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1. INTRODUCTION

The plasma produced during rapid ionization of a
matter is characterized by a strongly nonequilibrium
velocity distribution of photoelectrons (see, e.g., [1–
4]). The characteristic kinetic energy of the photoelec-
trons substantially exceeds the ion kinetic energy, and
their distribution function is highly anisotropic. The
regular features of the velocity distribution of photo-
electrons depend largely on the mechanism whereby
the atoms of a matter are ionized and on the properties
of the ionizing radiation. In particular, the distribution
of photoelectrons produced in the tunneling ionization
of atoms by linearly polarized radiation is close to a bi-
Maxwellian anisotropic distribution [1, 2]. The tunnel-
ing ionization of atoms by circularly polarized radia-
tion results in a qualitatively different distribution of
photoelectrons, one that is characterized by high elec-
tron velocities in the polarization plane of the ionizing
wave [1, 4].

The physical properties of plasmas with a strongly
nonequilibrium distribution of photoelectrons also dif-
fer significantly from those of a thermodynamically
equilibrium plasma (see, e.g., [5–9]). The unusual
properties of a plasma produced in the tunneling ioniza-
tion by the field of a linearly polarized wave were
described in [10–12]. In those papers, it was shown that
the physical causes for the anomalous optical plasma
properties lie in the influence of the magnetic field of
the test wave on the electron kinetics in the skin layer.
This influence is great because the electron distribution
is anisotropic and the strength of an alternating mag-
netic field in the skin layer is relatively high in compar-
ison with the electric field strength [10–12].

In the present paper, we consider the features of the
absorption and reflection of a test wave that interacts
with a plasma produced in the tunneling ionization of
atoms of a matter by a circularly polarized wave. We
assume that a nonequilibrium plasma has a sharp
boundary, from which the electrons are specularly
reflected, and that the electron kinetic energy is high
enough to ignore rare electron collisions. Under these
assumptions, we derive general relationships for the
surface impedance of a nonequilibrium plasma, for the
absorption coefficient, and for the phase shift of the test
wave. We obtain explicit analytical expressions that
describe how the absorption coefficient and phase shift
depend on the ratio of the characteristic distance trav-
eled by an electron during the period of the test wave to
the skin depth in the case of a high-frequency skin
effect. We check the analytical expressions against the
results of numerical calculations of the phase shift and
absorption coefficient and also discuss the conditions
under which the optical plasma properties under study
can be observed.

2. BACKGROUND STATE

We consider a half-space 

 

z

 

 > 0 that is filled with a
plasma produced by the ionization of atoms of a matter
by a circularly polarized high-power ultrashort laser
pulse. The characteristic plasma production time and
the duration of the ionizing pulse are assumed to be
short in comparison with the characteristic time scale
on which the nonequilibrium distribution of photoelec-
trons varies because of collisions and because of the
possible onset of electromagnetic instabilities. We also
ignore the change in the photoelectron density due to
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the plasma expansion into a vacuum (

 

z

 

 < 0) during the
pulse. If the plasma is produced by tunneling ioniza-
tion, then the characteristic time scale on which the
nonequilibrium photoelectron distribution forms is
shorter than or on the order of the reciprocal of the fre-
quency of the ionizing radiation. If, in this case, the ion-
izing radiation flux density 

 

I

 

 satisfies the inequalities

 

(1)

 

where 

 

E

 

i

 

 is the ionization potential of the atoms of a
matter, 

 

n

 

 is the photoelectron density, 

 

c

 

 is the speed of
light, 

 

�

 

 is Planck’s constant, 

 

ω

 

0

 

 is the ionizing radiation
frequency, and 

 

ω

 

L

 

 is the electron plasma frequency,
then the resulting nonequilibrium photoelectron distri-
bution can be approximated by the function [1]

 

(2)

 

In expression (2), the characteristic velocities 

 

v

 

E

 

 and 

 

v

 

T

 

depend on the ionizing radiation intensity:

 

(3)

(4)

 

where 

 

m

 

 is the mass of an electron. In accordance with
inequalities (1), we have 

 

v

 

E

 

 

 

�

 

 

 

v

 

T

 

.

3. ABSORPTION AND REFLECTION
OF A TEST WAVE

We consider the interaction of a test electromagnetic
wave with a tunneling-ionization-produced plasma that
occupies the half-space 

 

z

 

 > 0 and in which the nonequi-
librium electron distribution is given by formulas (2)–
(4). The field of a linearly polarized incident test wave
can be represented as

 

(5)

 

where 

 

E

 

L

 

 = (

 

E

 

L

 

, 0, 0)

 

 and 

 

ω

 

 = 

 

ck

 

,

 

 with 

 

k

 

 and 

 

E

 

L

 

 being
the wavenumber and electric field strength, respec-
tively. The frequency 

 

ω

 

 of the test wave is assumed to
be much lower than 

 

ω

 

L

 

. A wave with field (5) penetrates
into a nonequilibrium plasma over a distance on the
order of the skin depth and is reflected. The field of the
reflected wave can be represented as

 

(6)

 

Here, 

 

E

 

r

 

 = (

 

E

 

r

 

, 0, 0)

 

 with 

 

E

 

r

 

 = 

 

RE

 

L

 

,

 

 where 

 

R

 

 is the com-
plex reflection coefficient.
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The electric field in the plasma has the form

(7)

The magnetic field of the incident and reflected
waves is determined from the equation

(8)

Taking into account Eq. (8) and representations (5)–
(7), we obtain from the continuity conditions for the
tangential components of the magnetic and electric
fields at the plasma boundary (z = 0) the following
expression for the complex reflection coefficient:

(9)

where Z is the surface plasma impedance,

(10)

and ψ is the reflection-induced phase shift,

(11)

By definition, the absorption coefficient A has the form

(12)

From expressions (9)–(12) we see that, in order to
determine the absorption and reflection coefficients, it
is sufficient to find surface impedance (10) of a non-
equilibrium plasma.

4. SURFACE IMPEDANCE
The surface impedance can be determined using

the kinetic equation for a small correction δF to the
photoelectron distribution function F(v) given by
expression (2). Assuming that photoelectrons have a
sufficiently high kinetic energy, we ignore collisions
between them, as well as their collisions with ions, in
calculating the correction δF introduced by the field of
the test wave. This assumption is justified when the
effective electron collision frequency is much lower
than both the test wave frequency and the ratio of the
characteristic electron velocity to the skin depth. We
represent the correction δF in the form

(13)

to see that the function δf = δf(z, v) satisfies the equa-
tion
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where we have introduced the notation

(15)

with e being the charge of an electron. We present the
solution to Eq. (14) with the simplest boundary condi-
tions, which are often used in the skin effect theory
(see, e.g., [10–15]). Assuming that, far from the plasma
boundary, the distribution of electrons with velocities
vz < 0 is unperturbed, we obtain from Eq. (14) the
expression

(16)

where the subscript (–) indicates that δf (–) is the distri-
bution function of the electrons that move toward the
plasma surface. The convergence of the integral with
respect to z' at the upper limit is ensured by the fact that
the frequency ω has a small positive imaginary part i�,
which corresponds to the switching-on of the field in
the infinite past, t  –∞. Using the condition of spec-
ular reflection of the electrons from the plasma bound-
ary, δf (–)(z = 0, –vz) = δf (+)(z = 0, vz), we obtain from
Eq. (14) the following expression for the distribution
function of the electrons that fly away from the plasma
surface:

(17)

Using expressions (13), (16), and (17) for the cor-
rection to the distribution function, we can evaluate the
density of the current generated in the plasma. Repre-
senting the current density as

(18)

we find the density of the current flowing along the x
axis:

(19)

Here, for vz < 0 and vz > 0, we must integrate the func-
tion δf (–) (16) and the function δf (+) (17), respectively.
Substituting current density (18) into the wave equation
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yields the following equation for determining the field
in the plasma:

(20)

We continue the field E(z) and Eq. (20) into the half-
space z < 0 in such a way that the resulting field and
equation are even. The derivative E '(z) of the field so
continued has a jump at z = 0. The jump, which is equal
to 2E '(0), is determined by the surface plasma imped-
ance:

(21)

Applying the Fourier transform to Eq. (20) continued in
an even fashion, we obtain

(22)

where the surface impedance Z (10) has the form

(23)

The dielectric function, which determines the wave
field E(z) and surface impedance Z, is an even function
of q. In accordance with relationships (15)–(17) and
(19), it can be written as ε(ω, |q |) = εxx(ω, |q |) ≡ εxx(ω, q),

(24)

where δij is the Kronecker delta and � > 0. For a plasma
with a nonequilibrium photoelectron distribution given
by function (2), expression (24) simplifies to the
approximate form
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5. ABSORPTION COEFFICIENT

In accordance with definition (10), the absolute
value of the surface impedance is much less than unity
when the characteristic penetration depth of the field
into the plasma, |E(0)/E '(0)|, is small in comparison
with the reciprocal of the wavenumber of the test
wave, c/ω = λ/2π (where λ is the wavelength). Expres-
sion (12) then implies that, for |Z | � 1, the absorption
coefficient A is substantially smaller than unity and is
contributed mainly by the real part of the surface
impedance,

(28)

Taking into account relationships (23), (25), and (27),
we represent absorption coefficient (28) as

(29)

where we have introduced the notation Ω = ω/ωL and
δ = vTωL/ωc, and the real and imaginary parts of the
impedance have the form

(30)

(31)

Since, under the conditions in question, we have δΩ =
vT/c � 1, the dependence of Re(x) on Ω can be ignored.
According to definitions (3) and (4) and inequalities (1),
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we also have |∆| � 1 – ∆ �  � 1. Ignoring the
difference between the quantities –∆ and 1 – ∆ in for-
mulas (30) and (31), we see that the integral with
respect to x in expression (29) depends on a single
parameter,

(32)

For large and small values of the parameter , this
integral is described by simple asymptotic formulas.

For  � 1, the small function [Im(x)]2 in the
denominator of the integral in expression (29), as well
as the difference of the real part Re(x) (31) of the sur-
face impedance from unity, can be ignored. In this case,
expression (29) reduces to the approximate form

(33)

For  � 1, the main contribution to the integral in

expression (29) comes from the values x � 1/  � 1.
Using the corresponding approximate formula for the
integrand in expression (29) in the limit x � 1, we can
write the absorption coefficient as

(34)

In order to gain insight into a case intermediate between
the above two limits, we show in the figure how the

absorption coefficient depends on the parameter .
The dependence was calculated for Ω = 0.1 and |∆| = 9,
which correspond to ω = 0.1ωL and vE � 4vT .

Let us compare expressions (33) and (34) for the
absorption coefficient with the corresponding expres-
sions used in the theory of an equilibrium plasma with
a Maxwellian electron distribution. For the normal
high-frequency skin effect, vT/ω � c/ωL, in an equilib-

rium plasma, we have A �  with δ � 1, and,
for the anomalous skin effect, vT/ω � c/ωL, we have

A � (8/3 )(2/π)1/6Ωδ1/3 with δ � 1. These approxi-
mate formulas for the absorption coefficient differ from
expressions (33) and (34). According to the latter two
expressions, the normal high-frequency skin effect
changes into the anomalous one at vE/ω ~ c/ωL rather

than at vT/ω ~ c/ωL. For vE/ω � c/ωL, or for  �
1, absorption coefficient (33) is greater than that for an
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equilibrium plasma by a factor of  � 1. For
vE/ω � c/ωL, the absorption coefficient A (34)

decreases with increasing parameter  � 1, so, at

 > δ–2, it is less than that for an equilibrium
plasma. Such a large discrepancy is attributed to the
influence of the magnetic field of the test wave on the
electron kinetics in the skin layer. Because of the effect
of an alternating magnetic field, the absorption coeffi-
cient not only depends on the relatively low energy of
thermal motion across the plasma boundary but is also
determined by the substantially higher electron kinetic
energy in the polarization plane of the test wave. Note
that the expressions obtained for the absorption coeffi-
cient in [10] are formally similar to expressions (33)
and (34), but they refer to a plasma produced in the tun-
neling ionization of atoms by a linearly polarized radi-
ation that forms a bi-Maxwellian anisotropic photo-
electron distribution greatly extended along the polar-
ization vector of the ionizing wave.

6. PHASE SHIFT
For a small absolute value of the surface plasma

impedance, the absolute value of the reflection coeffi-
cient is close to unity,

(35)

and the phase shift of the reflected wave is close to π,

(36)

The difference between ψ and π is largely determined
by the small imaginary part of the surface impedance.
Using notations (30) and (31), we can represent the
imaginary part of the impedance Z (23) as

(37)

We present asymptotic formulas for ImZ that were
derived for conditions such that the dependence of
Re(x) on Ω is unimportant. In this case, the imaginary
part of the impedance, ImZ, depends on the parameter

 (32) with |∆| � 1.

For  � 1, the main contribution to the integral
in expression (37) comes from the values x � 1/δ � 1.
For such x values, the function [Im(x)]2 in the denomi-
nator of the integral in expression (37) can be ignored
and the real part of the impedance can be described by
the approximate formula Re(x) � 1 + δ2x2. From rela-
tionship (36) and expression (37) we then obtain

(38)
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For  � 1, the main contribution to the integral in

expression (37) comes from the values x �  � 1.
For such x values, the function [Im(x)]2 in expression (37)
can be omitted and the real part of the impedance,
Re(x), can be represented as Re(x) � 1 + x2δ2 + δ2 |∆|.
Having made these simplifications, from relationship
(36) and expression (37) we find

(40)

(41)

The dependence of the phase shift on , calculated
for Ω = 0.1 and |∆| = 9, also is shown in the figure.

In the case of reflection of a test wave from a ther-
modynamically equilibrium plasma, the phase shift is
described by the following asymptotic formulas: ψ – π �
2Ω for δ � 1 and ψ – π � (4/3)(2/π)1/6Ωδ1/3 for δ � 1.
Expression (39) is similar to the corresponding expres-
sion in the case of equilibrium plasma but is applicable

over a narrower parameter range, such that  � 1

with  � 1. According to relationships (41), at

 � 1, the difference between ψ and π decreases

with increasing  and turns out to be less than that
for an equilibrium plasma. Relationships (38) and (40)
are similar to those derived in [11] for a plasma in
which photoelectrons obey a strongly anisotropic axi-
symmetric bi-Maxwellian distribution and which inter-
acts with a test wave polarized along the anisotropy axis
of the photoelectron distribution.

7. DISCUSSION

A photoionized plasma exhibits the above optical
properties only when its state is close to the initial non-
equilibrium state. There are several factors that destroy
the nonequilibrium state and thereby limit the time
interval during which the anomalies in the absorption
and reflection of a test wave can be observed. One such
factor is the hydrodynamic expansion of a nonequilib-
rium hot plasma into a vacuum, accompanied by the
destruction of the sharp plasma boundary. In order of
magnitude, the characteristic expansion time τexp is
determined by the ratio of the effective skin depth d to
the speed of sound vs: τexp ~ d/vs. Consequently, the
duration of the test wave pulse, τp, should be less than
τexp. On the other hand, the pulse duration τp should not
be too short. The reason is that, because of the spectral
broadening of the test pulse, the absorption coefficient
depends on the pulse duration τp when the latter is less
than 1/ω (see [17] for details). For ωτp � 1, this effect
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is unimportant, however. The inequalities ωτp � 1 and
τexp > τp yield the inequality ωτexp > 1.

Another factor that destroys the nonequilibrium
state is electron collisions, due to which nonequilib-
rium photoelectrons relax to a Maxwellian distribution.
According to [18], the characteristic time scale τc on
which the initial anisotropic photoelectron distribution
is relaxed by electron–ion collisions is on the order of

τc ~ , where ν is the electron–ion collision fre-
quency dependent on the velocity vE. This yields the
following restrictions on the duration and frequency of
the test wave pulse: ωτc > ωτp � 1.

The third factor is the onset of the Weibel instability
[5], accompanied by the generation of a nonuniform
quasi-stationary magnetic field, which in turn exerts an
inverse effect on the shape of the anisotropic photoelec-
tron distribution. When the photoelectron distribution
is described by expression (2), the maximum growth
rate γm of the Weibel instability is equal to γm =

ωLvE/  [18, 19]. In the initial (linear) stage of insta-
bility, the instability-generated magnetic field increases
exponentially, Bq ~ Bspexp(γmt), where Bsp is the
strength of the spontaneous magnetic field. The mag-
netic field Bq may produce a significant effect when it is
comparable in strength to the magnetic field of the test
wave, BL = EL, or when the electromagnetic energy den-

sity /4π is not too low in comparison with the kinetic

energy density of the photoelectrons, ~ . Under
the assumption that the spontaneous magnetic field Bsp

is much weaker than Bm = min(BL, ), the
effect of the Weibel instability on the optical plasma
properties can be considered inessential if

(42)

Note that, for large values of the parameter  (32),
the last of conditions (42) can be satisfied at the
expense of a large value of the ratio Bm/Bsp � 1.
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