the resistivity is retained while a
Curie-like enhancement in the uniform magnetic suscep-
tibility appears. This implies that the local spin moment
appears despite the metallic conduction of carriers. This
was interpreted from the scenario of spin-charge separa-
tion in the slave-boson formalism (Nagaosa and Ng,
1995).

An alternative scenario is given by a non-Fermi-liquid

FIG. 146. Comparison of in-plane and c-axis resistivity vs tem-
perature at several choices of doping concentrations 72y for
YBa2Cu3O72y . From Takenaka et al., 1994.
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state sandwiched between the Fermi liquid and the
Anderson localized phases (see, for example, Dobrosav-
ljević and Kotliar, 1997). A key point to understand this
result may lie in the strong wave-number dependence of
carriers, which has been ignored in the above argu-
ments. The preformed singlet pair fluctuations around
(p,0) may to some extent contribute to the ‘‘metallic’’
conduction, though they remain rather incoherent well
above Tc . This small ‘‘metallic’’ contribution may ex-
plain the small reduction in the resistivity upon
pseudogap formation. While the single-particle excita-
tions may easily be localized by Zn substitution or in-
duce the local moment, the Anderson localization may
take place predominantly in the single-particle excita-
tions because of the underlying large dynamic exponent
of the MIT.

The residual resistivity r0 by Zn doping in the unitar-
ity limit depends on the carrier density n and the carrier
charge e as r0}1/(ne2). Therefore one might think that
one could distinguish the following three cases: The first
is the usual Fermi-liquid conduction with charge e and
n512x , the second is a complicated situation in which
the preformed pair with n5x/2 and charge 2e makes a
minor contribution to the transport while the major con-
tribution is from the part around (6p/2,6p/2). The third
is the spin charge separation scenario where the holon
conduction gives the charge e with n5x (Nagaosa and
Lee, 1997). Experimentally, the increase of r0 is large in
the underdoped region and roughly scaled by 1/n51/x
(Fukuzumi et al., 1996). However, a complexity exists
because of the strong wave-number dependence of car-
riers in the underdoped region. Carriers in a region
around (p/2,p/2) remain unpaired, while carriers around
(6p ,0) and (0,6p) stay strongly damped due to z54
with instability to gradual pseudogap formation. If the
transport is still dominated by single-particle transport
mainly coming from a small region around (p/2,p/2)
over other transport channels, the residual resistivity can
be large because the effective carrier number is given by
that small region around (6p/2,6p/2) as if the Fermi
volume were small. [This is clearly different from the
scenario of small-pocket formation around (6p/2,6p/
2)]. This may account for the experimental result. Even
when we consider this complexity, the experimentally
observed large residual resistivity induced by Zn doping
does not seem to be compatible with the first case, while
it seems to be hard to judge the superiority of one to the
other in the latter two cases.

The optical conductivity s(v) of untwinned crystals
shows a broad tail roughly proportional to 1/v , as in Fig.
147 (Schlesinger et al., 1990; Azrak et al., 1994). At the
optimum doping concentration y;0, s(v) basically fol-
lows the scaling s(v);s0(12e2bv)/v with a constant
s0 indicating the absence of coherent charge dynamics,
as already discussed in Secs. II.E.1, II.F.9, and II.G.2
from the theoretical point of view. In untwinned
samples, the broad mid-IR peak structure observed in
La compounds is not visible, implying that the peak
structure itself is not an intrinsic property of the high-Tc
cuprates. The significance of the absence of the true



1193Imada, Fujimori, and Tokura: Metal-insulator transitions
Drude weight, common to all the cuprate superconduct-
ors, is also discussed in Sec. IV.C.1. The extended Drude
analysis of the Y compound also supports the consis-
tency of Eq. (2.274) with weakly v-dependent and
T-dependent C(v) (Thomas et al., 1988; Schlesinger
et al., 1990; El Azrak et al., 1994).

A remarkable feature in the c-axis conductivity sc(v)
is also seen at low doping concentration. Corresponding
to the insulating temperature dependence of rc below
Tr , a pseudogap structure grows in sc(v) in the region
v,600 cm21, as shown in Fig. 148 (Homes et al., 1993;
Tajima et al., 1995; see also the review by Tajima, 1997).
Even in the ab plane, the pseudogap structure was de-
tected well above Tc , as shown in Fig. 149 (Orenstein
et al., 1990; Rotter et al., 1991; Schlesinger et al., 1994;
Basov et al., 1996; Puchkov et al., 1996). The pseudogap
structure seems to be continuously connected with the
superconducting gap observed below Tc . It may be as-
sociated with the pseudogap observed in angle-resolved
photoemission spectra as discussed in Sec. IV.C.4. This
pseudogap in the ab plane manifests itself as the spec-
tral weight transfer from the incoherent part roughly
scaled by 1/v to the coherent part. If we considered the
optical spectra only for the coherent part (though it is
actually absent, as discussed above), it would be difficult
to identify this pseudogap structure because the gap en-
ergy is above the anticipated scale of inverse relaxation
time of charge dynamics (;T) as represented by the
conventional clean-limit theory. On the other hand, if
we take the incoherent response as the intrinsic and
dominant part of this ‘‘incoherent metal,’’ in contrast to
the conventional Drude theory, the pseudogap is indeed

FIG. 147. Optical conductivity s(v) for several different un-
twinned film samples (denoted as A,B,D,E,F) of YBa2Cu3O7
by Azrak et al. (1994). Solid lines are fitting curves in the form
of v2a. Cross-square points are sa by Schlesinger et al. (1990).
They roughly follow the scaling 1/v .
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observable in this metallic response, as analyzed by Rot-
ter et al. (1991), Schlesinger et al. (1994), Basov et al.
(1996), and Puchkov et al. (1996).

When the preformed pair is formed by a mechanism
of in-plane origin below the pseudogap temperature, it is
expected that in-plane transport will become more co-
herent, as is discussed by Tsunetsugu and Imada (1997),
while the c-axis resistivity should increase because the
interplane transport has to break preformed pairs unless
Josephson tunneling of pairs becomes possible in the
superconducting state. Therefore the pseudogap in s(v)
has the opposite effect. The in-plane spectra should
show spectral weight transfer from the incoherent to co-
herent part and thus a decrease in dc resistivity while the
c-axis spectra may show transfer to a higher-energy part
and thus an increase in dc resistivity. This is consistent
with the observed results. The reduction of the in-plane
resistivity below Tr is gradual. In this context, we note
the complexity due to strong momentum dependence
between two regions, namely, around (p,0) and (p/2,
p/2) as described above.

In YBa2Cu4O8, it was observed that even the c-axis
conductivity sc has a metallic temperature dependence
in the pseudogap region (Hussey et al., 1997, 1998). This
appears to be associated with extremely good conduc-
tion in the double-chain structure specific to this com-
pound. However, the origin of this exceptional behavior
is not clear enough at the moment.

The unusual normal-state properties of YBa2Cu3O72y

FIG. 148. Pseudogap observed in c-axis s(v) of YBa2Cu3O72y

for y50.3. The upper panel (a) shows the data with the
phonons, while the lower panel shows the data of the elec-
tronic part by subtracting the phonon contribution. The inset
in the lower panel shows the conductivity at 50 cm21 normal-
ized by the room-temperature conductivity (open circles) and
the normalized Knight shift for Cu(2) (solid line) at y50.37.
From Homes et al., 1993.
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have many aspects in common with La22xSrxCuO4.
These common properties may be summarized as the
suppressed coherence and the pseudogap behavior. Sup-
pression of the coherence is typically observed in the
T-linear resistivity and the 1/v dependence in s(v). The
pseudogap behavior is observed at low doping below
certain temperatures, namely, Tx in the uniform suscep-
tibility x and Tg in the specific heat. The anomalies in
the Hall coefficient observed below TH , and Tr in the
resistivity, as well as in sab(v) and sc(v), also appear
to be related. The NMR relaxation rate 1/T1 shows
pseudogap behavior below TR in the Y compounds, as
well as in some other compounds, though it is not ob-
served in La22xSrxCuO4. These crossover temperatures
Tx , TH , Tr , TR , and Tg have quantitatively different
values and they are slightly different from compound to
compound. However, dependence on doping concentra-
tion is similar in all, in the sense that it is more pro-
nounced and enhanced in the underdoped region. The
overall tendency towards pseudogap formation above
Tc in the underdoped region is clear. We summarize this
basic tendency in a schematic phase diagram with two
typical crossover temperatures Tx and TR in Fig. 150.

The doping dependence of the electronic structure of
YBa2Cu3O72y is more complicated than that of the
other high-Tc materials because of the presence of the
Cu-O chains, which make the number of holes in the
CuO2 plane somewhat ambiguous. Electron-energy-loss
measurements from the oxygen 1s core level were inter-
preted as indicating that holes doped in the CuO2 plane
having px ,y symmetry become itinerant carriers (Nücker
et al., 1989).

FIG. 149. Pseudogap observed in in-plane s(v) of
YBa2Cu3O72y : (a) Tc593 K at, from top to bottom, T5120,
100, 90, 80, 70, and 30 K; (b) Tc582 K at T5150, 120, 90, 80,
70, and 20 K; (c) Tc556 K at T5200, 150, 120, 100, 80, 60, 50,
and 20 K. From Rotter et al., 1991.
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Fermi surfaces of YBa2Cu3O72y (0.1,y,0.65) were
studied by angle-resolved photoemission spectroscopy
and generally good agreement with LDA band-structure
calculations was obtained for optimally doped (y.0.1)
samples, as shown in Fig. 139 (Campuzano et al., 1990;
Liu et al., 1992a, 1992b; Tobin et al., 1992): The spectra
were interpreted as indicating two hole-like Fermi sur-
faces centered at (p,p) (Liu et al., 1992a), as shown in
Fig. 139(a), or reinterpreted as indicating ‘‘universal’’
Fermi surfaces similar to those of Bi2Sr2CaCu2O8 (Shen
and Dessau, 1995). The observed band dispersions near
EF are weaker by a factor of ;2 than the LDA band
structure, indicating a moderate mass enhancement:
m* /mb;2. Each spectrum shows an intense high-
binding-energy tail and background, indicating that the
spectral weight of the quasi-particle peak is small: Z
!1. From these observations, it follows using Eqs.
(2.125) and (2.126) that mk /mb!1, meaning that the
energy bands crossing EF are strongly renormalized by a
k-dependent self-energy correction. The importance of
the k-dependent self-energy is discussed in Sec. II.F.11.

In going from y50.1 (Tc;90 K) to y50.5 (Tc
;50 K), the dispersions and the Fermi surfaces essen-
tially do not change. However, while bands crossing EF
along the (p,p) direction remain unchanged, those
crossing EF along the (p,0) direction lose their spectral
weight significantly [see Fig. 151(a) and 151(b)]. For an
insulating y50.65 sample, whose composition is in the
vicinity of the MIT, bands do not cross EF and some
bands become less dispersive, whereas dispersions of
other bands remain similar to those of the y50.1
samples. Interestingly, bands dispersing toward EF and
crossing it along the (0,0)-(p,p) line remain in the insu-
lating sample, although their peaks have become
broader, as if the Fermi surface remains along this line,
as shown in Fig. 151(c).

A closely related superconductor, YBa2Cu4O8, with
double chains was studied by angle-resolved photoemis-
sion spectroscopy in which band dispersions and Fermi
surfaces are clarified as shown in Fig. 152 (Gofron et al.,
1994). Notably, a saddle-point behavior was found
around the (p,0) point of the Brillouin zone, located

FIG. 150. Schematic phase diagram of pseudogap structure in
the plane of temperature and the doping concentration in the
high-Tc cuprates. Below Tx or TR , various indications of
pseudogap formation are seen.
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FIG. 151. Angle-resolved photoemission spectra of YBa2Cu3O72y (Liu et al., 1992a): (a) y50.1 (Tc;90 K); (b) y50.5 (Tc

;50 K); (c) comparison between y50.5 and y50.65 (insulator).
;19 meV below EF , as in Bi2Sr2CaCu2O8 and Sr2RuO4.
The same behavior was found for YBa2Cu3O72y (Tobin
et al., 1992; Liu et al., 1992a). The experimental band
dispersions are again weaker than calculated by a factor
of ;2. A more remarkable discrepancy from the band-
structure calculation is the very flat dispersion along the
(0,0)-(p,0) direction, compared to the calculated qua-
dratic dispersion. A similar structure is discussed in Sec.
IV.C.4. Theoretical aspects of this flat dispersion, which
appears near the MIT point in 2D systems, are consid-
ered in Sec. II.F.11, and its importance is discussed in
Sec. II.F.11 in terms of the scaling theory. The flatness is
qualitatively different from the usual Van Hove singu-
larity because the dispersion changes to a k4 law consis-
tent with a scaling theory that has a large dynamic ex-
ponent z54. Because the chemical potential (5EF) is
determined from the level of the preformed pair, single-
particle flat dispersion should be separated from this
pair level by a distance equal to the binding energy of
the pair. This is why the flat dispersion is shifted from
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
EF (which is 19 meV for YBa2Cu4O8). The k4 dispersion
for the single-particle excitation is transformed to a k2

dispersion for a pair excitation with a finite binding en-
ergy at the MIT edge.

4. Bi2Sr2CaCu2O81d

Bi2Sr2CaCu2O8 and its derivatives have the strongest
anisotropy in their transport properties between in-
plane and out-of-plane behaviors (Ito et al., 1991) and
therefore are the best 2D conductors among the high-Tc
cuprates. The idealized crystal structure of
Bi2Sr2CaCu2O8 is shown in Fig. 153. It should be noted,
however, that excess oxygen atoms are incorporated in
the BiO plane, resulting in remarkable superstructure
modulations (Yamamoto et al., 1990). The Tc of
Bi2Sr2CaCu2O8 can be controlled by changing the oxy-
gen stoichiometry (annealing in oxygen or in a vacuum)
or by substituting Y or other rare-earth elements for Ca.
As-grown Bi2Sr2CaCu2O81d samples are close to the op-



1196 Imada, Fujimori, and Tokura: Metal-insulator transitions
timum doping (Tc;90 K), while oxygen-annealed ones
are overdoped and have lower Tc . Holes are depleted in

FIG. 152. Angle-resolved photoemission spectra of
YBa2Cu4O8 (a) along the G-Y [(0,0)-(0,p)] lines; (b) along the
S-Y [(p,p)-(0,p)] lines; (c) band dispersions around the (0,p)
point. From Gofron et al., 1994.
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the Y-substituted samples Bi2Sr2Ca12xYxCu2O81d and
they become semiconducting (Tc50) at x;0.5.

The electronic structure of Bi2Sr2CaCu2O81d has been
extensively studied by various electron spectroscopic
techniques, including angle-resolved photoemission
spectroscopy (Takahashi et al., 1989) because of the high
quality and stability of cleaved surfaces. According to
oxygen 1s electron-energy-loss studies, doped holes in
the CuO2 plane have px ,y symmetry and occupy the
p-ds antibonding band of the CuO2 plane (Nücker
et al., 1989).

Angle-resolved photoemission studies of optimally
doped and overdoped samples show band dispersions
and Fermi surfaces similar to those given by band-
structure calculations if the energy bands derived from
the Bi-O plane are removed from EF . Angle-resolved
photoemission spectra along various cuts in the Brillouin
zone are shown in Fig. 154 (Dessau et al., 1993). The
clearest quasiparticle peak is observed along the (0,0)-
(p,p) line. The quasiparticle peak disappears approxi-
mately at (p/2,p/2), unambiguously indicating a Fermi-
level crossing. Along the (0,0)-(p,0) line, on the other
hand, the quasiparticle peak disperses towards EF but
never crosses it; it crosses EF along the (p,0)-(p,p) line.
Thus the band shows a saddle point at (p,0) and a very
flat dispersion around that point, which is occasionally
called an extended saddle point or extended Van Hove
singularity, although it is much flatter than the usual
Van Hove singularity. The flat band is located within
;50 meV of EF over a large portion of the Brillouin
zone around the (p,0) points. The resulting Fermi sur-

FIG. 153. Idealized cystal structure of Bi2Sr2CaCu2O8.
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FIG. 154. Angle-resolved photoemission spectra of Bi2Sr2CaCu2O8 taken above 100 K (.Tc585 K). M̄ : (p,0), X : (p,p). From
Shen and Dessau, 1995.
faces are shown in Fig. 155, which shows, in addition to
the hole-like Fermi surface centered at the (p,p) point,
an electronlike Fermi surface centered at (0,0). The
presence of the latter electronlike Fermi surface has
been controversial. Ding et al. (1996a) reported only the
hole Fermi surfaces and attributed other features to the
superstructure modulation of the Bi-O plane or to
‘‘shadow bands,’’ as discussed below. The presence of
the flat band is in agreement with numerical studies of
the Hubbard and t-J models (see Sec. II.E.2). The flat
dispersion may constitute a microscopic basis for scaling
theory with a large dynamic exponent z (Sec. II.F.11).
The fact that the Fermi level lies slightly away from the
flat band (;50 meV) is interpreted as coming from the

FIG. 155. Fermi surfaces of Bi2Sr2CaCu2O8 measured by
angle-resolved photoemission spectroscopy (Dessau et al.,
1993): Filled circles, Fermi surface crossings; striped circles,
locations where the band energy is indistinguishable from EF .
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formation of a pseudogap due to spin fluctuations or to
the preformed pair of binding energy ;50 meV. In the
latter scenario, the single-particle excitation needs a fi-
nite energy from the chemical potential around (p,0)
because of the two-particle bound-state formation.

The line shape of the angle-resolved photoemission
spectra is unusual as in the other cuprates in that the
high-binding-energy tail is intense, the background in-
tensity is high, and consequently the quasiparticle
weight is anomalously small. The unusually high back-
ground is not due to inelastically scattered secondary
electrons, but must be an intrinsically incoherent part of
the spectral function (Liu et al., 1991). Indeed, angle-
resolved photoemission spectra of a conventional 2D
(semi)metal TiTe2 show negligibly small background in-
tensities (Claessen et al., 1992). The large incoherent
spectral weight means that the motion of the conduction
electrons in the high-Tc cuprates is highly dressed by
electron correlations. Even when the quasiparticle peak
is located very close to EF , it does not become a delta-
function-like peak as predicted for a Landau Fermi liq-
uid, but retains a highly asymmetric peak. In order to
describe the unusual photoemission line shape, Varma
et al. (1989) proposed the marginal Fermi-liquid phe-
nomenology (see Sec. II.G2). Whether the quasiparticle
spectral weight Z vanishes at EF or not and whether the
quasiparticle lifetime width is proportional to the energy
from EF (1/t}uv2mu) as in a marginal Fermi liquid are
very subtle problems to be settled experimentally be-
cause of the limited energy and momentum resolution of
photoemission spectroscopy. Nevertheless, the analysis
by Olson et al. (1990) using a Lorentzian function with a
Fermi cutoff favors a lifetime width that varies linearly
in energy over a relatively large energy scale of a few
100 meV. Although the distinction between Fermi liquid
and marginal Fermi liquid can in principle be made only
in the low-energy limit, the high Tc’s of ;100 K practi-
cally make it meaningless to discuss energies lower than
;30 meV; the unusual lifetime behavior and large inco-
herent spectral weight seen on the latter energy scale (of
the order of the resolution of photoemission) are suffi-
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cient to answer the above questions. Recently, the broad
tail was interpreted as the 1/Av dependence. This phe-
nomenological result is derived from the real part of the
self-energy proportional to Av , which results from the
enhanced antiferromagnetic susceptibility in the
intermediate-energy region (Chubukov and Schmalian,
1997; for experimental results, see Norman et al., 1998).
The incoherent character of angle-resolved photoemis-
sion spectroscopy may be related to the suppression of
coherence due to the large dynamic exponent z54 of
the MIT, as discussed in Sec. II.F.9.

The question of why antiferromagnetic fluctuations
are strong in the superconducting cuprates has been fre-
quently asked in the context of magnetic mechanisms of
superconductivity. Kampf and Schrieffer (1990) pre-
dicted that antiferromagnetic fluctuations in the para-
magnetic metallic state would induce scattering of elec-
trons by the antiferromagnetic wave vector Q [5(p,p)
for the CuO2 plane] and produce a ‘‘shadow band,’’
which is shifted by Q from the original band. Aebi et al.
(1994) observed ‘‘shadow Fermi surfaces’’ in optimally
doped Bi2Sr2CaCu2O81d in the angular distribution of
photoelectron intensities with a fixed energy (EF), as
shown in Fig. 156. According to that study, the original
Fermi surface is centered at the (p,p) point and the
shadow Fermi surface is centered at (0,0). Ding et al.
(1996a) observed corresponding shadow bands in the
standard angle-resolved photoemission mode, but also
pointed out the possibility that the extra bands are due
to superstructure modulation of the Bi-O planes. Theo-
retically the existence of the shadow bands and shadow
Fermi surfaces has been quite controversial. Calcula-
tions using the ‘‘fluctuation exchange approximation’’
showed that the correlation length of antiferromagnetic
fluctuation necessary to produce the shadow bands and
shadow Fermi surfaces is only a few lattice spacings
(Langer et al., 1995). On the other hand, shadow Fermi
surfaces are not visible in numerical studies of the t2J
and Hubbard models although shadow bands have been
identified in the underdoped regime (Haas et al., 1995;
Moreo et al., 1995; Preuss et al., 1995).

The photoemission spectra of the antiferromagnetic
insulator Sr2CuCl2O2 shown in Fig. 157 clearly indicate

FIG. 156. (a) Angular distribution of photoelectrons from
within 10 meV of the Fermi level in Bi2Sr2CaCu2O8 (Aebi
et al., 1994); (b) outline of (a), emphasizing the stronger and
weaker lines.
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the shadow band (Wells et al., 1995; see also Fig. 24):
Here, the antiferromagnetic Brillouin zone lies along the
(p,0)-(0,p) line, and therefore the band disperses back
beyond the (p/2,p/2) point. If the angle-resolved photo-
emission spectra of Sr2CuCl2O2 are compared with those
of Bi2Sr2CaCu2O8 along the same (0,0)-(p,p) line (Fig.
154), a strong similarity between the antiferromagnetic
insulator and the metal/superconductor is noted. The
flat band around (p,0) in the metallic samples, on the
other hand, is shifted well below (;0.3 eV) the valence-
band maximum at (p/2,p/2) (see also Sec. II.E.2). The
evolution of the electronic structure from insulator to
metal/superconductor has been systematically studied
for underdoped Bi2Sr2CaCu2O81d in which a rare-earth
element is substituted for Ca or oxygen is reduced
(Loeser et al., 1996; Marshall et al., 1996). In under-
doped samples, the energy band around the (p,0) point
is shifted away from EF even above Tc , and the Fermi-
level crossing along the (0,0)-(p,0) line disappears, as
shown in Fig. 158(a). That is, a ‘‘normal-state gap’’
opens around (p,0) while the Fermi-level crossing near
the (p/2,p/2) point is not affected. The resulting band
structure resembles that of a hole-doped antiferromag-
netic insulator with a small Fermi surface at the (p/
2,p/2) point, although the inner half of the small Fermi
surface is missing [Fig. 158(b)]. The latter observation
contradicts the appearance of the shadow bands as a
result of short-range antiferromagnetic correlation, since
the correlation should be more significant in the under-
doped regime and the whole small Fermi surface should
be clearly visible. The normal-state gap which opens
along the (p,0) direction but not along the (p,p) direc-
tion has the same anisotropy as that of the supercon-

FIG. 157. Angle resolved photoemission spectra along the
(0,0)-(p,p) line. Left panel, angle-resolved photoemission
spectra of Sr2CuCl2O2 (Wells et al., 1995); right panel, corre-
sponding spectra of Bi2Sr2CaCu2O8 (Dessau et al., 1993).
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pseudocubic perovskite manganites. Figure 205 shows
the temperature dependence of rab and rc for
La22xSr11xMn2O7 (x50.4) crystals under various mag-
netic fields (applied perpendicular to the c axis; Mori-
tomo et al., 1996). By contrast with the case of the x
50.3 crystal, both the in-plane and interplane resistivi-
ties show a semiconducting increase with decrease of
temperature down to TC(5126 K) and with activation
energy of 30–40 meV, though the anisotropy ratio of the
resistivity is still as large as 102. At around TC
(5126 K), both rab and rc show a steep decrease by
more than two orders of magnitude, showing a metallic
behavior below TC (but not below about 20 K due to
some localization effect). By application of magnetic
fields, the resistivity above TC is appreciably suppressed,
putting the resistivity maximum towards higher tem-
perature.

An inelastic neutron-scattering study was performed
(Perring et al., 1997b) on an x50.4 crystal. Figure 206
shows the temperature dependence of (a) the resistivity,
(b) the integrated intensity of the (110) Bragg peak, (c)
the ferromagnetic critical scattering, and (d) the antifer-
romagnetic cluster scattering. Due to growth in the mag-
netization below TC , the (110) Bragg peak, which is also
a nuclear reflection, increases in intensity as in the con-
ventional ferromagnet. In accord with this, the ferro-
magnetic critical scattering displayed in Fig. 206, that is,
the integrated intensity over an energy transfer range
from 25 meV to 10.5 meV and over a momentum
transfer range from 0.09 to 0.243(2p/a0) along [110], is
enhanced around TC . This critical scattering disappears
again below TC , as it should. In addition to the above
features expected for a conventional ferromagnet, Per-
ring et al. (1997) found diffuse magnetic scattering that
peaked at the zone boundary point (1/2,0,0). From an
extensive survey of reciprocal space to characterize this

FIG. 205. Temperature dependence of rab and rc for a
La22xSr11xMn2O7 (x50.4) crystal under various magnetic
fields (applied perpendicular to the c axis). From Moritomo
et al., 1996.
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peak and to find others, as well as from an analysis of
momentum and energy transfer profiles, they concluded
that this peak originated from the antiferromagnetic
spin cluster depicted in Fig. 206(d), with a correlation
length of about 9 Å and a lifetime of about 0.04 ps at 142
K, just above TC . This diffuse scattering intensity, inte-
grated over the energy-transfer range of 25 meV to
15 meV and momentum-transfer range 0.30 to 0.63
(2p/a0), as shown in Fig. 206, gradually increased with
decreasing temperature down to TC and then steeply
decreased below TC . The behavior was parallel to that
of the ferromagnetic critical scattering shown in Fig.
206(c). Thus the paramagnetic state near TC and just
above it consisted of a slowly fluctuating mixture of
ferro- and antiferromagnetic microdomains. The insulat-
ing behavior is perhaps due to the breaking of local sym-
metry by this anisotropic antiferromagnetic spin cluster
and to the resultant localization effect. The magnetic
field obviously suppresses carrier scattering by such an
antiferromagnetic spin fluctuation, giving rise to the ob-
served negative magnetoresistance of colossal magni-
tude (Fig. 205).

FIG. 206. Temperature dependence for a La22xSr11xMn2O7
(x50.4) crystal of (a) resistivity; (b) the integrated intensity of
the (110) Bragg peak; (c) ferromagnetic critical scattering; and
(d) antiferromagnetic cluster scattering. From Perring et al.,
1997a.
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The above observation has significant implications for
the origin of the colossal magnetoresistance (CMR) ob-
served generally for doped manganites. As mentioned in
the previous section, the scenario of local lattice distor-
tions such as the dynamic Jahn-Teller distortion has
been a favored potential source of colossal magnetore-
sistance in addition to the double-exchange mechanism.
However, the orbital degree of freedom in the eg state
may give rise not only to Jahn-Teller electron-lattice
coupling but also to strong and anisotropic antiferro-
magnetic fluctuations: The latter can arise from the or-
bital correlation between sites, as typically seen in the
charge-exchange type charge-ordered state (see Sec.
IV.F.1), and can compete with the double-exchange in-
teraction. The anisotropic antiferromagnetic cluster
above TC for a La22xSr11xMn2O7 (x50.4) crystal may
also be a consequence of intersite orbital correlations. In
fact, the static Jahn-Teller distortion, which is coherent
along the c axis for the x50 parent crystal, is minimal in
such a heavily doped crystal as x50.4: Typical bond
length ratios at 300 K are Mn-O(1)/Mn-O(3)'1.001 and
Mn-O(2)/Mn-O(3)'1.03, O(1),O(3),O(2), representing
the inner and outer apex and equatorial oxygen, respec-
tively (Mitchell et al., 1997). However, the Jahn-Teller
distortion was observed to increase in the low-
temperature ferromagnetic-metallic phase (Mitchel
et al., 1997), implying the onset of orbital ordering at
TC .

The electronic structure of La22xSr11xMn2O7 was
studied by angle-resolved photoemission spectroscopy
by Dessau et al. (1998). Energy bands of d3z22r2 and
dx22y2 character showed dispersions, consistent with the
LDA band-structure calculation. Although the observed
dispersions and Fermi-surface crossings were consistent
with band-structure calculations, the spectral intensity
was drastically reduced near EF and there was practi-
cally no intensity as the bands crossed EF (for the me-
tallic x50.4). Strong electron-phonon coupling (includ-
ing Jahn-Teller-type coupling) was proposed as a
possible origin of this very unusual behavior. The re-
duced intensity at EF was also observed for 3D Mn ox-
ides (Sec. IV.F.1), but was more dramatic here in that
the spectral weight at EF was totally suppressed in spite
of the metallic conductivity.

G. Systems with transitions between metal
and nonmagnetic insulators

1. FeSi

FeSi is a nonmagnetic insulator at low temperatures
(T!500 K). With increasing temperature, however, it
gradually becomes a Curie-Weiss paramagnet (Benoit,
1955) with poor metallic conductivity at T.500 K
(Wolfe et al., 1965). In spite of the ;500-K maximum in
the magnetic susceptibility, no evidence for antiferro-
magnetic ordering has been found in neutron diffraction
(Watanabe et al., 1963), NMR, and Mössbauer (Wer-
theim et al., 1965) studies. Because of its unusual mag-
netic and transport properties, FeSi has attracted much
interest for many decades. Recently, Aeppli and Fisk
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
(1992) pointed out the close similarity between the mag-
netic and transport properties of FeSi and those of
Kondo insulators with rare-earth 4f or actinide 5f elec-
trons, reviving interest in FeSi. Since then there has
been controversy whether FeSi can be viewed as a
d-electron Kondo insulator or not.

FeSi crystallizes in a complicated cubic structure,
shown in Fig. 207, in which the unit cell contains four
molecules. The magnetic susceptibility, shown in Fig.
208, has been obtained and can be fitted with a Weiss
temperature of 2(150–200) K and an effective moment
of 2.660.1mB /Fe. The crystal is semiconducting below
;300 K and weakly metallic above it, as shown in Fig.
209 (Wolfe et al., 1965). These data can be fitted to an
activation law r(T)}exp(Dtr/2kT) at relatively high
temperatures (between ;100 K and ;150 K) with D tr
.550–700 K, implying that the intrinsic gap is
;50–60 meV. However, this temperature range may be
too small to justify the activation fit; at lower tempera-
tures (below a few tens of K), the resistivity has been
fitted to power laws (see Fig. 209) or 3D variable-range
hopping within Anderson-localized states, r(T)
}exp(T0 /T)1/4 (S. Takagi et al., 1981; Hunt et al., 1994).
FeSi shows a gigantic thermoelectric power of positive
sign below ;150 K (with a maximum of S
;250–480 mV/K at ;50 K); it becomes negative above
;150 K and then positive above ;300 K (Wolfe et al.,
1965). Because the Hall coefficient is negative and in-
creases with decreasing temperature (Kaidanov et al.,
1968), the semiconducting charge carriers must be pre-
dominantly n type. The different signs of the Hall coef-
ficient and the Seebeck coefficient and the temperature
dependence of the latter imply two types of carriers:
n-type and p-type.

Optical measurements by Schlesinger et al. (1993)
showed a gap of ;60 meV, as shown in Fig. 210. The
gap is gradually filled with increasing temperature up to

FIG. 207. Crystal structure of FeSi. From Jaccarino et al.,
1967.
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FIG. 208. Magnetic suceptibility of FeSi after subtraction of
the low-temperature paramagnetic contribution by Jaccarino
et al. (1967). The curve has been calculated using the local-
moment model with parameters S51/2, g53.92, and D
5750 K (for definition, see text).

FIG. 209. Electrical resistivity of FeSi. From Wolfe et al., 1965.
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250 K. The v50 peak in the 250-K spectrum is very
broad and is that of a ‘‘poor metal’’ or a dirty metal, far
from being a typical Drude peak. It was pointed out that
the gap starts to be filled at temperatures far below the
temperature corresponding to the band gap (;600 K).
Simulations assuming a rigid band and the Fermi-Dirac
distribution failed to predict the complete filling of the
optical gap at high temperatures, indicating the unusual
nature of the optical gap (Ohta et al., 1994). The
n(v)/m* curves show that spectral weight integrated up
to v52000 cm21 is not conserved between different
temperatures, meaning that spectral weight transfer oc-
curs up to much higher energies (of order 1 eV). This
picture was questioned, however, by a more recent in-
frared optical study (Degiorgi et al., 1994), according to
which the spectral weight sum rule is satisfied up to
;3000 cm21. The latter study confirmed the Anderson-
localized nature of carriers at low frequencies, v
,10 cm21.

In order to explain the magnetic susceptibility of FeSi
within the local-moment picture, Jaccarino et al. (1967)
considered a model in which the nonmagnetic (S50)
ground state and an S51/2 or 1 excited state were sepa-

FIG. 210. Optical reflectivity R , optical conductivity s(v), and
effective electron number n(v)/m* of FeSi (Schlesinger et al.,
1993): solid curve, T520 K; dashed curve, T5100 K; dotted
curve, T5150 K; dot-dashed curve, T5200 K; solid curve, T
5250 K. DC conductivity values are also shown at v50. The
inset shows the difference in n(v)/m* between T5250 and
20 K.
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rated by a spin gap D. The solid curve in Fig. 208 shows
a best fit with S51/2, D5750 K, and a g factor of 3.92.
The magnetic contribution to the specific heat, which
was estimated as the difference between FeSi and CoSi,
was also well fitted with the same model, although there
was a large ambiguity in the difference curve. Because
the local-moment model is not compatible with the
semiconducting properties, Jaccarino et al. also exam-
ined a band model in which conduction and valence
bands of widths w were separated by a band gap of 2D.
They had to assume, however, that 2w!2D (with 2D
5760 K) in order to reproduce the magnetic susceptibil-
ity. Such a narrow bandwidth is obviously unrealistic.

LDA band-structure calculations were performed by
Mattheiss and Hamann (1993) and more recently by Fu
et al. (1994) and predicted a small indirect gap of
;0.1 eV, which agrees with the experimental value of
;0.05 eV rather well. The band structure consists of
wide bands of strongly hybridized Fe 3d-Si 3p character
(extending from ;212 eV to ;10 eV with respect to
the Fermi level) and relatively narrow (;1 eV) bands of
purely Fe 3d character. The ;1 eV widths of the energy
bands near EF is again inconsistent with the very narrow
(!0.1 eV) bands proposed by Jaccarino et al. and re-

FIG. 211. Quasielastic magnetic scattering spectra of FeSi for
different q’s (Tajima et al., 1988). The reciprocal-lattice points
are (11z ,11z ,0) in units of 2p/a . Solid curves are the result
of fitting using Eq. (4.16). 10M corresponds to 10 min counting
time at \v50.
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quires the inclusion of electron correlation effects for
the bands near EF . Takahashi and Moriya (1979) incor-
porated correlation effects using spin-fluctuation theory
into the above band structure (with some simplification)
and explained the peculiar magnetic and thermal prop-
erties of FeSi. They attributed the nonmagnetic ground
state and the temperature-induced paramagnetism to a
negative mode-mode coupling, and predicted the satura-
tion of the temperature-induced local moment at high
temperatures.

The question of whether local moments are induced
at high temperatures according to the prediction of spin-
fluctuation theory was addressed by inelastic neutron-
scattering experiments, but these studies failed to ob-
serve paramagnetic moments (Kohgi and Ishikawa,
1981). Tajima et al. (1988) made a polarized neutron-
scattering study on single crystals and indeed detected a
temperature-induced local moment. The results show
paramagnetic (quasielastic) scattering as described by

S~q,v!5M2~q!
\/kBT

12exp~2\/kBT !

1
p

G~q!

G~q!21v2 ,

(4.16)

where M(q) is the q-dependent paramagnetic moment.
The v;0 scattering intensity shows a sharp increase to-
wards the reciprocal-lattice points, as shown in Fig. 211,
indicating ferromagnetic correlation. The v;0 intensity
as well as the integrated intensity show a temperature
dependence which closely follows that of the static mag-
netic susceptibility, as shown in Fig. 212, a clear indica-
tion of temperature-induced paramagnetism. The
unique feature of the scattering function of FeSi is that
the v-integrated intensity is q independent, i.e., M(q) is
q independent, while the v;0 intensity is q dependent,
as can be seen from the simultaneous sharpening of the
spectrum and the increase in the v;0 intensity as one
approaches a reciprocal-lattice point. M(q) is found to
be as large as (3.562)mB

2 at 300 K.

FIG. 212. Temperature dependence in FeSi: Open circles, in-
tegrated paramagnetic scattering intensity; closed circles, the
paramagnetic moment M(0)2 (q50) determined by fitting
analysis using Eq. (4.16). The solild curve is 3kTx(0), where
x(0) is the uniform magnetic susceptibility. From Tajima et al.,
1988.
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The prediction of temperature-induced paramagnet-
ism was also tested by Fe core-level photoemission spec-
troscopy (Oh et al., 1987). Fe 3s core-level spectra,
which show an exchange splitting when the Fe atom has
a local moment, did not change between low and high
temperatures. Valence-band photoemission studies were
made by Kakizaki et al. (1982) and more recently by Sai-
toh, Sekiyama, et al. (1995), Chainani et al. (1994) and C.
H. Park et al. (1995) with improved energy resolution.
Since the Fe 3d and Si 3sp states are strongly hybrid-
ized and form wide bands, the configuration-interaction
cluster model is certainly not a good starting point for
FeSi. If one compared the band-theoretical DOS with
the DOS r(v) measured by photoemission, however,
significant discrepancies would be found in the overall
line shape, as shown in Fig. 213, as well as in the high-
resolution spectra near EF , as shown in Fig. 214. There-
fore a local self-energy model was introduced to incor-
porate correlation effects in a phenomenological way:
The model self-energy has the form S(v)[Sh(v)
1S l(v), where Sh(v) is a self-energy correction of the
type g/(v1ig)2 and is effective on the large energy
scale of 1–10 eV, while S l(v) is a self-energy correction
whose absolute magnitude is small but has a significant
effect on the low-energy electronic structure on the scale
of 10–100 meV (Saitoh, Sekiyama, et al., 1995). S(v) is
assumed to have the Fermi-liquid property (Im S(v)}
2v2) in the v→0 limit. Figure 213 shows that the appli-
cation of Sh(v) causes the narrowing of the Fe
3d-derived DOS, the broadening of spectral features at
higher binding energies, and the transfer of spectral
weight towards higher binding energies. The same self-
energy alone cannot reproduce the sharp rise of the
band edge and the relatively flat line shape from the
band edge to ;0.5 eV below it. The addition of S l(v),
whose real part has a large negative slope near the band
edge, introduces further band narrowing near EF ;
through the Kramers-Kronig relation, the uIm Sl(v)u rap-
idly increases as one moves from EF , smearing out the
structures in r(v). The quasiparticle density of states
N* (v), calculated using Eq. (2.72), is also plotted in

FIG. 213. Photoemission spectrum of FeSi (Saitoh, Sekiyama
et al., 1995) compared with the band DOS calculated using the
LDA (Mattheiss and Hamann, 1993) and that modified by the
self-energy correction. The employed local self-energy S(v) is
also shown.
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Fig. 214. Because of the increase in the negative slope of
Re Sl(v) toward EF , the quasiparticle DOS N* (v) is
enhanced near the band edge. The angle-resolved pho-
toemission study by C. H. Park et al. (1995) has found a
sharp peak ;20 meV below EF for a certain part of the
Brillouin zone. The peak disperses only very weakly,
again indicating the narrow quasiparticle band at the top
of the valence band.

Thus the presence of the narrow bands at the band
edges, originally suggested by Jaccarino et al. (1967),
was corroborated by the microscopic experimental
probe. The narrow bandwidths W* ;20 meV naturally
explain the poor metallic behavior as seen in the optical
conductivity (Fig. 210), since charge transport should be
incoherent at T@W* /kB . In the sense that the physical
properties of f-electron Kondo insulators would have
their origin in the presence of narrow f bands, which
would be strongly renormalized, especially in the Kondo
limit (Susaki et al., 1996), FeSi and the f-electron Kondo
insulators can be grouped in the same class of materials,
although the underlying (high-energy) electronic struc-
tures are very different.

As for the microscopic origin of temperature-induced
magnetism, on the basis of first-principles electronic cal-
culations, Anisimov, Ezhov, et al. (1996) predicted a
first-order nonmagnetic semiconductor-to-ferromagnetic
metal transition as a function of magnetic field using the
LDA1U method. The transition was predicted to occur
if the d-d Coulomb repulsion U was large enough (.3.2
eV). The ferromagnetic moment was predicted to be as
large as 1mB per Fe. The magnetic and thermal proper-
ties at finite temperatures were then calculated using a
simplified model based on the first-principles results,
yielding good agreement with experiment. This picture
appears quite different from the correlated narrow-band
picture, but the proximity of the ferromagnetic state to
the ground state may be reflected in the ferromagnetic

FIG. 214. Photoemission spectrum of FeSi near EF compared
with the band DOS calculated using the LDA (Mattheiss and
Hamann, 1993) and that modified by the self-energy correction
(Saitoh, Sekiyama, et al., 1995): (a) Spectral function calculated
using S(v) shown in the lower panel; (b) spectral function cal-
culated using only the high-energy part Sh(v); (c) the LDA
density of states; (d) density of quasiparticles.



1232 Imada, Fujimori, and Tokura: Metal-insulator transitions
correlations found in the neutron scattering study.
Misawa and Tate (1996) explained the magnetic suscep-
tibility of FeSi using a Fermi-liquid theory, according to
which a singular contribution from the Fermi level (from
the band edge in the case of FeSi) causes the suscepti-
bility maximum as well as metamagnetism and ferro-
magnetic instability in other systems (Misawa, 1995).
Recently, the transport properties of substituted com-
pounds FeSi12xAlx have been studied and have been
successfully interpreted in the conventional doped semi-
conductor picture (DiTusa et al., 1997). How the corre-
lation effects manifest themselves in FeSi still remains
an open question, calling for further investigations.

2. VO2

Many of the vanadium oxides exhibit temperature-
induced MITs, as observed in V2O3 (Sec. IV.B.1) and
the Magneli phases VnO2n21 (4<n<8). Among them
VO2, with a 3d1 configuration, differs from others,
showing the nonmagnetic ground state without an anti-
ferromagnetic phase. The MIT in VO2 takes place at
around 340 K, accompanying the lattice structural tran-
sition from a high-temperature rutile (TiO2-type) struc-
ture (R phase) to a low-temperature monoclinic struc-
ture (M1 phase), as illustrated in Fig. 215 (Marezio et al.,
1972). V-V pairing occurs in the M1 phase together with
tilting of the V-V pair.

FIG. 215. Comparison of V-V pairing in the three phases, R ,
M1 , and M2 , in VO2. In M1 (open circles) all the vanadium
atoms both pair and twist from the rutile positions. In M2
(filled circles) one-half of the vanadium atoms pair but do not
twist and the other half form unpaired zigzag chains. (The dis-
tortions are exaggerated by a factor of 2 for clarity.) From
Marezio et al., 1972.
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The schematic electronic structures in metallic and in-
sulating VO2, corresponding to Goodenough’s model
(Goodenough, 1971), are shown in Fig. 216 (Shin et al.,
1990), in which some gap energies were derived by spec-
troscopic studies (Ladd and Paul, 1969; Shin et al., 1990).
In the R phase, the t2g levels in the octahedral crystal
field are further split into d i and p* levels in the R
phase, comprising the electronic states near the Fermi
level of the metallic state. Here, the d i orbitals are
rather nonbonding, while the p* orbitals are strongly
hybridized with the O 2pp state and hence lie higher
than the d i level. In the insulating M1 phase, the pairing
of the V atoms along the cr axis (see Fig. 215) promotes
3d-2p hybridization and upshifts the p* band off the
Fermi level, as well as causing bonding-antibonding
splitting of the d i band (Goodenough, 1971), as shown
in the right panel of Fig. 216.

The importance of the electron correlation for this
lattice-coupled MIT has long been disputed. The issue is
whether the essential nature of the insulating state is
that of a Peierls insulator with the character of an ordi-
nary band insulator or otherwise a Mott-Hubbard insu-
lator. Recently, Wentzcovitch et al. (1994) pointed out
that the LDA calculation can find a monoclinic distorted
(M1 phase) ground state in agreement with experiment
and an almost opening of gap in charge excitations. Al-
though it is conceptually difficult to distinguish the band
and Mott insulators when there is a gap in the spin sec-
tor, Wentzcovitch et al., (1994) concluded that VO2 may
be more bandlike than correlated.

Strong opposition to the band view (Rice et al., 1994)
is based on observation of the Mott-Hubbard insulator,
that is, the insulator with no gap in the spin sector, in
V12xCrxO2 with very small x (>331023) (Pouget et al.,
1974) or in pure VO2 when a small uniaxial pressure is
applied along the (110)r direction (Pouget et al., 1975).
The T2x phase diagram for V12xCrxO2 (Marezio et al.,
1972; Villeneuve, Drillon, and Hagenmuller, 1973) is
presented in Fig. 217. Two other distinct phases emerge,
the insulating monoclinic M2 and the triclinic T phase,
in addition to the aforementioned metallic R and insu-
lating (nonmagnetic) M1 phases. Uniaxial pressure also
gives rise to the M2 and T phases and leads to a similar
phase diagram (Pouget et al., 1975).

FIG. 216. Schematic energy diagram of the 3d bands around
the Fermi level for VO2. From Shin et al., 1990.



1233Imada, Fujimori, and Tokura: Metal-insulator transitions
The V-V pairing pattern for the M2 phase is also
shown in Fig. 215, which is composed of two kinds of V
chains. In M2 one half of the V41 ions form equally
spaced V chains, and NMR and EPR experiments
(Pouget et al., 1974) showed that they behave magneti-
cally as S51/2 Heisenberg chains (J'300 K). Thus it is
clear that these V chains in M2 are Mott-Hubbard insu-
lators. The insulating triclinic phase can be viewed as a
spin Peierls state of the M2 phase, although the transi-
tion between M2 and T is weakly of the first order. In
fact, further cooling leads to a continuous M2→M1 tran-
sition through the intermediate T phase, where the pair-
ing (or dimerization) on one set of V chains grows. The
Mott-Hubbard insulating M2 phase is obviously a local
minimum for VO2, since the M2 can be stabilized by
minimal perturbations such as very light Cr-doping or a
small uniaxial pressure. Rice et al. (1994) stressed again
that all the insulating phases of VO2, M1 , M2 , and T ,
are of the same type and should be classified as Mott-
Hubbard and not band insulators.

The electron correlation effect should also show up in
the metallic state in VO2. The high-temperature metallic
state in the R phase (T>330 K) shows T-linear behav-
ior up to 840 K (Allen et al., 1996). The mean free path
l (800 K)53.3 Å is too short when the Bloch-Boltzman
interpretation is applied for a metal such as is described
by the LDA calculation. Allen et al. (1996) interpreted
this in terms of either a sample problem, such as crack-
ing at the phase transition, or of an indication of anoma-
lous behavior of the metal close to the Mott-Hubbard
insulator, which differs from the conventional Fermi liq-
uid. To pursue the electron correlation effect in the me-
tallic VO2, however, it is desirable to realize the barely
metallic state down to low enough temperatures, on
which more detailed spectroscopic and transport inves-
tigations are possible.

A clear gap opening below the MIT temperature has
been observed by photoemission spectroscopy (Sa-
watzky et al., 1979; Shin et al., 1990), as shown in Fig.
218. The results give some hint whether electron corre-

FIG. 217. The T2x phase diagram for V12xCrxO2 (Marezio
et al., 1972; Villeneuve, Drillon, and Hagenmuller, 1973).
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lation plays an important role in the MIT or whether the
one-electron band picture is sufficient. The V 3d band
spectrum in the metallic phase is obviously much
broader than predicted by the band-structure calculation
and even shows a sign of the remnant of the lower Hub-
bard band, although weak, implying that electron corre-
lation cannot be neglected in the metallic state (Fuji-
mori, Hase, et al., 1992a). In going from the metallic to
the insulating state, the quasiparticle spectral weight dis-
appears, and only the ‘‘lower Hubbard band’’ survives.
Although no serious comparison has been made be-
tween the spectra of the insulating phase and the density
of states of the LDA band (Wentzcovitch, Schulz, and
Allen, 1994), it seems that the discrepancy between the
measured spectra and the band DOS is substantial and
that electron correlation is again important for realizing
the insulating phase of VO2.

3. Ti2O3

Corundum-type Ti2O3 undergoes a gradual metal-
insulator transition around 400–600 K (for a review and
comprehensive guide to the literature before 1975, see
Honig and Van Zandt, 1975), as displayed in Fig. 219
together with the temperature dependence of the resis-
tivity for the V-doped compound (Chandrashekhar
et al., 1970). In contrast to the perovskite analogs (e.g.,
LaTiO3) of the Ti31(3d1)-based oxide (Sec. IV.C.1) as
well as to V2O3 with a similar corundum-type structure
(Sec. IV.B.1), Ti2O3 has a low-temperature insulating
state that is nonmagnetic. In fact, the magnetic suscepti-
bility increases to the paramagnetic value at tempera-
tures nearly corresponding to the MIT (Pearson, 1958).
The conventional explanation for the nonmagnetic insu-
lating ground state (Van Zandt, Honig, and Good-
enough, 1968) is based on the splitting of the lower-lying
t2g level, depicted in Fig. 220. In a corundum-type struc-

FIG. 218. Photoemission spectra of VO2 in the insulating and
metallic states (Shin et al., 1990). The solid curve was taken at
298 K in the insulating phase and the dashed curve at 298 K in
the metallic phase. The dotted curves are spectra after decon-
volution with instrumental resolution.
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ture (see Fig. 68), the lower-lying t2g manifold for the
TiO6 octahedron splits into bonding and antibonding
states of a1g and eg

p levels. The a1g orbitals, which have
d3z22r2 character, form strong bonds between pairs of Ti
atoms within the face-sharing octahedra along the c axis.
Then the resulting bonding (a1g) and antibonding (a1g* )
bands are split and bracket the eg

p and eg
p* bands. The

minimum charge gap, or the semiconductor gap, is ex-
pected to occur between the filled a1g and empty eg

p

subbands. According to this model, known as the Van
Zandt-Honig-Goodenough model, the increase in the
ratio c/a with increase of temperature reduces the
bonding-antibonding splitting of the a1g bands and pro-
motes the collapse of the semiconductor gap between
a1g and eg

p .

FIG. 219. Temperature dependence of resistivity for pure and
V-doped Ti2O3. From Chandrashekhar et al., 1970.

FIG. 220. Van Zandt–Honig–Goodenough model (1968) of
electronic structure of Ti2O3. From Mattheis, 1994.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
In accord with the above scenario, the two types of
gap transitions with corresponding polarization charac-
teristics were observed in the optical spectra shown in
Fig. 221 (Lucovsky et al., 1979). The onset of the e2
spectrum at 0.2 eV with light polarization perpendicular
to the c axis (E'c) was assigned to the aforementioned
semiconductor band gap, while the Eic band around 0.9
eV was assigned to the a1g interband transition. The
band peak corresponding to the a1g2a1g* transition
shifts to lower energy (down to 0.6 eV) with increasing
temperature, indicating a loosened c-axis Ti-Ti bond
and hence supporting the Van Zandt-Honig-
Goodenough model.

All the experimental results so far obtained appear to
be consistent with the thermal closure of the semicon-
ductor band gap, yet little is known about the electronic
structures and properties in the high-temperature metal-
lic state, which is likely to show strongly correlated elec-
tron behavior. Concerning this point, Mattheiss (1996b)
recently pointed out, on the basis of an LDA band-
structure calculation, the importance of the electron cor-
relation effect on the MIT. The LDA calculation with
the use of the LAPW (linearized argumented plane
wave) method shows a partially filled t2g complex near
EF which originates from overlapping a1g and eg

p sub-
bands. Decreasing the c/a ratio, even beyond the ob-
served low-temperature value, reduces but does not
eliminate this a1g2eg

p overlap as postulated in the
model of Fig. 220. For example, to open a semiconduc-
tor gap in this system, an unphysically small Ti-Ti sepa-
ration of about 2.2 Å along the c axis would be required.
This may preclude the simplest band explanation for the
MIT.

The electron correlation effect may show up explicitly
when the MIT is driven by filling control and a low-
temperature metallic state emerges. A Ti deficiency or
excess oxygen in the chemical form of Ti2O31y may cor-
respond to hole doping, as in the case of V22dO3 (Sec.
IV.B.1). In fact, a nonstoichiometric sample up to y
50.03 could be prepared that would show a greatly re-
duced resistivity value but still remain semiconducting
or insulating at low temperatures, with fairly large Hall
coefficient (Honig and Reed, 1968). Another method of

FIG. 221. Optical spectra for Ti2O3. From Lucovsky et al.,
1979.
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filling control is V doping, as exemplified in Fig. 219.
The metal-site substitution may inherently contain com-
plexity in assigning the effective valence of the doped
and host metal cations. Recalling the parallel behavior
of Ti doping with oxygen offstoichiometry in the case of
V2O3, one may consider the V-doped Ti2O3 as an
electron-doped system. As can be seen in Fig. 219, x
*0.02 doping induces metallic conduction even at low
temperatures (Chandrashekhar et al., 1970; Dumas and
Schlenker, 1976, 1979). However, the Ti222xV2xO3 is a
spin glass at low temperatures for above x50.005 (Du-
mas and Schlenker, 1976, 1979; Dumas et al., 1979). A
large T-linear term in the specific heat (50–80 mJ/mol
K) was observed for x50.02–0.10 samples (Sjostrand
and Keesom, 1973). This was first interpreted as an in-
dication of a narrow conduction bandwidth or correlated
electron behavior, as in Ti-doped V2O3. However, the
large T-linear term was later reinterpreted in terms of
the high entropy of the spin-glass state (Dumas and
Schlenker, 1976, 1979; Dumas et al., 1979). Nevertheless,
correlated electron dynamics is evident in the enhanced
temperature-independent (Pauli-like) component of the
susceptibility, and some supplemental experimental
work would be desirable for a more complete under-
standing of the Mott transition.

4. LaCoO3

The thermally induced insulator-to-metal crossover
phenomenon in LaCoO3, as shown in the upper panel of
Fig. 222, is quite unique because of its nonmagnetic
ground state, distinguishing it from a conventional Mott
insulator. The ground state of LaCoO3 is a nonmagnetic

FIG. 222. Temperature dependence of resistivity (r, upper
panel) and magnetic susceptibility (x, lower panel) in LaCoO3
and lightly hole-doped LaCoO3 (Tokura et al., 1997). A solid
line in the lower panel represents the calculated curve based
on the low-spin (S50) and intermediate-spin (S51) transi-
tion model (see text).
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insulator with a predominant configuration of 3d6 elec-
trons of Co31 fully occupying the t2g level (Fig. 223),
perhaps due to crystal-field splitting (10Dq), which
slightly exceeds the Hund’s-rule coupling energy. With
increase of temperature, however, the compound under-
goes a spin-state transition from a nonmagnetic (S50)
to a paramagnetic state, as signaled by a steep increase
in the magnetic susceptibility around 100 K, shown in
the lower panel of Fig. 222. Knight-shift measurements
(Itoh et al., 1995) and polarized neutron scattering (Asai
et al., 1989) have confirmed such a spin-state transition,
arising from a change in the electronic state of the Co
site. The nature of the high-temperature spin state, that
is, the problem of whether it arises from the
intermediate-spin (S51) or the high-spin (S52) state
of the Co31 ion (see Fig. 223), has not yet been settled,
although the intermediate-spin-state model appears to
be prevailing at the moment. Korotin et al. (1996) dem-
onstrated, using the LDA1U method, the relative sta-
bility of the S51 state rather than the S52 state, as a
result of strong p-d hybridization and orbital ordering in
contrast to the behavior anticipated by the simple ionic
model. Their proposed orbital ordering pattern is shown
in Fig. 223. A recent finding of appreciable local lattice
distortion during the spin-state transition (Yamaguchi
et al., 1997) suggests the presence of Jahn-Teller distor-
tions in the high-temperature spin state, supporting the
intermediate-spin-state model. An example of the fitting
procedures for the magnetic susceptibility with the local-
ized spin model (Yamaguchi et al., 1997) is shown in Fig.
222. The Ising model molecular field calculation was
done with assumption of a two-state model, i.e., S50
and S51 states with an energy gap of D and the antifer-
romagnetic exchange interaction J between thermally
excited neighboring S51 spins. An appropriate choice
(D5230 K and J59.7 K) gives a reasonable account of
the temperature dependence, although the high-spin
model shows similar reproducibility, for example, with a

FIG. 223. Possible spin states in LaCoO3: (a) low-spin (LS, S
50); (b) intermediate-spin (IS, S51); (c) high-spin (HS, S
52); (d) diagram of the eg orbital-ordered state in the IS state.
From Korotin et al., 1996.
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set of parameters, D5299 K and J526.7 K. Whichever
model would be better, the spin-gap energy is 0.02–0.03
eV, and above room temperature an intermediate or
high spin density exceeds 80% of the Co sites.

As can be seen in the lower panel of Fig. 222, a small
amount of hole doping gives rise not only to a decrease
in resistivity but also to a large Curie tail in the low-spin
region at low enough temperatures. By measurements of
the magnetization and fitting with the modified Brillouin
function, it was demonstrated (Yamaguchi et al., 1996a)
that a doped single hole shows an extremely high spin
number, S510–16. This means that a hole with O
2p-state character causes a local spin-state transition
(low-spin to intermediate-spin) over 10–16 Co sites
around itself, perhaps due to strong 2ps-3deg hybrid-
ization. Such a gigantic spin polaron can be a precursor
state for the ferromagnetic metallic state in
La12xSrxCoO3 (x*0.2; see Fig. 224, in which the ferro-
magnetic transition is indicated by closed triangles).

The resistivity of LaCoO3 shows no anomaly around
this spin-state transition near 100 K, with a nearly con-
stant activation energy of about 0.2 eV. However, a
large reduction in the resistivity takes place around 500
K (upper panel of Fig. 222), where the spin-state transi-
tion is almost complete. Furthermore, this continuous
insulator-to-metal change is least affected by a small
amount of hole-doping as shown in Fig. 222 and Fig. 224
(Yamaguchi and Tokura, 1998).

In the upper panel of Fig. 225, we show the tempera-
ture dependence of the optical conductivity spectra of
LaCoO3 in the range of 0–4 eV (Tokura, Okimoto,
et al., 1998). With increasing temperature up to 800 K
through the metal-insulator crossover temperature
around 500 K, the spectra show conspicuous change
over a large energy region up to several eV. Such a huge
spectral change cannot be accounted for by a simple
band closing like that in a narrow-gap band insulator
(semiconductor), in spite of the nonmagnetic nature of
the insulating ground state. The optical conductivity

FIG. 224. Temperature dependence of La12xSrxCoO3 with
various doping levels. Closed triangles represent the ferromag-
netic transition temperature.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
spectrum shows a gap feature at low temperatures and
undergoes minimal change even when temperature is in-
creased up to 293 K and the spin-state transition is al-
most completed. The gap energy estimated from the on-
set of conductivity is more than 0.1 eV (Yamaguchi
et al., 1996b), in accord with the transport data, although
the accurate determination of the gap energy is difficult
because of the blurred onset of conductivity, perhaps
due to the indirect-gap nature (Sarma et al., 1995; Ha-
mada, Sawada, and Terakura, 1995). With change of
temperature around 500 K, the spectral weight is ob-
served to be rapidly transferred from the higher-lying
interband transition region to the lower-energy region,
accompanying the well-defined isosbetic (equal-
absorption) point at 1.4 eV.

A surprisingly similar change in the conductivity spec-
trum is observed for the case of hole doping, i.e., for
La12xSrxCoO3, when the doping level x is changed as
shown in the lower panel of Fig. 225. Nominal hole dop-
ing by partial substitution of La with Sr drives the FC-
MIT as shown in Fig. 224. The optical conductivity spec-
tra at 290 K (the lower panel of Fig. 224) show a similar
spectral weight transfer with increase of x , accompany-
ing the isosbetic point around 1.4 eV as well. Most of the
low-energy spectral weight is borne not by the conven-
tional Drude component but by the incoherent part,
both for the high-temperature LaCoO3 and for
La12xSrxCoO3. This nearly parallel behavior for tem-
perature increasing and hole doping indicates that the
electronic structural change in both the insulator-metal
transitions is also nearly identical in nature.

Figure 226 displays the inverse-temperature depen-
dence of the Hall coefficient (RH ; lower panel) together
with that of the resistivity coefficient in LaCoO3 and the
lightly hole-doped compounds La12xSrxCo3 (x50.005

FIG. 225. Variations of optical conductivity spectra of LaCoO3
with temperature (upper panel) and with doping x (by Sr sub-
stitution; lower panel) at 290 K. From Tokura et al., 1997.
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and 0.01; Tokura, Okimoto, et al., 1998). The RH is posi-
tive, indicating hole-type conduction, over the whole
temperature region and shows as steep a change as the
resistivity with temperature. In particular, the carrier
density n51/RH in LaCoO3 shows a rapid increase at
400–600 K. This should be interpreted as a rapid de-
crease in the gap energy itself, with increase of tempera-
ture above 400 K, that is, after completion of the spin-
state transition.

The light hole-doping effect manifests itself in the
saturation of the increase of the resistivity and Hall co-
efficient below 400 K. The flat temperature dependence
of the RH in doped crystals implies the saturation behav-
ior of impurity conduction. By contrast, the RH value
above 400 K shows approximately common values and
temperature dependence irrespective of doping. The
fully conducting state, e.g., at 800 K, shows a small RH
value corresponding to three holes per Co site. These
facts clearly indicate the presence of a large Fermi sur-
face in the high-temperature conducting phase, which is
least affected by light doping as observed. Thus the ob-
served insulator-metal crossover shows the essential fea-
tures characteristic of a Mott transition at constant band
filling.

The thermally induced MIT is also critically affected
by changes of the one-electron bandwidth (W). The
standard method of bandwidth control (BC) is to utilize
the orthorhombic distortion of the perovskite, which de-
pends on the A-site ionic radius, as described in detail in
Sec. III.B. In the present case, RCoO3 with R changing
from La to Pr, Nd, Sm, Eu, and Gd causes an increase in
the Co-O-Co bond distortion in the GdFeO3-type ortho-
rhombic lattice (apart from the rhombohedral LaCoO3)
and hence a decrease of W in this order. Figure 227
(Yamaguchi, Okimoto, and Tokura, 1996b) shows the T

FIG. 226. Inverse-temperature dependence of resistivity (r,
upper panel) and Hall coefficient (RH , lower panel) in
LaCoO3 and lightly hole-doped La12xSrxCoO3. From Tokura
et al., 1997.
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dependence of d log r/d(T21) in the above series of
RCoO3 crystals. This quantity, if constant, would repre-
sent a thermal activation energy. The gradual MIT
shows up as a broad peak for the respective compounds,
which systematically shifts to higher temperature with
decrease of the ionic radius of R or equivalently with
decrease of W . The nearly constant value of
dlog r/d(T21) at low temperatures represents the ther-
mal activation energy, or half of the transport energy
gap Da , which also increases with decrease of W .

The variation of the charge gap is directly seen in the
optical conductivity spectra for the ground state (low-
spin state, e.g., at 9 K) for RCoO3 shown in Fig. 228
(Yamaguchi, Okimoto, and Tokura, 1996b). The con-

FIG. 227. Temperature (T) dependence of resistivity (r) and
d log r/d(T21) for crystals of RCoO3 (R5La, Pr, Nd, Sm, Eu,
and Gd). From Yamaguchi et al., 1996b).

FIG. 228. Optical conductivity spectra s(x) for RCoO3. Inset
gives the overall features of NdCoO3. Spiky peaks below 0.1
eV are due to optical phonons. Dashed lines are the best-fit
results with the model function for the indirect-gap plus direct-
gap transitions. From Yamaguchi et al., 1996b.
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ductivity shows a gradual onset at 1–1.5 eV perhaps due
to the indirect nature of the band gap (Sarma et al.,
1995), while a residual broad tail is present at 0.1–1 eV.
With R substitution from La to Gd, the spectral shape
and the onset shift as a whole to higher energy. Broken
curves in the figure represent the fitting using the model
functions for direct and indirect band-gap transitions.
The lower-lying indirect gap is difficult to pinpoint due
to the blurred feature, while the shift of the direct gap
with R ions is quite clear.

Figure 229 (Yamaguchi, Okimoto, and Tokura,
1996b) shows the observed gaps and insulator-metal
crossover temperature versus the tolerance factor (see
Sec. III.B.1), which is related to the distortion of the
perovskite lattice and hence the degree of p-d hybrid-
ization or W . Solid circles represent the optical gap Eg ,d
for the direct transition (see Fig. 228), while solid
squares and open circles the transport gap (2Da) and
the metal-insulator crossover temperature kBTIM (as
well as 10kBTIM for reference), respectively, as derived
from Fig. 227. The energy scale of kBTIM is by far
smaller than 2Da for all the RCoO3 crystals, and the
variation of kBTIM with R or the tolerance factor is not
so significant as that of 2Da or Eg ,d . The Eg ,d and 2Da
show nearly parallel behavior as a function of tolerance
factor. The change in the p-d transfer interaction tpd
should approximately scale with cos u, u being the
Co-O-Co bond angle, as described in Sec. III.B.1. This
means that tpd changes almost linearly with the toler-
ance factor in this region and by about 10% between
R5La and Gd in RCoO3. The observed changes in both
the transport and the optical gap magnitudes is quite

FIG. 229. Characteristic energies vs the tolerance factor for a
series of RCoO3. Solid circles, gap energies for the optical
(direct-gap) transition (Eg ,d); solid squares, gap energies for
the charge transport (2Da) in the low-temperature insulating
state. Open circles indicate temperatures (kBTIM) for the
insulator-metal transition as well as their magnification
(10kBTIM) for a better comparison. From Yamaguchi et al.,
1996b.
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large compared with the change in tpd . Such a critical
change in the charge gap with tpd , as well as an anoma-
lously low TIM as compared with the charge-gap value,
suggests again the important role of electron correlation
in charge-gap formation below TIM as well as in the
MIT itself.

The electronic structure of LaCoO3 has also been
studied by photoemission spectroscopy and electronic
structure calculations. These studies have invariably
shown strong hybridization between Co 3d and O 2p .
An LDA band-structure calculation gave a semimetallic
band structure, in which the bottom of the conduction
band and the top of the valence band overlap (Hamada,
Sawada, and Terakura, 1995). This is due to a common
tendency of the local density approximation to underes-
timate band gaps; a finite gap was opened in a Hartree-
Fock calculation of the multiband Hubbard model using
parameters derived from photoemission spectroscopy
(Mizokawa and Fujimori, 1996b). The density of states
given by the LDA calculation and that from the photo-
emission spectra are in good agreement with each other
(Sarma et al., 1995), implying that LaCoO3 is an ordi-
nary semiconductor. Nevertheless, the presence of a
weak but clear charge-transfer satellite indicates that
electron correlation is also important (Saitoh et al.,
1997a). Indeed, the on-site d-d Coulomb energy is
found to be as large as U55 –7 eV from cluster-model
analysis of the Co 2p core-level photoemission spectra
(Chainani, Mathew, and Sarma, 1992; Saitoh et al.,
1997a).

Concerning the phase transition from nonmagnetic
semiconductor to paramagnetic semiconductor at
;90 K, changes in the photoemission spectra in going
from below to above ;90 K are insignificant, ruling out
the possibility that the transition is a low-spin–to–high-
spin transition. While within the ligand-field theory the
intermediate-spin state should be higher than the low-
spin and high-spin states for any parameter set, the
intermediate-spin state is found to be close to and in
some cases lower than the low-spin state according to
the cluster-model and band-structure calculations. Koro-
tin et al. (1996) studied homogeneous solutions of the
band model for LaCoO3, that is, solutions with all the
Co atoms in the identical electronic state, using the
LDA1U method. They found that, for an expanded lat-
tice at high temperatures, the intermediate-spin state
(2.11mB) could be stabilized while the high-spin state
(3.16mB) always remained high in energy. Although the
intermediate-spin state is an antiferromagnetic metal in
the homogeneous solution, Korotin et al. (1996) also
studied inhomogeneous solutions and found indications
that orbital ordering with antiferromagnetism almost
opens a gap and further lowers the energy. Hartree-
Fock calculations (Mizokawa and Fujimori, 1996b)
showed that the intermediate-spin state is ferromagnetic
with antiferro-orbital ordering but a band gap is not
opened. Since there is no long-range order in the high-
temperature state, ferromagnetic correlation rather than
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ferromagnetic ordering is expected, in accordance with
the results of a neutron-scattering study by Asai et al.
(1997).

Concerning the 500–600-K insulator-to-(poor) metal
transition, Abbate et al. (1993) observed a significant
change in the oxygen 1s x-ray absorption spectra across
the transition, as shown in Fig. 230, which is consistent
with the large change expected for a transition from the
low-spin ground state to the high-spin excited state but
may also be consistent with an insulator-to-metal transi-
tion. According to both the LAD1U and Hartree-Fock
calculations, however, the high-spin state is an insulator.
Korotin et al. (1996) suggested that, above ;600 K, or-
bitals are disordered within the intermediate-spin state,
driving the system metallic.

La12xSrxCoO3 is a unique filling-control system in
that doped holes not only act as metallic carriers but
also induce a ferromagnetic moment. The doping-
induced changes in the photoemission spectra are rela-
tively small and indicate that the system is in the
intermediate-spin state (Saitoh et al., 1997b), unlike the
high-spin La12xSrxMnO3.

5. La1.172xAxVS3.17

La1.172xAxVS3.17 , where A is the divalent Sr or Pb
ion, is a ‘‘misfit-layer’’ compound consisting of alternat-
ing stacks of CdI2-type VS2 layers and rock-salt-type
La12xAxS layers, as shown in Fig. 231:
(La12yAyS)1.17VS2. In LaA0.17VS3.17 (x50.17), the V
atoms are trivalent and the compound is an insulator

FIG. 230. Temperature dependence of the oxygen 1s x-ray
absorption spectra of LaCoO3 (Abbate et al., 1993). The low-
energy peak which appears above ;500 K may be assigned
either to the t2g band or to the coherent spectral weight of the
metallic state.
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with the d2 configuration. The system becomes nonmag-
netic below ;280 K, indicating a spin-singlet formation
of some form at low temperatures (Yasui et al., 1995). If
the d2 configuration is localized, it should be in the high-
spin (S51) state. Therefore the S51 spins should
somehow be coupled to form a singlet ground state. A
most likely scenario is the formation of S50 V3 trimers
as in LiVO2 (Onoda, Naka, and Nagasawa, 1991); in-
deed, a structural deformation is involved in the 280-K
transition, as revealed by thermal dilatation and ultra-
sound velocity measurements (Nishikawa et al., 1996). If
the d2 configuration is not localized but forms band
states, then the spin-gap behavior may be simply be-
cause the distorted LaA0.17VS3.17 is a band insulator. In
the band-insulator–to–metal transition, the disappear-
ance of the spin gap and the appearance of metallic be-
havior should occur simultaneously. The latter possibil-
ity cannot be excluded from the resistivity and magnetic
susceptibility data alone because the electrical resistivity
is relatively low above ;280 K and nearly temperature
independent, as shown in Fig. 232 (Nishikawa, Yasui,

FIG. 231. Crystal structure of La1.172xAxVS3.17. From Nish-
ikawa et al., 1996.

FIG. 232. Electrical resistivity of La1.172xSrxVS3.17 (Nishikawa
et al., 1996). It becomes the largest for x50.17.
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and Sato, 1994; Nishikawa et al., 1996).
La1.172xAxVS3.17 is a unique filling-control system in

that it can be doped with either holes (x.0.17) or elec-
trons (x,0.17). Its crystal structure implies that the
electronic properties are highly two dimensional as in
the cuprates. As shown in Fig. 232, the highest electrical
resistivity indeed occurs at x;0.17 and the material be-
comes more conductive with either decreasing or in-
creasing x with respect to x;0.17. Thermoelectric power
is positive for x>0.17 and negative for x,0.17, and its
magnitude decreases as x deviates from 0.l7, indicating
that holes and electrons, respectively, are doped into the
Mott insulator LaSr0.17VS3.17 . Samples with the highest
doping (x;0 for n-type doping and x;0.35 for p-type
doping) still show a resistivity upturn at low tempera-
tures, but the temperature dependence of the thermo-
electric power (Fig. 233) indicates metallic behavior (S
}T) below 50–100 K (Yasui et al., 1995). Thermoelectric
power, which is not influenced by intergrain transport,
should reflect more intrinsic properties of the materials.
It becomes semiconducting (dS/dT,0) above ;100 K
and again metallic above ;250 K with smaller slope.
The Hall coefficient (Fig. 234) is positive at high tem-
peratures for all doping concentrations x , but in
electron-doped samples it becomes negative at low tem-
peratures (!100 K). Its strong temperature depen-
dence, especially in lightly doped samples, is similar to
that found in the high-Tc cuprates.

The electronic specific heat decreases as x→0.17, that
is, with decreasing carrier concentration (Nishikawa
et al., 1996), which means that the effective mass of the
conduction electrons becomes lighter or the carrier
number decreases as the system approaches the un-
doped insulator. This is analogous to the high-Tc cu-
prates (Loram et al., 1989; Momono et al., 1994) but op-

FIG. 233. Seebeck coefficient of La1.172xSrxVS3.17 (Yasui et al.,
1995). It is negative for x,0.17 while it becomes positive for
x>0.17, indicating electron and hole doping, respectively.
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posite to the 3D Ti perovskite oxides (Tokura et al.,
1993).

Band-structure calculations have not been performed
on this system because of the incommensurate crystal
structure. The electronic structure of the VS2 layer can
be envisaged from the band structure of the layered ma-
terial VS2 (Myron, 1980), according to which the
partially-filled V 3d band is located above the filled S 3p
band and these bands are strongly hybridized with each
other. Photoemission studies confirmed this electronic
structure [Fig. 235(a); Ino et al., 1997b], meaning that
thecompound can be viewed as a Mott-Hubbard-type
system (although it must be located near the boundary
between the Mott-Hubbard and charge-transfer re-
gimes). The doping dependence of the photoemission
spectra reveals an interesting behavior of the spectral
weight redistribution and chemical potential shift as
functions of band filling. As shown in Fig. 235(a), the V
3d band (within ;1.5 eV of EF) is shifted toward EF
with electron doping and away from EF with hole dop-
ing, but the shift is slower than that of the S 3p band
(located 1.5–1.7 eV below EF). If the shift of the S 3p
band reflects a chemical potential shift, the slower shift
of the V 3d band would be interpreted as due to the
repulsion between quasiparticles of V 3d character, as
described in Sec. II.D.1. The shift of the chemical poten-
tial ]m/]n , as reflected in the shift of the S 3p band, is
slow for low hole/electron concentration and fast for
high hole/electron concentration, as shown in Fig.
235(b). The suppression of ]m/]n near the Mott insula-
tor may imply that the effective mass is enhanced, which
excludes the simplest band-insulator picture for the un-
doped compound. The suppression of the chemical po-
tential shift is apparently inconsistent with the decreas-
ing electronic specific heat toward x50.17, if one
assumes the Fermi-liquid relations (2.74) and (2.75) with
nonsingular behavior of the Landau parameters (Fu-
rukawa and Imada, 1993). The observations ]m/]n→0
and g→0 for x→0.17 can be reconciled with each other
if the metallic state is not a Fermi liquid or if there is a
pseudogap in the vicinity of the chemical potential. An-

FIG. 234. Temperature dependence of the Hall coefficient for
La1.172xSrxVS3.17. From Yasui et al., 1995.
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other important feature of the chemical potential in the
La1.172xAxVS3.17 system is a discontinuous jump of
;0.08 eV between n-type and p-type doped samples,
giving the first evidence for a chemical potential jump

FIG. 235. Photoemission results of La1.172xPbxVS3.17 (Ino
et al., 1997b). (a) Photoemission spectra; (b) shift of the chemi-
cal potential (deduced from the shift of the S 3p band) as a
function of x . The dashed line is the shift expected from the
band structure density of states.
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across the Mott-insulating gap. This gap is much larger
than the temperature at which the spin gap is formed in
the undoped compound, again disfavoring the band-
insulator picture for undoped LaA0.17VS3.17 .

H. 4d systems

1. Sr2RuO4

The ruthenium oxide compounds are among those
showing the Ruddlesden-Popper series (layered and cu-
bic perovskite) phase illustrated in Fig. 64. Sr2RuO4 has
the K2NiF4-type structure and is isostructural with the
cuprate superconductor La22xSrxCuO4, apart from the
absence of orthorhombic distortion. Maeno et al. (1994)
discovered the Tc'1 K superconductivity in this com-
pound, which has stimulated studies on its anisotropic
charge dynamics and electronic structures as well as on
related layered ruthenates both for their possible rel-
evance to the mechanism of high-Tc superconductivity
and for the occurrence of exotic symmetry of supercon-
ductivity (Rice and Sigrist, 1996; Mazin and Singh, 1997;
Agterberg, Rice, and Sigrist, 1997).

The temperature dependence of the in-plane and
c-axis resistivity (rab and rc , respectively) is shown in
Fig. 236 (Maeno et al., 1997). The in-plane conduction is
typically metallic with a low residual resistivity just
above Tc , reaching '1 mV cm. By contrast, the c-axis
transport is nonmetallic above TM'130 K, but shows
metallic behavior at lower temperatures (Lichtenberg
et al., 1992), indicating a crossover from a 2D to a 3D
metal. The resistivity anisotropy rc /rab reaches as large
as 200 around TM .

Below about 25 K, the resistivity follows the T2 de-
pendence both for rab and rc , indicating the conven-
tional Fermi-liquid behavior (Maeno, 1996). In fact, de
Haas–van Alphen oscillations were observed by Mack-
enzie et al. (1996) and revealed some important Fermi
surface parameters. The results could be well inter-
preted in terms of an almost 2D Fermi-liquid model,
which is consistent with the LDA band structure (Ogu-
chi, 1995; Singh, 1995). The observed (and LDA-
calculated) Fermi surface consists of two large electron

FIG. 236. Temperature dependence of anisotropic resistivity
of Sr2RuO4 (Lichtenberg et al., 1992; Maeno et al., 1997).
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cylinders (b and g) centered on the GZ line and one
narrow hole cylinder (a) running around the corner of
the Brillouin zone (see dashed lines of Fig. 238 below).
The metallic c-axis transport at low temperatures is
dominated by b and g sheets, for which the c-axis mean
free path lc ('30 Å at 1 K) can be substantially longer
than the separation between adjacent RuO2 sheets, c/2
56.4 Å (Mackenzie et al., 1996).

The carrier electrons in Sr2RuO4 appear to be consid-
erably renormalized due to the electron correlation. The
electronic specific-heat coefficient (g) is 37.5 mJ/K2 mol
(Maeno et al., 1997), which gives rise to a density of
states at the Fermi level enhanced by a factor of 3.6 over
the LDA result. The Wilson ratio, RW5x/g , is 1.7–1.9,
also typical of correlated metals.

A strong mass renormalization for the c-axis charge
dynamics was observed in the strongly temperature-
dependent c-axis spectra of the optical conductivity
(Katsufuji, Kasai, and Tokura, 1996). In the c-axis spec-
tra, the Drude band evolves below TM with an apparent
plasma edge around 0.01 eV at T!TM . Figure 237 (Kat-
sufuji, Kasai, and Tokura, 1996) shows the result of an
analysis of the c-axis spectra in terms of the extended
Drude model, in which the energy dependence of the
mass and relaxation time of the conduction carriers was
taken into account. Below TM'130 K, mc* for \v
,0.02 eV is enhanced and reaches about 30 times the
unrenormalized c-axis mass mc for \v,0.01 eV at 15 K.
On the other hand, \/t is suppressed for \v,0.012 eV
but increases for \v.0.012 eV with a decrease in tem-
perature. Such a conspicuous temperature dependence
is similar to that of a heavy-fermion compound, e.g.,

FIG. 237. Energy-dependent effective mass and scattering rate
for the c-axis conduction, derived by extended Drude analysis
of c-axis polarized optical conductivity spectra. From Katsu-
fuji, Kasai, and Tokura, 1996.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
URu2Si2 (Bonn, Garrett, and Timusk, 1988). By con-
trast, mab* (v)/mab is nearly independent of \v, though a
small mass enhancement is observed in a T-dependent
manner below 0.3 eV. These results indicate that the 3D
metallic conduction below TM'130 K is brought about
by the onset of coherent motion of carriers for which the
mass and scattering rate along the c axis are strongly
renormalized. Such anisotropic mass renormalization
may be considered as a generic feature of quasi-2D met-
als with strong electron correlation, but it is obviously
distinct from the case of the cuprate superconductors.

The LDA band structure of Sr2RuO4 was calculated
by Oguchi (1995) and Singh (1995). Their calculations
predict that energy bands which cross the EF are derived
from the strong hybridization of the Ru 4dxy , 4dyz , and
4dzx orbitals with the O 2p orbitals. The photoemission
spectra are generally consistent with this picture, but the
observed Ru 4d band feature is distributed over a wider
energy range than the calculation, as shown in Fig. 238
(Inoue et al., 1996). This may be interpreted as due to
electron correlation effects within the Ru 4d band, as in
the case of the V and Ti oxides described above, that is,
as due to a transfer of spectral weight from the coherent
quasiparticle band to the incoherent part of the spectral
function. Also, the spectral weight at EF is suppressed
compared to the band DOS as in the V and Ti oxides.
Thus Sr2RuO4 may be viewed as one of the strongly
correlated electron systems like the 3d transition-metal
oxides, and any interpretation of its various physical
properties should take into account electron correlation.

Dispersions of the Ru 4d-derived bands were investi-
gated by angle-resolved photoemission studies (Yokoya
et al., 1996a, 1996b; Lu et al., 1996). In spite of the wide
energy distribution of the coherent plus incoherent spec-

FIG. 238. Photoemission spectrum of Sr2RuO4 (rexp(v); Inoue
et al., 1996) compared with the DOS from a band-structure
calculation [D(v); Oguchi, 1995]. The solid curve represents
the DOS modified by the self-energy correction S(k,v)
5gv@G/(v2iG)#@D/(v2iD)#1a«k , where g510.1, G
50.102 eV, D50.246 eV, and a51.5.
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tral weight, the dispersions near EF (reflecting only the
coherent part) were generally weak compared with the
band-structure calculations. In particular, they revealed
a flat band with a saddle point, i.e., a so-called ‘‘ex-
tended van Hove singularity’’ around the (p,0) point of
the Brillouin zone, as in the high-Tc cuprates. The posi-
tion of the flat band was ;20 meV below EF . The cal-
culations predicted an electron-like Fermi surface
around the G point and two hole-like Fermi surfaces
around the X [(p,p)] point. Although the mass is more
enhanced in the de Haas–van Alphen measurement
than the LDA result, the volumes of the calculated
Fermi surfaces are in agreement with those derived from
the de Haas-van Alphen measurements to within 1%
(Mackenzie et al., 1996). On the other hand, the Fermi
surfaces obtained by the angle-resolved photoemission
studies are in disagreement with the band-structure cal-
culations and the de Haas–van Alphen measurements,
as shown in Fig. 239. It was found that the agreement is
improved if the EF is shifted upward by ;70 meV com-
pared to the calculated band structure (Lu et al., 1996),
although it is difficult to justify such a procedure. Since
this is the only case where ARPES experiments and
LDA calculations have given different Fermi surfaces
for a 2D metal, a more critical experimental check
should be made in order to exclude, e.g., surface effects.

2. Ca12xSrxRuO3

SrRuO3 has a slightly distorted perovskite
(GdFeO3-type) structure and is metallic. It shows ferro-
magnetic order below TC.160 K (Callagan et al., 1966).
The saturation magnetization is 1.1–1.3 mB /Ru, and a
neutron-diffraction study gave the ordered moment of
1.460.4 mB /Ru, which is the largest ordered magnetic
moment among 4d transition-metal compounds (Longo
et al., 1968). While those values are smaller than that
(2mB) expected for the Ru41 ion in the low-spin state
(t2g

4 , S51), the effective moment above TC , ;2.6mB ,
is rather close to the low-spin value of 2AS(S11)

FIG. 239. Fermi surfaces of Sr2RuO4 measured by angle-
resolved photoemission spectroscopy (Yokoya et al., 1996a).
The filled circles denote electronlike Fermi surfaces and the
open and gray circles denote holelike Fermi surfaces. Fermi
surfaces derived from band-structure calculations (Oguchi,
1995) are given by the dashed lines.
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52.83mB (Callagan et al., 1966; Longo et al., 1968). The
Rhodes-Wolfarth ratio is thus ;1.3, a value close to that
of the itinerant ferromagnet Ni metal, implying that
SrRuO3 is an ‘‘intermediately localized’’ ferromagnet
(Fukunaga and Tsuda, 1994). The TC decreases under
hydrostatic pressure at the rate of dTC /dP.
2(6 –8) K•GPa21 (Neumeier et al., 1994; Shikano et al.,
1994), as in other itinerant ferromagnets. The negative
dTC /dP is contrasted with the positive dTN /dP in
local-moment systems such as LaTiO3 (Okada et al.,
1992) and the positive dTC /dP in double-exchange sys-
tems such as La12xSrxMnO3 (Moritomo et al., 1995).

CaRuO3 is also metallic. The crystal structure of
CaRuO3 is more distorted than SrRuO3: the Ru-O-Ru
bond angle is reduced from ;165° to ;150°, in going
from SrRuO3 to CaRuO3 (Kobayashi et al., 1994). The
Weiss temperature is negative, indicating antiferromag-
netic interaction between magnetic moments, but it re-
mains paramagnetic down to the lowest temperature
(Gibb et al., 1974). In the solid solution Ca12xSrxRuO3,
the Curie temperature TC decreases with Ca content
and is completely suppressed at x.0.4 (Kanbayashi,
1978) [while a recent study on single crystals showed
that TC remains finite up to x&1 (Cao et al., 1997)]. The
decrease of TC with Ca substitution may appear consis-
tent with the decrease of TC under pressure, in the sense
that the lattice constant shrinks in both cases. It should
be remembered, however, that the reduction in the Ru-
O-Ru bond angle with Ca substitution would normally
reduce the d-band width and would therefore have an
effect opposite to that of increased pressure. More stud-
ies are needed to explain both the pressure and Ca sub-
stitution effects in a consistent way.

With Ca substitution, the effective moment peff in-
creases and the Weiss temperature u decreases, as
shown in Fig. 240 (Fukunaga and Tsuda, 1994): u
changes its sign at x.0.4. The x21-T plot in a wide
temperature range (T,100 K) changes its slope above

FIG. 240. Effective moment peff and Weiss temperature Q of
Ca12xSrxRuO3 (Fukunaga and Tsuda, 1994). The open and
filled symbols correspond to values deduced at high and low
temperatures.
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and below T;600 K for all x’s: In the low-temperature
region, u is a little larger, indicating that ferromagnetic
coupling increases at low temperatures, and peff is
smaller, indicating that the magnetic electrons are more
itinerant at low temperatures. These observations mean
that metallic transport favors ferromagnetic coupling.
The increased localized character at high temperatures
may be a general property of narrow-band metals, in
which there is no coherent transport above T
;W* /3kB , where W* is the renormalized bandwidth.
The resistivity value of ;231024 V cm at high tem-
peratures (;300 K) indicates kFl;1, but no saturation
is found up to 1000 K (Allen et al., 1996). This indicates
the breakdown of conventional metallic transport; Klein
et al. (1996) attributed this to the ‘‘bad metallic behav-
ior’’ discussed by Emery and Kivelson (1995). The opti-
cal spectra of CaxSr12xRuO3 show great similarity to
those of the high-Tc cuprates (Bozovic et al., 1994).
Nearly s(v);1/v behavior is found up to v;1 eV; the
electronic Raman scattering shows an energy-
independent continuum up to ;1 eV. These optical be-
haviors are characteristic of incoherent metals.

Coupling between the magnetic and transport proper-
ties is an interesting issue in metallic ferromagnets.
SrRuO3 shows negative magnetoresistance over the
whole temperature range (Gasusepohl et al., 1995; Izumi
et al., 1997). The Hall coefficient changes its sign from
negative to positive at ;50 K with increasing tempera-
ture (Gausepohl et al., 1996), which implies that there
are both electronlike and hole-like Fermi surfaces and
that a large portion of the Fermi surfaces are very flat.
Figure 241 shows that the resistivity drops at tempera-
tures below TC due to the disappearance of scattering
from spin disorder. Above TC , the temperature depen-
dence of the normalized resistivity is nearly identical for
all x’s, probably because the same (spin-disorder) scat-

FIG. 241. Resistivity of Ca12xSrxRuO3 normalized at 300 K
(Fukunaga and Tsuda, 1994). r0 is the residual resistivity and
for SrRuO3 ranges from r0;231025 V cm (Bouchard and
Gillson, 1972; Klein et al., 1996) to 2.331026 V cm (Izumi
et al., 1997). Here r(300 K)52 –331024 V cm and a is a scal-
ing parameter.
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tering mechanism dominates in the high-temperature
range (Fukunaga and Tsuda, 1994). With Ca substitu-
tion, the resistivity below TC increases as TC decreases
towards x;0.4, and with further substitution it de-
creases again: In particular, CaRuO3 shows an unusual
resistivity drop below ;50 K, which may indicate the
disappearance of scattering by magnetic fluctuations,
possibly due to the opening of an excitation gap in the
magnetic fluctuation spectrum. The critical behaviors
around TC give insight into the coupling between mag-
netic and transport properties. Anomalous critical trans-
port behavior has been found, but is attributed to the
‘‘bad metallic’’ behavior and not to the coupling be-
tween the magnetic and transport properties, because
the critical magnetic behavior is conventional (Klein
et al., 1996).

The band structure of ferromagnetic SrRuO3 was cal-
culated within the LSDA (Singh, 1996; Allen et al.,
1996). The results show very strong Ru 4d-O 2p hybrid-
ization as in Sr2RuO4. Both electronlike and hole-like
Fermi surfaces are indeed present. Flat bands cross EF ,
giving rise to a high DOS at EF and hence a ferromag-
netic ground state through the Stoner mechanism. The
obtained ordered moment of ;1.5 mB /Ru is in good
agreement with the experimental value of 1.4
60.4 mB /Ru. The overall line shape of the photoemis-
sion spectra (Cox et al., 1983; Fujioka et al., 1997) agrees

FIG. 242. Photoemission and O 1s x-ray absorption spectra of
SrRuO3 compared with the band DOS in the ferromagnetic
state (Fujioka et al., 1997). For the XAS spectra, the oxygen p
partial DOS is presented.
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well with the band DOS, as shown in Fig. 242. The Ru
4d band, however, is spread over a wider energy range
than the calculation, and the spectral weight at EF is
suppressed compared to the band DOS, as in the case of
Sr2RuO4. This may be interpreted as due to transfer of
spectral weight from the coherent part to the incoherent
part of the spectral function arising from electron corre-
lation. From the reduced spectral intensity at EF , one
obtains mk /mb;0.3 (Sec. II.D.1). Combining this value
with the mass enhancement factor of m* /mb53.7 de-
duced from the electronic specific heat g and the band-
structure calculation (Allen et al., 1996), one obtains the
quasiparticle weight Z5(mk /mb)/(m* /mb)mb;0.1.
Such a small weight should be related to the bad/
incoherent metallic behavior discussed above.

Evolution of the spectral function in going from me-
tallic to insulating Ru oxides was studied for various Ru
oxides, including the Pauli-paramagnetic metal
Bi2Ru2O7, paramagnetic metal CaRuO3, ferromagnetic
metal SrRuO3, and antiferromagnetic insulator
Y2Ru2O7 (Cox et al., 1983). These oxides show qualita-
tively similar behavior to that of the V and Ti oxides
with d1 configuration (Sec. I.A.5), in that there is a
transfer of spectral weight from higher binding energies
(the ‘‘incoherent part’’) to lower binding energies (the
‘‘coherent part’’) with increasing U/W . From the shal-
lower position of the incoherent peak, the Coulomb en-
ergy U is estimated to be somewhat smaller (;3 eV)
than that of the Ti and V oxides (;4 eV).

V. CONCLUDING REMARKS

Almost localized electrons near the metal-insulator
transitions are well described neither by a simple itiner-
ant picture in momentum space nor by a localized pic-
ture in real space. Theoretical and experimental efforts
to make bridges between the itinerant and localized or,
in other words, coherent and incoherent pictures have
been made for years and have been fruitful, as we have
seen in this article. However, this is still a challenging
subject and many open questions have yet to be an-
swered. Marginally retained metals near the metal-
insulator transition have offered interesting and rich
phenomena for decades and will continue to do so in the
future, presenting fundamental problems in condensed
matter physics as well as potential sources of applica-
tions.

We first summarize the basic understanding of corre-
lation effects of almost localized electrons near the
metal-insulator transitions. In the Mott insulating state,
a charge gap is formed and electrons are localized below
the gap energy scale. Because of the local nature of the
electron wave function in the insulator, the internal de-
grees of freedom (component degrees of freedom) such
as spin and orbital fluctuations give rise to degeneracy,
which, along with the resultant residual entropy, is re-
leased at low temperatures by intersite interactions such
as superexchange and orbital exchange. In the strong-
correlation regime, these exchange interactions can be
much smaller than the charge gap and the bare band-
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
width. Therefore the entropy due to the component re-
mains unreleased above such low energy scales. When
the system is slightly metallized, the coherent part is still
small and the entropy related to the dominant incoher-
ent part is also not released above the temperature of
the intersite exchange interactions. This provides the
background for the anomalous behavior of metals at low
temperatures near the Mott insulator.

With this underlying residual entropy, in the lightly
doped metallic region, more happens. At integer fillings,
the states near the Fermi level for the noninteracting
system are kicked out of the Mott gap region by strong
Coulomb repulsion. The region reconstructed out of the
Mott gap forms a flat band as in Fig. 243, causing degen-
eracy in momentum space, and constitutes another ori-
gin of degeneracy. The mobile carriers under this flat
dispersion further strongly couple to the component de-
grees of freedom and disturb the process of entropy re-
lease for the spin and orbital degrees of freedom, when
the carrier motion destroys the ordering of spins and
orbitals. As a counteraction, the spin and orbital corre-
lations also disturb the coherent carrier motion to make
a flatter band with strong damping in a self-consistent
fashion. Then the coupling of charge dynamics to the
component destabilizes the charge coherence as well as
the component ordering and compresses the process of
residual entropy release into a much lower energy scale.
This combined effect is the main origin of the various
anomalous features of correlated metals near the metal-
insulator transition that have been the main subject of
this review article. As we have seen in various examples,
the residual entropy and related fluctuations cause rich
phenomena which are quite different from those of stan-
dard metals—for example, mass enhancement, unusual
temperature dependence of the resistivity and spin sus-
ceptibility, obstinate incoherent responses in transport,
optical, photoemission, and magnetic studies, and en-
hanced spin and orbital fluctuations.

These anomalous features are most distinctly de-
scribed by the quantum critical phenomena of the Mott
transition. In particular, coupling to the component de-
grees of freedom is able to cause a change even in the
universality class of the metal-insulator transition, as in
z54 in the 2D systems. In terms of the critical expo-

FIG. 243. The chemical potential m and the doping concentra-
tion d to illustrate the width of the critical region. The dotted
line is the m vs d for a noninteracting system and the solid
curve for an interacting system with the Mott insulating phase.
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nents of the universality class, the degree of coherent
carrier motion is characterized by the dynamic exponent
z , which represents the dispersion of the charge carrier
near the metal-insulator transition. Coupling to a com-
ponent with large quantum fluctuations drives the ordi-
nary exponent z52 to a higher value, which qualita-
tively changes the character of a metal to a more
incoherent liquid. Whether a metal can be described in
terms of quantum critical phenomena depends on the
width of the critical region. If the region is narrow, it will
not influence experimental results. The critical region of
a metal-insulator transition for filling control is roughly
estimated from a simple argument. As discussed above,
when the Mott gap Dc opens at an integer filling, the
states of the noninteracting counterpart contained
within the gap are reconstructed and pushed out from
the gap region to the outer gap edge E5Dc roughly
within the energy range of the gap, namely Dc<E
<2Dc . This energy range is transformed to the wave-
number scale k;min(2p,2pDc /t), which determines the
area of flat dispersion due to many-body effects and
characterizes the critical region (see Fig. 243). This is
interpreted as the critical region of the doping concen-
tration extended up to d;min(1,Dc /t). In the strong-
correlation regime, Dc could have the same order of
magnitude as the bare bandwidth, which makes the criti-
cal region of the doping concentration wide. This is why
Mott phenomena in the strong-correlation regime have
a wide critical region and why treatments in terms of
quantum critical phenomena are appropriate in experi-
mentally observed metallic regions, in contrast to the
case of simple magnetic transitions.

There are several different views of each anomalous
feature of metals near the Mott insulator, in which dif-
ferent and individual aspects can be emphasized. They
include Anderson localization due to disorder, localiza-
tion transitions due to coupling to the lattice (polaron
effects), instabilities to charge ordering and other local
orders, as well as instabilities to superconductivity. We
first note that these additional aspects are both repercus-
sion effects of the Mott transition and at the same time
inevitable products of it. When the Mott transition is
approached from the metallic side, anomalously sup-
pressed coherence with the vanishing renormalization
factor generates slower and slower charge dynamics,
which leads to the high sensitivity of charged carriers to
various external fluctuations, and the system becomes
subject to instabilities to localization or some type of
symmetry breaking. This sensitive region is illustrated in
Fig. 1 in the shaded area.

To understand the global features and the principal
driving force of the Mott transition, we first have to un-
derstand its intrinsic nature. In this article, we have
sketched various theoretical approaches for that pur-
pose. In conjunction with experimental results, various
mean-field approaches have succeeded in explaining
some aspects of the anomalies. However, for unusual
metals with increasingly incoherent responses toward
the metal-insulator transition, it has been shown that
temporal as well as spatial fluctuations have to be prop-
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
erly taken into account. In this context, the Fermi-liquid
approaches must include strong wave-number and fre-
quency dependences in the self-energy correction be-
yond the present level. It would be desirable for this
Fermi-liquid framework to include a program for pre-
dicting the breakdown of the Fermi liquid itself as the
Mott insulator is approached in a continuous fashion.
The same requirement applies to first-principles calcula-
tions and spin-fluctuation theories. When spatial fluctua-
tions are ignored, temporal fluctuations are correctly ex-
pressed by the dynamic mean-field theory, in contrast to
other theoretical approaches such as the Gutzwiller,
Hubbard, Hartree-Fock, and slave-particle approxima-
tions. When both spatial and temporal fluctuations be-
come important, a prescription in low dimensions is es-
tablished by the scaling theory. Further understanding
along the lines of the scaling description, especially the
singular wave-number dependence of the renormaliza-
tion that it implies, has to be pursued. The flat band
structure around (p,0) in 2D relevant in the cuprates
offers a particular example. Numerical methods have
proven to be powerful when combined with an appro-
priate low-energy description of the scaling behavior. It
would be desirable to further improve the method to
reduce the limitation of finite system size and also to
allow the calculation of dynamical quantities in large
systems. The criticality of the Mott phenomena has been
recognized as a subject to be studied in greater detail in
real materials. Systematic studies have only just begun
recently, and further experiments that fine-tune and
control the parameters will be needed.

As mentioned above, the appearance of the strong
correlation effects in real materials is accompanied by
various other degrees of freedom. These secondary ef-
fects inevitably occur to some extent because of slow
and incoherent charge dynamics generated by the Mott
phenomena. Studies on these repercussion effects are all
at a primitive stage of understanding at the moment and
should be elucidated in the future. The first issue is
Anderson localization near the Mott insulator. It re-
mains to be clarified how the disorder effects appear just
before a mass-diverging Mott transition. This is clearly
beyond the presently available scenarios of the Ander-
son localization. The second issue is the effect of po-
larons, which may be particularly important when the
lattice degrees of freedom are strongly coupled through
the component, as in the case of dynamic Jahn-Teller
distortion coupled to orbital fluctuations. Another sec-
ondary effect is the instability of incoherent metal near
the Mott insulator to charge, spin, or orbital order and
competition between these types of order. Charge order-
ing or stripe structure may happen more easily near the
Mott insulator due to the mass enhancement. In particu-
lar, it has been proposed that the inherent instability of
incoherent metal to the superconducting state is driven
by the change in universality class connected with the
mechanism of high-Tc superconductivity. This idea de-
serves elucidation in more detail.

For a better understanding of the d-electron systems,
we need to study orbital degrees of freedom more sys-
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tematically. Mean-field phase diagrams have been stud-
ied for the coupled spin and orbital systems and com-
pared to the experimental results, but fluctuation effects
are not well studied at the moment.

Here, we briefly summarize the effort to determine
the overall electronic model parameters of correlated
metals. The global electronic structure of 3d transition-
metal compounds on the eV scale is now well under-
stood from spectroscopic and first-principles studies.
The electronic structure parameters such as the on-site
Coulomb energy U , the charge-transfer energy D, and
the transfer integrals T have been deduced and their
systematic changes with chemical composition ranging
from the Mott-Hubbard regime to the charge-transfer
regime have been clarified. The LDA1U method pro-
vides a practical way to incorporate electron-electron in-
teractions into first-principles band-structure calcula-
tions on the Hartree-Fock level. However, in many cases
the U value has been determined not from first prin-
ciples but empirically. That is, a true first-principles ap-
proach to strongly correlated systems is lacking so far,
even on the mean-field level. To understand the spectro-
scopic properties, effects of interactions that are not in-
cluded in the standard models such as the Hubbard and
d-p models, namely, the long-range Coulomb interac-
tion, electron-phonon interaction, impurity potentials,
etc. need to be studied further in the future.

Experimentally, in this decade, many d-electron com-
pounds have been studied with the idea of systematically
controlling the parameters to tune the distance from the
metal-insulator transition. Filling control, bandwidth
control, and dimensionality control have been exten-
sively studied. The compounds studied indeed show di-
verse properties of transport, optical and magnetic re-
sponses while theoretical analyses have provided useful
schemes for classifying the anomalous properties sur-
veyed in this article. In the last decade, interesting and
surprising phenomena have been found in the region
where the metallic state is retained close to the Mott
insulator when instability to electron localization is sup-
pressed. These include high-Tc superconductivity and
colossal magnetoresistance. In future experimental stud-
ies, it is certainly hoped that metallic states as close as
possible to the Mott insulator can be further realized in
a variety of materials and that various instabilities can
be controlled to obtain strongly nonlinear responses of
charge, spin, orbital, and lattice properties, with the goal
of developing useful devices for applications. Nonlinear
responses also offer a rich array of dynamic properties in
both equilibrium and nonequilibrium states, with meta-
stabilities and slow relaxations as in the Mn perovskite
compounds. These show great promise for useful optical
or magnetic applications. It is certainly clear that our
knowledge on the controllability of carrier dynamics
close to the Mott insulator is still at a primitive stage
compared to that in semiconductor devices. Correlated
electron devices will have broad potential applications
when properly developed, because of the cooperative
and collective nature of electrons.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
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tondo, G. Indlekofer, L. Forro, and Y. Hwu, 1993, Phys. Rev.
B 47, 6625.

Continentino, M. A., 1992, Phys. Rev. B 45, 11312.
Continentino, M. A., 1994, Phys. Rep. 239, 179, and references

therein.
Cooper, S. L., G. A. Thomas, J. Orenstein, D. H. Rapkine, A.

J. Millis, S-W. Cheong, A. S. Cooper, and Z. Fisk, 1990a,
Phys. Rev. B 41, 11605.

Cooper, S. L., et al., 1990b, Phys. Rev. B 42, 10785.
Cooper, S. L., et al., 1992, Phys. Rev. B 45, 2549.
Cox, P. A., R. G. Edgell, J. B. Goodenough, A. Kamnett, and

C. C. Naishi, 1983, J. Phys. C 16, 6221.
Crandles, D. A., T. Timusk, J. D. Garrett, and J. E. Greedan,

1994, Phys. Rev. B 49, 16207.
Cullen, J. R., and E. R. Callen, 1973, Phys. Rev. B 7, 397.
Czjzek, G., J. Fink, H. Schmidt, G. Krill, M. F. Lapierre, P.

Paissod, F. Gautier, and C. Robert, 1976, J. Magn. Magn.
Mater. 3, 58.

Czyzyk, M. T., and G. A. Sawatzky, 1997, unpublished.
Dagotto, E., 1994, Rev. Mod. Phys. 66, 763.
Dagotto, E., A. Moreo, F. Ortolani, D. Poilblanc, and J. Riera,

1992, Phys. Rev. B 45, 10741.
Dagotto, E., A. Moreo, F. Ortolani, J. Riera, and D. J. Scala-

pino, 1991, Phys. Rev. Lett. 67, 1918.
Dagotto, E., A. Nazarenko, and M. Boninsegni, 1994, Phys.

Rev. Lett. 73, 728.
Dagotto, E., and T. M. Rice, 1996, Science 271, 618.
Dagotto, E., J. Riera, and D. J. Scalapino, 1992, Phys. Rev. B

45, 5744.
Dai, P., H. A. Mook, and F. Doǧan, 1998, Phys. Rev. Lett. 80,
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Eskes, H., and A. Oleś, 1994, Phys. Rev. Lett. 73, 1279.
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chi, H. Takahashi, N. Môri, and S. Suga, 1996, Phys. Rev. B
54, 16329.
Rev. Mod. Phys., Vol. 70, No. 4, October 1998
Fujimori, A., and F. Minami, 1984, Phys. Rev. B 30, 957.
Fujimori, A., F. Minami, and S. Sugano, 1984, Phys. Rev. B 29,

5225.
Fujimori, A., M. Saeki, N. Kimizuka, M. Taniguchi, and S.

Suga, 1986, Phys. Rev. B 34, 7318.
Fujimori, A., S. Takekawa, E. Takayama-Muromachi, Y.

Uchida, A. Ono, T. Takahashi, Y. Okabe, and H. Katayama-
Yoshidda, 1989, Phys. Rev. B 39, 2255.

Fujimori, A., K. Terakura, M. Taniguchi, S. Ogawa, S. Suga,
M. Matoba, and S. Anzai, 1988, Phys. Rev. B 37, 3109.

Fujioka, K., J. Okamoto, T. Mizokawa, A. Fujimori, I. Hase,
M. Abbate, H. J. Lin, C. T. Chen, Y. Takeda, and M. Takano,
1997, Phys. Rev. B 56, 6380.

Fukuda, K., S. Shamoto, M. Sato, and K. Oda, 1988, Solid
State Commun. 65, 1323.

Fukunaga, F., and N. Tsuda, 1994, J. Phys. Soc. Jpn. 63, 3798.
Fukushima, A., F. Iga, I. H. Inoue, K. Murata, and Y. Nishi-

hara, 1994, J. Phys. Soc. Jpn. 63, 409.
Fukuzumi, Y., K. Mizuhashi, K. Takenaka, and S. Uchida,

1996, Phys. Rev. Lett. 76, 684.
Furukawa, N., 1995a, J. Phys. Soc. Jpn. 64, 2734.
Furukawa, N., 1995b, J. Phys. Soc. Jpn. 64, 2754.
Furukawa, N., 1995c, J. Phys. Soc. Jpn. 64, 3164.
Furukawa, N., 1996, J. Phys. Soc. Jpn. 65, 1174.
Furukawa, N., and M. Imada, 1991a, J. Phys. Soc. Jpn. 60, 810.
Furukawa, N., and M. Imada, 1991b, J. Phys. Soc. Jpn. 60,

3604.
Furukawa, N., and M. Imada, 1991c, J. Phys. Soc. Jpn. 60, 3669.
Furukawa, N., and M. Imada, 1992, J. Phys. Soc. Jpn. 61, 3331.
Furukawa, N., and M. Imada, 1993, J. Phys. Soc. Jpn. 62, 2557.
Futami, T., and S. Anzai, 1984, J. Appl. Phys. 56, 440.
Fye, R. M., M. J. Martins, D. J. Scalapino, J. Wagner, and W.

Hanke, 1991, Phys. Rev. B 44, 6909.
Gansepohl, S. C., M. Lee, K. Char, R. A. Rao, and C. B. Eom,

1995, Phys. Rev. B 52, 3495.
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Jaklič, J., and P. Prelovšek, 1994, Phys. Rev. B 49, 5065.
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Kübert, C., and A. Muramatsu, 1996, Int. J. Mod. Phys. B 10,

3807.
Kubo, K., and T. Kishi, 1988, Phys. Rev. Lett. 61, 2585, and

references therein.
Kubo, K., and N. Ohata, 1972, J. Phys. Soc. Jpn. 33, 21.
Kubo, R., 1952, Phys. Rev. 87, 568.



1255Imada, Fujimori, and Tokura: Metal-insulator transitions
Kubo, R., 1957, J. Phys. Soc. Jpn. 12, 570.
Kubo, Y., Y. Shimakawa, T. Manako, and H. Igarashi, 1991,

Phys. Rev. B 43, 7875.
Kugel, K. I., and D. I. Khomskii, 1973, Sov. Phys. JETP 37,

725.
Kugel, K. I., and D. I. Khomskii, 1982, Sov. Phys. Usp. 25, 231.
Kuipers, A. J. M., and V. A. M. Brabers, 1976, Phys. Rev. B 14,

1401.
Kumagai, K., K. Kawano, I. Watanabe, K. Nishiyama, and K.

Nagamine, 1994, J. Supercond. 7, 63.
Kumagai, K., H. Matoba, N. Wada, M. Okaji, and K. Nara,

1991, J. Phys. Soc. Jpn. 60, 1448.
Kumagai, K. I., T. Suzuki, Y. Taguchi, Y. Okada, Y. Fujishima,

and Y. Tokura, 1993, Phys. Rev. B 48, 7636.
Kumagai, K., S. Tsuji, M. Kato, and Y. Koike, 1997, Phys. Rev.

Lett. 78, 1992.
Kuramoto, Y., 1985, in Theory of Heavy Fermions and Valence

Fluctuations, edited by T. Kasuya and T. Saso (Springer, Ber-
lin), p. 152.

Kuramoto, Y., and N. Fukushima, 1998, J. Phys. Soc. Jpn. 67,
583.

Kuramoto, Y., and K. Miyake, 1990, J. Phys. Soc. Jpn. 59, 2831.
Kuramoto, Y., and T. Watanabe, 1987, Physica B 148, 80.
Kuroki, K., T. Kimura, and H. Aoki, 1996, Phys. Rev. B 54,

R15641.
Kuwahara, H., Y. Tomioka, A. Asamitsu, Y. Moritomo, and

Y. Tokura, 1995, Science 270, 961.
Kuwahara, H., et al., 1998, unpublished.
Kuwamoto, H., J. M. Honig, and J. Appel, 1980, Phys. Rev. B

22, 2626.
Kwizera, P., M. S. Dresselhaus, and D. Adler, 1980, Phys. Rev.

B 21, 2328.
Lad, R. J., and V. E. Henrich, 1989, Phys. Rev. B 39, 13478.
Ladd, L., and W. Paul, 1969, Solid State Commun. 7, 425.
Landau, L. D., 1957a, Sov. Phys. JETP 3, 920.
Landau, L. D., 1957b, Sov. Phys. JETP 5, 101.
Landau, L. D., 1958, Sov. Phys. JETP 8, 70.
Langer, M., J. Schmalian, S. Grabowsky, and K. H. Benne-

mann, 1995, Phys. Rev. Lett. 75, 4508.
Langreth, D. C., and M. J. Mehl, 1983, Phys. Rev. B 28, 1809.
Lee, P. A., and N. Nagaosa, 1992, Phys. Rev. B 46, 5621.
Lee, P. A., and T. V. Ramakrishnan, 1985, Rev. Mod. Phys. 57,

287.
Lee, S.-H., and S-W. Cheong, 1997, Phys. Rev. Lett. 79, 2514.
Li, E. K., K. H. Johnson, D. E. Eastman, and J. L. Freeouf,

1974, Phys. Rev. Lett. 32, 470.
Li, J. Q., Y. Matsui, S. K. Park, and Y. Tokura, 1997, Phys.

Rev. Lett. 79, 297.
Li, Q., J. Callaway, and L. Tan, 1991, Phys. Rev. B 44, 10256.
Liang, W. Y., J. W. Loram, K. A. Mirza, N. Athanassopoulou,

and J. R. Cooper, 1996, Physica C 263, 277.
Lichtenberg, F., A. Catana, J. Mannhart, and D. G. Schlom,

1992, Appl. Phys. Lett. 60, 1138.
Liechtenstein, A. I., V. I. Anisimov, and J. Zaanen, 1995, Phys.

Rev. B 52, 5467.
Litvinchuk, A. P., C. Thomsen, and M. Cardona, 1993, Solid

State Commun. 83, 343.
Liu, L.-Z., R. O. Anderson, and J. W. Allen, 1991, J. Phys.

Chem. Solids 52, 1473.
Liu, R., B. W. Veal, A. P. Paulikas, J. W. Downey, P. J. Kostić,
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