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Abstract. A fluctuation transport theory is applied to 
describe the extra resistivity of thin metal films due to 
electron scattering at rough surfaces. This scattering 
mechanism is described in terms of the surface profile 
autocorrelation. If the lateral extension of the surface 
structures exceeds the Fermi wavelength, the scattering 
can be described by a step density of terrace edges. 

PACS: 72.10; 73.25; 73.60D 

1. Introduction 

The resistivity of a metallic conductor can be character- 
ized by a mean free path lo of the electrons, which includes 
elastic and inelastic scattering processes [1]. A scattering- 
process is called elastic if the scattering-potential is time- 
dependent (e.g. by ions, surface roughness), otherwise it is 
called inelastic (e.g. by phonons). If, however, a drifting 
electron system is considered the scattering-matrix ele- 
ment of an elastic process becomes time-dependent. Here 
energy is dissipated leading to a relaxation of the Fermi 
sphere. 

If the geometric extension of a specimen exceeds the 
characteristic transport length lo, the resistivity can be 
derived from bulk properties of the material, otherwise 
surface scattering leads to an important extra resistivity. 

In 1938 Fuchs presented an approach to surface scat- 
tering in thin metallic films using the Boltzmann theory 
[2]. Within his framework, the extra resistivity is due to 
diffuse scattering of conduction electrons at the surface 
and is described by a phenomenological specularity para- 
meter p. Various scattering mechanisms as by chemisor- 
bed adsorbates or surface roughness were discussed 
within terms of this parameter [3-5]. Following the con- 
cept of diffuse light scattering at rough surfaces Ziman 
and Softer established a relation between surface rough- 
ness and Fuchs's specularity parameter [8, 9]. 

Since thin films often have a polycrystalline structure, 
with a lateral extension of the crystallites comparable to 

the film thickness [10], we have to distinguish between 
a macroscopic roughness, given by crystallite height fluc- 
tuations, and a microscopic one which originates from 
height fluctuations on an atomic scale. 

A measurement of the resistance during the growth of 
an ad-layer allows to determine the change of the resistiv- 
ity as a function of the changing surface morphology. This 
differential method eliminates the effect of unknown scat- 
tering-mechanisms, e.g. by inner grain boundaries of the 
substrate. Depending on the growth conditions the vari- 
ation of the morphology can be chosen to reach from 
atomic roughness (coverage by less than a monolayer) up 
the region of deep roughness. 

In the present paper we treat the electron scattering in 
noble metals by surface roughness in a quantum mechan- 
ical context which is based on a fluctuation concept 
[11-16]. The autocorrelation of the surface morphology 
plays a major role for the resulting extra resistivity. It is 
discussed for several autocorrelation functions, describing 
atomic roughness including island-like growth and the 
regime of high coverage. We assume the autocorrelation 
function to consist of two independent parameters, the 
vertical mean square roughness A 2 and the correlation 
length ~ which characterizes the lateral homogenity of the 
surface. Considering only the influence of A 2 yields a para- 
bolic dependence of the extra resistivity on the monolayer 
coverage during the growth of the first adlayer, in this 
context called Nordheim behaviour. The lateral correla- 
tion length ~ is responsible for an interesting and charac- 
teristic deviation from the parabolic behaviour. Our 
results are shown to be in good agreement with the 
experimental ones referenced in [5, 20, 193. 

2. Theoretical concept 

We consider a thin film laterally extended in the r = (x, y) 
directions and confined in z-direction to 0 < z < d as 
a model system for a particular crystallite of the 
substrate, where d is the average film thickness, A the film 
area and ne the three dimensional electron density, see 
Fig. 1. 
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Fig. 1. The current transport in a film of thickness d can be repre- 
sented by the center of mass system of the electron which moves with 
a velocity v(t). The dents indicate the surface roughness 

The band structure of noble metals projected onto the 
surface orientation often has an energy gap at the Fermi 
energy in the F point of the Brillouin zone [6]. These 
electrons cannot travel perpendicularly to the surface and, 
thus, are not scattered by the surface roughness. However, 
Sambles has shown that for the (111) surface orientation, 
considered in the present paper, this effect is negligible [7]. 
For this reason the electrons will be treated as a free 
electron gas. 

When the electrons are scattered by the surface, they 
feel only potential variations due to the spatially outer- 
most electron density, which shows nearly no corrugation 
in the case of smooth surfaces. Therefore, the crystal 
structure is of negligible importance for the mechanism of 
specular reflection and, thus, we are allowed to describe an 
ideal surface within a jellium model. Deviations from the 
smooth surface at z = d are now described by local 
broadening A (r) of the confining potential. If the electrons 
in the smooth film are confined by the potential Vo(z), the 
rough film can be described by the new potential [17] 

V(r,z) = Vo z A(r)-+ d ~ Vo(z) - z . ~ -  V;(z). (1) 

This leads to the one particle Hamiltonian for free elec- 
trons, confined in z-direction, with the scattering potential 
r 

p2 A (r) 
H = ~m + v~ + r r  (2) 

with the eigenfunctions q~k,.(r,z) and eigenvalues Wk,. of 
the unperturbed Hamiltonian: 

1 
4)k,.(r, z) = ~ exp(ik,  r). ~o.(z). (3) 

,/A 
The polar izabi l i ty/ /of  the corresponding non-interacting 
unperturbed many particle system is given by [18-1: 

n(k,  co, z,z') = ~ II.,m(k, co)" ~o.(z)e.(z')em(Z)~Om(z') 
n, rn 

with 

Hn'm(k 'co)=A ~(A) ~- i~'lO+ + % , n - -  Wq+k,m 

f (Wq,.) } .  
he) + ihO+ + Wq+,,m -- Wq., 

(4) 

We now apply the fluctuation transport concept to the 
present problem, where we in general assume on oscillat- 
ing external field Eext((2). Later in the application we 
confine our attention to dc-transport. The fluctuation 
concept uses the assumption that all electrons contribute 
to the macroscopic current density j = - eneva with the 
same drift-velocity Vd, ne the three dimensional electron 
density. Thus, the motion of the carrier system is divided 
into a collective drift Vd of their center of mass system 
(CMS) and a disordered thermal motion. The stationary 
transport is characterized by a macroscopic force-density 
balance that takes friction-forces, inertia and driving for- 
ces into account: 

f(va) -- mnef~d -- eneEext = O, (5) 

j = _eneV d = f fEex t. (6) 

In the linear regime we expect the friction to be propor- 
tional to the velocity. Defining the friction coefficient ? by 
f (ve)  = - ?" va Fourier transformation of (5) and (6) gives 
the frequency dependent resistivity tensor: 

1 mco 
p(co) = ~ ?(co) -- i 1. (7) 

/ 'tee t/e e2  

The friction-forces will now be derived from a microscopic 
treatment of the scattering mechanisms. 

The fluctuations of the scattering potential in our 
system leads to an induced carrier density 0i and a corres- 
ponding electric field Ei, which gives rise to an energy 
dissipation of the drifting electron system. This dissipative 
process can be described in terms of a friction-forcef(ve): 

1 
f(va) = ~ ( ~ oi(r, z, t)Ei(r, z, t) drdz)  (8) 

where the ensemble average is taken over all configura- 
tions of the statistically distributed scattering potentials 
(e.g. of the roughness). 

It s convenient to calculate the induced carrier density 
0i in their own rest system (va = 0), because therein the 
bilocal polarizability Fl(k, co, z,z ')  of a non-interacting 
electron gas is well-known [18]. The screening of the 
scattering potential r is handled within the random-phase 
approximation, which corresponds to a self-consistence 
step in the calculation of the induced charge density in our 
approach and results in an effective potential r 

The motion of the electrons in the center of mass 
system (CMS) relative to the resting crystal system (LS) is 
given by R(t) = Rosin(f2t), which means a time dependent 
drift-velocity va. The Fourier components of a scalar 
operator B(r,z , t)  are then transformed by means of 
a Doppler-type frequency shift: 

BLs(k, z, co) = BCMS(k, z, co) + ct(k)BCUS(k, z, co - O) 

k 'Ro (10) 
~ ( k ) -  2 ' 

where the upper index (CMS) indicates that the operator 
is described in the rest system of the carriers and the lower 
index (LS) means the same operator in the crystal system. 
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Typical drift velocities Ro. f2 of metal electrons are of the 
order of cm/s (<< vl) and, thus, a first order calculation in 
c~ is a good approximation. 

In the following discussion we write down only the 
Fourier components including' - Q' and omit wave-vec- 
tor arguments where it is unambiguous. 

The effective potential ~beff felt by the electrons consists 
of two contributions, on one hand of the unscreened 
potential ~b, and on the other hand of the induced poten- 
tial &bi due to the induced charge density. These quantit- 
ies have to be calculated self-consistently: 

el(co, z) = Oi(co, z) + c~oi(co - ~), (11) 

0 i(co, z) = q 5/7((`0, z, z')~b eff ((`0, Z t) dz', (12) 

q~af(co, z) = ~b(co, z) + 6qSi(co, z), (13) 

60i(co, z) = 2~ok ~exp( - k l z  - z'l)oi(co, z ' )dz ' ,  (14) 

Oi((`0, z) = q ~ 11((`0, z, z')q~ff(co, z') dz' 

- ~q ~ (n (co ,  ~, z ' )  

- 17(o) - Y2, z,z'))(o~ff(co -- g2, z ' )dz ' ,  (15) 

q is the charge of the carriers. Introducing the dielectric 
function S(k, (`0, z, z') the problem can be rewritten as an 
integral equation for the effective potential: 

~beff(co, z) = qS(co, z) - ~ Z(CO, z, z')~befdco, z') dz' 

- ~ ( s ( o  - O , z , z ' )  

- -  8((`0, z,  z ' ) )  ~Deff((`0 - ~'~, z t )  d z ' ,  ( 16 )  

q2 
)~(co, z, z') - 2eok ~exp( - k[z - z"[)/7(co, z " , z ' )dz" ,  

(17) 

S(co, z , z ' )  = a(z  - z ' )  + z(co, z , z ' ) .  (18) 

The inverse dielectric function S-  1 ((`0, z, z') is defined by 
the aid of the unity operator 6 ( z -  z') in the space of 
functions. Equation (16) can be solved by iteration up to 
first order in ~(k): 

cS(z - z ' )  = S S -  I(~o,z,z")S(co, z " , z ' ) d z  ", (19) 

~ae(co, z) = 5 S -  l(co, z,z')(o(co, z ' ) d z  ' 

- c~5(s-~(co,  z , z  ') 

- -  S -  1(co - -  ~ " ~ , z , z ' ) ) 4 ) ( c o  - -  f2, z') dz', (20) 

Oi(co, z) = q ~ 1I(o,  z, z ' ) S -  1((.0, Z', Z")~9(CO, Z") dz 'dz"  

-- ~q ~ /7 (co, z , z ' ) S -  l (co, z ' , z  ") 

x (o(co - O , z " ) d z ' d z "  

+ aq[.11(co - ~ , z , z ' ) S - l ( c o  - Q , z ' , z " )  

x ~(co - f2 , z " )dz 'dz" .  (21) 

In order to calculate the friction force we insert (21) into 
(8). Under the assumption of a radially symmetric auto- 
correlation function of the surface profile, a box potential 
with barrier height Vo and a current in x-direction, we 
obtain the following expression for the extra resistivity 
due to surface roughness scattering: 

7(o) me) 
p(co) - nZq2 i nq 2 - ,  (22) 

with 

i 
7(co) - (2~z)2 dco S d k d z d z ,  k~ V~K(k )  

x ( /7 (k ,o , z ,  z l ) S - a ( k , o ,  z l , d ) S - l (  - k ,O,z ,d)  

- 11(k,O,z, z a ) S - ' ( k , O ,  z l , d ) S - l (  - k, co, z ,d))  

(23) 

and 

1 
K(k)  = ~ J A(k)[ 2. (24) 

K(k)  is the power spectrum of the Fourier transformed 
surface profile function. 

Since the resistivity of metals is practically frequency- 
independent up to the plasma resonance frequency we will 
restrict ourselves to dc-transport properties. Furthermore 
we will discuss only the non-quantized regime, which 
means a dense subband structure in the limit k id  ~ oo. 
For this case we expect a geometric behaviour 7 oc 1/d of 
the fi'iction coefficient which is due to the ratio of surface 
area to volume. For a workfunction q~ of the order of the 
Fermi energy W~, it can be shown that an infinitely high 
barrier V o -+ oo yields the leading order l id  of the resistiv- 
ity. The remaining problem is the inversion of the dielec- 
tric tensor S(k, O, z, z ')  at frequency zero, which is analyti- 
cally possible only for systems with one occupied subband 
or translationally invariant systems. 

Here we only give a rough estimate of the inversion of 
S(O, z, z ')  which is similar to the Fermi-Thomas method in 
three dimensions [1]. Within this approximation the po- 
larizability/7 is projected onto the diagonal in the coordi- 
nate space, 

FI(k, O,z,z ')  --, S II  (k, O ,z , z" )dz"  

�9 6(z - z') - e~ z ) ' 6 ( z  - z ') ,  (25) q2 

so that the dielectric tensor can be written as: 

kZT exp(--  k [ z  - z ' [ ) f ( k , z ' ) ,  (26) S(k, 0, z, z') = a(z - z') + 2k- 

kFT the Fermi-Thomas wavelength of the three dimen- 
sional-theory. The function f ( k , z )  is approximated by 
interpolating between the limits k/ki<<O and k/k~.>> 1 of 
the polarizability/7: 

( ~ ],/3 _ k}(n) 
f ( k , z )  = \~neU ,~<~k2/2 + k}(n)  ~~ (27) 
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The ansatz 

k 2 T  , , 
S- l ( k ,O , z , z  ') = 6(z - z') - -}-~ f ( k , z  )s(z,z ) (28) 

leads to the integral equation for the unknown function 
s(z, z') 

s(z,z') = exp( - klz - z'l) 2k 

d 

x ~ s(z ,z") f (k ,z")exp(  - k]z" - z'l)dz" 
0 

which can be solved analytically if we approximate the 
spatially smooth functionf(k, z) by its average valuef(k). 

Inserting the inverse dielectric function (28) in (23) and 
transforming the summation over the subband indices 
(originating from the polarizability Eq. 4 and 23) into 
integrals we obtain the following result for the extra resis- 
tivity A p: 

2i A p = , - 5 - ~ 2 k } I d x  dy dO dcp 
0 0 

cos2(q~) 
X k2(x ,y ,O)  

. { x y _ ~ g ( k ( x , y , O ) ) H ( x , y , k ( x _  ' y 'O)  ]~FT ~ ~ 2 
,/5 '2kd  

�9 K(k  I x /2k(x ,  y, O)cos(q)), k~x/~k(x,  y, O)sin(cp)) 
(29) 

with 

( 
= t ( 1  - y2cos(O) k(x,y,O) 

X 2 

g(x) = 1 3 

2 - x 2 - y211/2, 

2 

x2atanh(1/x/x 5 + 1) + x4a tanh(1 /x /~  + 1) 

3,,f~5 + 1 
(30) 

1 
H(x,y,z,(5) = 

(z 2 + 5zfo~ (x/~z) + (x -- y)2/4) 

1 

(z z + 52fo~(x/-2z) + (x + y)2/4) 

62xy 
X 

1 + z / , / z  2 +  2f (,fiz)' 

fo~(x) = 1 - x z atanh(1/x/xZ + 1) (31) 
,f2  + 1 

In the next section we discuss formula (29) for several 
autocorrelation functions which describe various surface 
formations. 

3. Model systems 

The effect of surface roughness on metal film resistivity 
will be discussed for two model systems characterized by 
different profile autocorrelations. 

The first model deals with a smooth substrate film 
covered by less than a monolayer, coverage O << 1, of the 
same material, for instance Ag on Ag(l l  1). This descrip- 
tion includes isolated ad-atoms and laterally extended 
conglomerates. The morphology will be characterized by 
an atomic form factor and a structure factor which is given 
by the arrangement of the ad-atoms. 

The second model is for surfaces that cannot be 
divided into topological subregions. This description 
holds for surfaces with profile height variations of more 
than a monolayer. This we call the regime of "high rough- 
ness". Since in the framework of "low coverage" some 
results from the "high roughness" regime are needed, we 
will discuss the latter first. 

3.1. High roughness 

The autocorrelation K(r) of the surface profile on one 
hand gives the lateral length scale ~ of the self-similarity of 
the profiles and on the other hand a vertical scale which is 
called the mean square roughness A 2. Both length scales 
are independent of each other. 

As model functions we consider a Gaussian, a Lorentz- 
ian, and an exponential decay profile. For the extra resis- 
tivity A p we obtain the simple formulas: 

9hA 2 
Ap = 2q2d. 

G @ k f , ~ y )  if K ( r ) =  A2exp( - ( r /~ )2 ) ,  

( E ~ky, 2k fJ  if K(r) = A2exp( - (r/i), 

( k T) 4 2 
L ~ky ,2kz]  i f K ( r ) = A  z 4 2 + r z .  (32) 

The functions G, E, L are shown in Figs�9 2 to 4. As is 
known from wave scattering theory the diffraction is most 
efficient if the particles wavelength oc k i 1 is of the order 
of the extension of the obstacles�9 Thus the resistivity has 
a maximum for ~k I ~ 2 which is nearly independent of the 
choice of the special autocorrelation. 

Comparing our results with Fuchs's theory, we can 
interpret the functions G, E, L as a measure for the 
amount of diffusely reflected electrons, for example with 
exponential decay: 

Ap Vuchs 3l (1 p), l VsZ, (33) 
Po 8d 

4(Akf) z ( kFT~ 
( l - - p ) - -  ~ E ~kY, 2kl]. (34) 

Here we calculated the phenomenological specularity 
parameter p on a quantum mechanical basis. Depending 
on the explicit surface profile the right hand side of (34) 
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same length as the Fermi wavelength are the most efficient scatterers 
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Fig. 5. Schemat ic  devia t ions  of the resistivity f rom the N o r d h e i m  
behav iour  (parabola)  dur ing  the  g rowth  of the  first mono lay e r  on an  
a tomic  s m o o t h  subs t ra te  film for meta ls  and  semi-metals .  The  in- 
crease of resistivity is normal ized  to the  initial s lope p' = ~/~30 A p at 
O = 0. The  deviat ions  result  f rom the m o n o l a y e r  coverage depend-  
ence (O) on  the  p roduc t  ~k I 

can become larger than 1, this region exceeds the validity 
of Fuchs's formula. 

We should remark that in (34) the characteristic lateral 
and vertical lengths (~,A 2) scale with the wavelengths of 
the particles, which leads to an interesting behaviour 
during the growth of the first ad-layer. 

If the material grows layer by layer, as In on In (111) 
[5], the vertical roughness shows a parabolic dependence 
on the coverage known as Nordheim behaviour: 
A 2 = a20-(1 - O), where a is the distance between two 
layers in the growth direction. If we neglect the effect of 
the correlation lengths ~ we would expect the same de- 
pendence for the extra resistivity. 

For  O<< 1 the ad-atoms are isolated and the corres- 
ponding correlation length ~ is of the order of an atomic 
radius. With increasing coverage the lateral extension of 
the structures and in the same way ~ will increase. 

In metal films the de-Broglie wavelength of the elec- 
trons is of the order of atomic distances and thus the 
product ~k s will be larger than 2 and increase further 
during the growth of the film. As a consequence the 
scattering efficiency decreases and the observed resistivity 
lies below the parabolic behaviour as is shown in Fig. 5. 

This behaviour has been observed experimentally for In 
on In ( l l l )  [5]. 

Since in semi-metals the electron de-Broglie 
wavelength is larger than the interatomic distances, the 
product ~k s is smaller than 2 for the region of isolated 
ad-atoms. In this case an increasing correlation 
length leads to an increase of the diffusely scattered 
electrons until the value ~ky = 2 will be passed. Then 
the resistivity behaves as in the case of metals, see Fig. 5. 
It is an interesting question whether this deviation 
from the Nordheim behaviour can be observed experi- 
mentally. 

A priori it is not clear which of our correlation func- 
tions holds to describe a real surface profile. Henzler and 
Luo [19] observed the growth of silver films by high 
resolution Spot Profile Analysis LEED and compared this 
results with simultaneous resistivity measurements. From 
comparison with our theoretical approach the exponen- 
tial decay appears to be the best description. This is in 
agreement with our results of a growth simulation in 
which we calculated the phase-correlation, responsible for 
the SPA-LEED signal, and the autocorrelation function. 
More details will be published elsewhere. 
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3.2. Low coverage 

Within our jellium model the electron density at a smooth 
surface is constant in lateral direction. An adsorbed ad- 
atom distorts the planes of constant density and thus can 
be described by a dent f(r), see Fig. 6. If there are N of 
such ad-atoms the new topology A (r) is given by a statistic 
ensemble {ri} over all ad-atom positions. K(k) is the 
corresponding autocorrelation in Fourier space: 

N 
A (r) = ~ f ( r  - r,), (35) 

i=1 

N (l~exp(_ik.(ri_rj)))" (36) K(k)  = ~ I f  (k)l z -N L.j 

The form of the dent is chosen to be Gaussian. This 
guarantees that the surface profile variation is concen- 
trated to the vicinity of the ad-atom position and has the 
advantage of a simple analytical Fourier transform�9 The 
amplitude is given by the distance a of two net-planes, the 
width is fitted to the volume of an atom in the crystal 
lattice: 

f ( r )  = A e x p ( -  (r/ro)2), rcr 2 = (An, t) -1. (37) 

The topological arrangement is represented by a set {L} 
of conglomerates with a set of inner ad-atoms positions 
{ri,L} , Fig. 7. 

Due to to the polycrystalline structure of the substrate 
film we do not expect a preferred orientation of the clus- 
ters and carry out an angle average over the connection 
vectors of two ad-atoms in the vector product 
k" ( r i ,  L - -  ry, M). In this way we obtain an autocorrelation 
with an effective structure factor F(k): 

N 
K(k) = ~ If(k)12F(k), (38) 

r (k)  = 1 + N Y~ Jo(klriL -- r~LI) 
L,jL < iL 

+ ~ ~', Jo(klriL - rj~,[) �9 (39) 
L<M,  iL, jM 

The first term of F is due to scattering at single ad-atoms, 
the second one gives the correction due to formation of 
conglomerates�9 The third term gives the correlation be- 
tween two different conglomerates and will be neglected in 
the following discussion. 

In a first step we calculate the initial slope of the extra 
resistivity as a function of the monolayer coverage O, 
since this slope is characteristic for the uncorrelated re- 
gion and therefore typical for the material under consid- 
eration. From (29) we find 

_ 9h dy[dzk2(x ,y , z  ) 
•O o=o 2dq2 k} dx 0 0 

1 k(x,y,z) kFT'~ 2 

�9 xy - 5  ~(k(x,y,z))/-/(~,y, ~ ,  ~ j  

�9 ~cA 2rZexp( - (kyrok(x, y ,  z)) 2) 
x C ( , / 2 k z k ( x ,  y, z)). (40) 

m Surface f(r) 

Fig. 6. Within the jellium model the shift of the contours of constant 
electron density due to ad-atoms is described by a broadening A (r) 
of the confining potential Vo(z) by A (r). A (r) is the sum of the single 
atom factors f(r) 

Y~ 

Cluster L 

~ C l u s t e r  N 
x 

Fig. 7. Division of the ad-atoms arrangement into topological sub- 
groups. Each arrow represents the interaction between different 
ad-atoms 

In the uncorrelated limit we must put F = 1, and (40) 
reduces to: 

c~O o -  2dq ~ 2 G roks, , (41) 

with G from Fig. 2. Table 1 shows good agreement be- 
tween the experimental and theoretical results for several 
materials. 

In a second step we consider the effect of accumulated 
ad-atoms. As an example we present the results for circu- 
lar conglomerates consisting of M ad-atoms leading to 

a radius RM = ro" ,,fM. For  this arrangement we have to 
calculate the structure factor F in (40). 

If the electrons wavelength does not resolve the atomic 
separations the summation over the ad-atom positions 
{ri, M} in (39) can be approximated by integrals over the 
conglomerate area: 

2 

F(k) = MF(krox/M) F(x) = 2 S dzf(z)Jo(xz), 
0 

z(1 - z)2/4(1 - z) 

f(z) = 

(42) 

+ -  dt arccos -z2 + t2 1 (43) 
rc l a - z l  2 z t  ' 

0 z r  /~(z < O) = 0 

/4(z) the Heavyside function. 
We discuss the effect of formation of conglomerates by 

introducing a scattering efficiency t/, that is the ratio of 
extra resistivity with and without (i.e. independent ad- 
atoms) clusters: 

Ap(M) (44) 
' I -  Ap(1) ' 



Table 1. Comparison of the 
experimentally investigated values for the 
initial slope of the resistivity change 
~3/~30 A P lo = o with the theoretical results. 
a the lattice constant, d thickness of the 
substrate film, ML monolayer. Data are 
taken from [5] (Ag, Cu) and [20] 

System 

Cu on Cu (111) 
Ag on Ag (111) 
Au on Au (111) 

aEA] d[:i] exp. 
[#Ocm/ML] 

3.61 
4.09 
4.08 

1.36 
1.20 
1.20 

theor. 
[#Ocm/ML] 

145 

220 0.6 _+ 0.2 0.73 
200 1.3 _+ 0.1 1.05 
220 1.1 _+ 0.1 0.95 

t . 0  L 

0.1 

, i ' ' . . . .  I 

2 X .  

i i i i t  , I  

10 

' . . . . . . .  I 
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Fig. 8. Scattering efficiency t/ as a function of atoms per cluster 
M for a metallic system characterized by ksr o ~ 1.7 and 
kvx/2k I = 0.75. Due to the small Fermi wavelength the electrons are 
only scattered at the edges of the conglomerates, which corresponds 
to a decreasing efficiency t/oc M -~ 

the total density of a toms is taken to be constant.  The 
calculations of  the efficiency were done for metals and 
semi-metals. 

In the calculations we put  the screening parameter  for 
metals to be kvT/2k I = 0.75 whereas for semi-metals we 
took  kFT/2k: << 1 because of the high dielectric constant  of 
the lattice. Fur thermore  we chose kcro ~ 1.75 which is 
typical for a cubic crystal structure and k l r  o -- 0.33, 0.67 
as examples for semi-metals. 

Figure 8 shows the scattering efficiency for metals as 
a function of a toms per cluster. Since the electron de- 
Broglie wavelengths in metals are of the order  of the 
inter-atomic distances the electrons only feel the outer- 
most  electron density variat ion at the edges of the con- 
glomerates, which means that the efficiency is expected to 
be propor t iona l  to the ratio of the circumference to the 
area: t/oc M -  o. s. 

In  the case of semi-metals the scattering efficiency 
increases with the number  of  ad-a toms per cluster until 
the conglomerate  radius exceeds the Fermi wavelength, 
Fig. 9. Then the efficiency decreases as in the metal case. 

4. Summary 

In  the first par t  of this paper  we gave an outline of our  
theoretical approach  to surface roughness scattering. We 
presented a Fermi -Thomas  like access to electronic 
screening of  scattering potentials near a surface and 

10 

1o o 

. . . . . . . . . . . .  , , i  , . . . . . . .  i ' ' , , , , , ,  
"~ A,xz~R.. _ . . . .  M-0.5 

z x  ~ .  z~ k f r 0 = 0 . 3 3  
zx 

z~ o kfr0 = 0,67 
z x  

o o o "z%z~ 
o o o 
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\o 
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M 

Fig. 9. Scattering efficiency t/ as a function of atoms per cluster 
M for semi-metals characterized by kyro = 0.33 and k:o  = 0.67. 
Since the Fermi wavelength of the electrons is larger than the 
interatomic distances, the formation of conglomerates leads to an 
increasing efficiency until the lateral extension R~ of the clusters 
becomes so large that k:R~t is larger than 2. Then the system shows 
metallic behaviour with decreasing eff• 

derived simple formulas for the extra resistivity due to 
roughness scattering in which the surface profile autocor-  
relation plays the major  role. 

In  the second par t  we discussed several types of auto-  
correlat ion functions. As examples for the high roughness 
regime we presented the results for a Gaussian,  a Lorentz-  
Jan and an exponential  profile. For  the submonolayer  
coverage we discussed the extra resistivity on one hand  for 
isolated ad-a toms and on the other  hand  for the case of an 
island-like growth mechanism. With the aid of a scattering 
efficiency we showed that in the case of metals the conduc-  
t ion electrons are scattered only at the steps of the con- 
glomerates. This concept  can be applied to surfaces 
covered with several monolayers  if the ad-a toms build 
laterally widely extended terraces. Here the case of  deep 
roughness is included. The behaviour  of  semi-metals is 
characterized by their large Fermi wavelengths which 
leads to an enhanced scattering efficiency. This can be 
detected during an ad-layers growth from an overshoot-  
ing of the extra resistivity in the Nordhe im plot. 

The authors are indebted to Prof. P. Grosse and Dr. D. Schumacher 
(University of Diisseldorf) for their interest in our work and their 
stimulating discussions. 
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