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Inverse bremsstrahlung in strong radiation fields—the
Born approximation re-examined

G J Pert
Department of Physics, University of York, Heslington, York YO1 5DD, UK

Received 4 September 1995

Abstract. The calculation of the energy absorption in a strong radiation field where the electron
quiver energy is much larger than the thermal or photon energies is performed using the Born
approximation for the collision. The multiphoton sums are evaluated with the aid of asymptotic
forms to yield analytic expressions. Comparison with earlier results from the impact (or classical)
model shows disagreements. The origin to this difference is ascribed to the breakdown of
perturbation theory in this limit, and it is concluded that the impact approximation is more
reliable at very high fields.

1. Introduction

The advent of ultra-short pulse high-power lasers has opened the possibility of generating
plasma with very low residual energy throughATI multiphoton ionization. The excess
heating through collisions at high densities has re-awakened interest in the well worked
field of high-field inverse bremsstrahlung absorption.

This is a topic which has been addressed by a large number of workers since Silin
(1965) first identified the well known reduction in the absorption rate associated with the
change in the Coulomb cross section due to the electron quiver velocity during electron–
ion collisions. Since the problem was, at that time, associated with relatively long-pulse
lasers it was difficult to envisage situations in which the quiver velocity greatly exceeded
the thermal speed, and it was eventually pointed out by Langdon (1980) that under these
conditions, the principal effect was a modification of the electron distribution function away
from Maxwellian to give a reduction in absorption, typically by a factor∼0.5.

With the advent of ultra-short pulse lasers and cold plasma, the situation is changed
and the early work again becomes relevant. Since the pulse lengths are typically less than
an electron–ion collision time, the electrons remain cold throughout the pulse, and the
distribution function changes are unimportant. The strong-field limits on the calculation of
the inverse bremsstrahlung rate have been examined in two recent papers (Polishchuk and
Meyer-ter-Vehn 1994, Pert 1995). Since there is a slight difference in the results (although
for practical purposes probably not serious) we will examine the inherent validity of the
calculations, and reproduce and extend Polishchuk and Meyer-ter-Vehn’s (1994) result.

The calculations in this paper are performed for the standard inverse bremsstrahlung
problem in which a single electron is scattered by a pure Coulomb field in the presence of
an electromagnetic field. We do not, therefore, consider the role of any remaining bound
states, which will be dressed by the field; this is probably not a severe restriction since
only tightly bound electrons will survive multiphoton ionization. The effect of distant
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perturbers in a dilute plasma, when correlations can be neglected, was considered earlier
(Pert 1995) and is not appropriate to the present study. Finally, we will treat only the
local absorption; the heating in an experimental situation involving the temporal and spatial
structure of the laser pulse must be dealt with by a fuller simulation (Janulewiczet al 1996).
The calculations are all performed within the non-relativistic dipole approximation. At the
highest fields these conditions may no longer be valid.

2. Inverse bremsstrahlung approximations

The general theory of collision absorption in arbitrary fields has not yet been developed,
although a basic formalism was identified by Kroll and Watson (1973). Rather, the problem
has been tackled by various approximations, valid under appropriate conditions as a set
of overlapping limit solutions which span nearly the entire parameter space. These are
identified by limits defined by three characteristic energies: ¯hω, the photon energy;12mv2,
the ‘thermal’ energy; and1

2mu2, the quiver energy. There exist essentially three distinct
approximations, within which many different calculations fall.

(i) Low field. The general single-photon quantum mechanical theory of Sommerfeld
(1939), developed by Elwert (1948) gives a complete description in the case1

2mu2 � h̄ω.
The classical description of bremsstrahlung emission may be extended to absorption by
the use of the principle of detailed balance. Although valid provided1

2mu2 � 1
2mv2, and

therefore for multiphoton absorption, it yields the same result as the single-photon theory
in the classical limit. A useful review of this case is given by Oster (1961). The results
are usually expressed in terms of a correction, the Gaunt factor, similar to the collisional
Coulomb logarithm.

(ii) Straight line path. The general straight line path approximation requires that the
trajectory of the electron associated with the thermal motion be essential linear, i.e. that the
perturbation induced by the collision including absorption makes only a small change to
the thermal velocity. In this case also there are two approaches depending on whether the
electron is treated quantum mechanically or classically. The quantum mechanical analysis
is the Born approximation, and was originally formulated by Bunkin and Federov (1966).
The classical formulation can be treated via a collective (plasma) description (Dawson and
Oberman 1962, Silin 1965) or single-particle picture (Pert 1979). The model is valid if
1
2mu2 . 1

2mv2.
(iii) Impact (classical) approximation.In this approximation the photon energy is small,

so that the electron motion may be treated as a vector sum of the thermal velocityv
and the instantaneous quiver velocityu with a precisely defined phase. Only collisions
completed within a short time compared to the period of the field are considered to
give rise to a change in the thermal velocity (impact approximation) (Pert 1972, Bunkin
et al 1973). The collision is controlled by the total electron velocity (u + v), which
limits the impact time, and also establishes whether the collision itself can be treated
by the classical or Born limits for elastic scattering. This case is valid if ¯hω � 1

2mu2

or 1
2mv2.
Calculations in the high-field limit,12mu2 � 1

2mv2, have nearly all been performed
using one of the straight line path approximations, the Born approximation being particularly
popular. The classical approach has the disadvantage of requiring an imposed cut-off to
take account of large angle scatter with impact parameter approximately equal to the Landau
parameter. However, our previous discussion indicates that these results may be in error.

Calculations with the impact approximation are limited, but some general results have
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been obtained by the author (Pert 1995). In this paper we will examine their relationship
with straight line path calculations.

3. The Born approximation

The Born approximation for multiphoton inverse bremsstrahlung was developed by Bunkin
and Federov (1966) and subsequently by numerous workers. The Born approximation for
electron scattering in an electromagnetic field (multiphoton inverse bremsstrahlung) was
developed by Bunkin and Federov (1966) and subsequently by numerous workers. These
calculations are performed in direct analogy with the standard Born approximation for
zero EM field elastic scattering by replacing the plane-wave free-electron wavefunction
by the equivalent exact solution in the electromagnetic field (Volkov wavefunction). The
free electron is therefore fully dressed by the field. The wavefunction is parametrized by
its ‘thermal’ momentum, and the validity of the perturbation approximation requires that
the change in this term be small. The essential result for the photon cross section for
absorption (+) or stimulated emission (−) of n photons in an electron–ion collision may be
written as

σ±n = 2[4πh̄2Ze2]2

πh̄4cE2
ρnh̄ω

∫
dq

1

q4
J 2

n

[
eE

mh̄ω2
· q

]
δ(ε′ − ε ∓ nh̄ω) (1)

wheree andm are the electronic charge and mass, respectively,Z the ionic charge number,
c the velocity of light,E the peak electric field intensity in the wave andω the angular
frequency of the wave:ε andε′ are the electron energies before and after collision,q the
momentum transfer vector andρ is the ion number density.

For large values of the parameterγ = eEv/h̄ω2, wherev is the incoming electron speed,
the Bessel functionJn(z) is dominated by its asymptotic form, which gives a prescription
first used correctly by Elyutin (1974):

Jn(z) '
{ √

2/πz cos
[
z − (

n + 1
2

)
π

]
z > n

0 z < n
(2)

for handling this term. Hence averaging over the direction of the incoming electron motion
for an isotropic distribution, or equivalently over the direction of the field, we obtain

σ±n = 26πZ2e3h̄2ω3ρn

cE3m2v4

∫
dQ

1

Q4
ln[γQ/n] . (3)

The range of the integral overQ = q/mv is determined by the range allowed by theδ

function during the angular integration consistent withγQ > n from (2). Thus we have:

absorption : λ =
√

1 + 2nh̄ω/mv2 > 1 (λ − 1) 6 Q 6 (λ + 1)

emission : λ =
√

1 + 2nh̄ω/mv2 < 1 (1 − λ) 6 Q 6 (1 + λ) .
(4)

In absorption the range ofn, over which contributions to the total energy gain are generated,
is limited by the condition above ton . 2e2E2/mω2h̄ω = 41

2mu2/h̄ω, i.e. the quiver energy
limits the total energy gain. In emissionn < 1

2mv2/h̄ω, i.e. the kinetic energy limits the
maximum energy loss.

The integral (3) may be simply evaluated, and the total energy absorbed and
emitted calculated by evaluating the corresponding cross section sums numerically. The
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approximations for the absorption and emission cross section, respectively, are

An = 25πZ2e3ρ

cE3

1

2n2ξ



(
λ2 + 1

3

)[
1
3 + ln(γ

√
2ξ/n)

] − 1/2λ(λ2/3 + 1) ln

[
(λ + 1)

(λ − 1)

]
1 6 n 6 2γ (γ ξ − 1)

(λ − 1)3/18[{[γ /n(λ + 1)3] − 1} − 3 ln{γ (λ + 1)/n}]
2γ (γ ξ − 1) 6 n 6 2γ (γ ξ + 1)

0 n > 2γ (γ ξ + 1)

(5)

and

En = 25πZ2e3p

cE3

1

2n3ξ



(λ2/3 + 1)
[

1
3 + ln(γ

√
2ξ/n)

] − 1/2λ(λ2 + 1/3) ln

[
(1 + λ)

(1 − λ)

]
1 6 n 6 n′

(1 − λ)3/18[{[γ /n(1 + λ)}3 − 1] − 3 ln{γ (1 + λ)/n}]
n′ 6 n 6 n′′

0 n > n′′

(6)

where

n′ = (1 if γ > 1/ξ) or (2γ (1 − γ ξ) if ξ/2 6 γ 6 1/ξ) or (ξ/2 otherwise).

n′′ = (
2γ (1 − γ ξ) if γ ξ < 1

2

)
or (ξ/2 otherwise)

(7)

andξ = h̄ω/mv2.
We note the upper absorption cut-off onn is at ∼ 2γ 2ξ ∼ 2mu2

0/h̄ω, i.e. the classical
cut-off.

If h̄ω is small the number of terms involved is large. In this case we may approximately
evaluate the sums by replacing them by integrals which we may, with some labour, calculate.
In doing this we observe that the termsAn andEn are largest for smalln where the error
associated with the replacement is greatest. However, since the net absorption is formed
by the difference of(An − En), which are nearly equal whenn is small, this procedure is
quite accurate for the net term. Thus the total absorption cross section:

A = 26πZ2e3h̄2ω3ρ

cE3m2v4

∫ ∞

0

dQ

Q4

∫ min[(Q2+2Q)/2ξ,γQ]

max[(Q2−2Q)/2ξ, 1
2 )

dn n ln(γQ/n) (8)

with the emission cross section

E = 26πZ2e3h̄2ω3ρ

cE3m2v4

∫ ∞

0

dQ

Q4

∫ min[(2Q−Q2)/2ξ, 1
2 ξ ]

1
2

dn n ln(γQ/n) . (9)

These integrals can be evaluated analytically within different regimes depending on the
relationships between the terms in the limits. Thus for absorption the high-field regime,

γ > [
√

(1 + ξ) + 1]/2ξ :

A = 24πZ2e3ωρ

cE3

{
2 ln(γ ξ) ln[4(γ ξ − 1)/ξ ] − 2[dilog(γ ξ + 1) − dilog(γ ξ)]

+2 ln
[

1
2{

√
(1 + ξ) + 1}] ln

[
1
2{

√
(1 + ξ) − 1)

] + 1
2(1 + 4/ξ) ln(4γ 2ξ)

+ 1
2(1 − 4/ξ){

√
(1 + ξ) ln

{
[
√

(1 + ξ) + 1]

[
√

(1 + ξ) − 1]

}
− 1

}
− 1

6ξ

{
(4 + 3ξ)

[
ln(4γ 2ξ) + 5

3

] −
√

(1 + ξ)(4 + ξ) ln

[ {√(1 + ξ) + 1}
{√(1 + ξ) − 1}

]}
.

(10)
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At lower fields [
√

(1 + ξ) − 1]/2ξ < γ < [
√

(1 + ζ ) + 1]/2ξ

A = 24πZ2e3ωρ

cE3

{
8

9
γ 3ξ2 − 2γ ξ + 1

4

[(
3 − 4

ξ

)√
(1 + ξ) −

(
1 − 4

ξ

)]
−2

[
dilog(γ ξ + 1) − dilog

{
1
2[

√
(1 + ξ) + 1]

}]
−2 ln

{
1
2[

√
(1 + ξ) + 1]

}
ln

[
γ ξ

{
1
2[

√
(1 + ξ) − 1]

}]
+ 1

2[(1 + 4/ξ) + (1 − 4/ξ)
√

(1 + ξ)] ln
[
γ ξ/

{
1
2[

√
(1 + ξ) − 1]

}
+ 1

6ξ
[{(4 + ξ)

√
(1 + ξ) − (4 + 3ξ)}{ln[2ξ/

√
(1 + ξ) + 1}] + 5

6

}
. (11)

This result is prone to increasing error towards its lower bound asγ → 1 as the use of the
asymptotic form (2), and the omitted terms become important.

The emission integrals are similarly evaluated. Thus at high fieldsγ > [1 +√
(1 + ξ)]/2ξ :

E = 24πZ2e3ωρ

cE3

{
1

2

√
(1 − ξ)

[(
1 + 4

ξ

)
{ln(4γ 2ξ) + 1} + 2

]
+2

[
dilog

{
1
2

[
1 +

√
(1 + ξ)

]} − dilog
{

1
2

[
1 −

√
(1 − ξ)

]}]
−

[
ln(γ 2ξ2) − 1

2
+ 2

ξ

]
ln

[ {1 + √
(1 − ξ)}

{1 − √
(1 − ξ)}

]
− 1

6ξ

{
(4 − ξ)

√
(1 − ξ)

[
ln(4γ 2ξ) + 5

3

] − (4 − 3ξ) ln

[ {1 + √
(1 − ξ)}

{1 − √
(1 − ξ)}

]}}
(12)

and at lower fields: [1− √
(1 − ξ)]/2ξ < γ < [1 + √

(1 − ξ)]/2ξ

E = 24πZ2e3ωρ

cE3

{
8

9
γ 3ξ2 + 2γ ξ + 1

4

[(
3 + 4

ξ

)√
(1 − ξ) −

(
1 + 4

ξ

)]
+2

[
dilog(γ ξ) − dilog

{
1
2[1 −

√
(1 − ξ)]

}]
+2 ln(γ ξ) ln

{
(1 − γ ξ)/

[
1
2{1 +

√
(1 − ξ)}]}

+1

2

[(
1 − 4

ξ

)
+

(
1 + 4

ξ

)√
(1 − ξ)

]
ln

[
γ ξ/

{
1
2[1 −

√
(1 − ξ)]

}]
+ 1

6ξ
[(4 − 3ξ) − (4 − ξ)

√
(1 − ξ)] ln

[
2γ

{
1 +

√
(1 − ξ)

}] + 5

6

}
. (13)

This result is subject to error asγ → 1. We note that emission can only take place ifξ < 1
(more accuratelyξ < 1

2, but we usedn = 1
2 as the lower limit to the integral).

4. High-field limit

The net overall absorption is given by the difference of these two terms. Thus if we consider
the case of small photon energyξ � 1 in a high field so that we retain only the leading
terms inγ and(γ ξ) we obtain for the net absorption rate per electron:

R = 24πZ2e3ωρ

cE3

cE2

8π
{2 ln(γ ξ) ln(4γ ) − ln(γ 2ξ2) ln(ξ/4)} . (14)
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Similarly, for large photon energyξ � 1, E = 0 and

R = 24πZ2e3ωρ

cE3

cE2

8π
2
{
ln(γ ξ) ln(4γ ) + [

ln
(

1
2

√
ξ
)]2}

. (15)

To compare these results with previous work it is convenient to introduce some new terms:

x = mu2

mv2
= γ 2ξ2 y = mv2

h̄ω
= ξ−1 z = mu2

h̄ω
= γ 2ξ (16)

and

R = 4Z2e3ωρ

E
S . (17)

Thus

S =
{

ln(4y) ln(x) + 1
4[ln(x)]2 y � 1

1
4[ln(4z)]2 y � 1 .

(18)

These results are identical to those obtained by Polishchuk and Meyer-ter-Vehn if the thermal
velocity is taken to be

√
2kT /m.

However, if we use the impact approximation we obtain (Pert 1995)

S =
{

ln(2y) ln(4x) + 1
2[ln(4x)]2 y � 1

1
2[ln(2z)]2 y � 1

(19)

and we note the difference in multiplying factor from14 to 1
2.

In order to understand this difference more clearly we must re-examine the relationship
between the Born approximation and the impact approximation in detail. In an earlier paper
(Pert 1975) we showed that the impact approximation was an asymptotic limit of the Born
approximation in the limit that the number of photons absorbed(n) was large. In that work
we argued that a cut-off had to be imposed determined by the total velocity. If this is done
the analysis given in Pert (1976) shows that the result is (19). However, a more careful
re-analysis (see the appendix) shows that the cut-off should be determined by the thermal
velocity alone, in which case (18) results, demonstrating consistency of the methods.

So which result is correct? Since the Born approximation is a straight line path
approximation, this regime lies outside its range of validity. The nature of the discrepancy
arising from the use of the thermal, rather than the total, velocity is easily understood, since
within its range the two are nearly identical. Thus in the case ofy � 1, small photon
energy, the impact approximation is correct.

The question now arises as to whether we may also use the impact approximation in the
opposite limit of low temperature(y � 1). In our earlier work (Pert 1995) we recommended
the use of the Born result in this limit. As we have now argued this is incorrect. In fact the
impact approximation requires that the phase be well defined, or equivalently that there is
an energy uncertainty∼ h̄ω. Thus if the number of photons absorbed is large, i.e.n � 1,
the impact approximation should still give an accurate result. Thus equation (19) is valid
throughout its range.

Similar considerations arise with the classical straight line path analysis. Thus if we
carefully re-examine the outer cut-off limit in Pert (1979) we again find it should be
determined by the thermal velocity, not the total as we earlier inferred.
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5. Medium power absorption

We now question whether these results have any useful value. Clearly the perturbation
approach can only be used if the absorbed energy is sufficiently small not to greatly perturb
the thermal motion. In the limit of small photon energy (n large) this requires the quiver
energy to be less than the thermal, i.e.x = γ 2ξ2 . 1. Thus the results (5), (6) and (11),
(13) may be quite widely used in the regimex . 1, y � 1 when the electron motion is
essentially quantum mechanical. This is a quite useful practical result, as accurate values
in this regime are not obtainable from the other methods, but the condition is important for
some practical applications.

In the important case whereξ � 1(y � 1) equations (11) and (13) simplify to

A = 24πZ2e3ωρ

cE3

{
8
9γ 3ξ2 − 2[dilog(1 + γ ξ) + γ ξ ]

}
(20)

and

E = 24πZ2e3ωρ

cE3

{
8
9γ 3ξ2 − 2[dilog(1 − γ ξ) − γ ξ ]

}
(21)

and the net absorption rate:

R ' 25πZ2e3ωρ

cE3

cE2

8π

[
dilog(1 − γ ξ) − dilog(1 + γ ξ) − 2γ ξ ]

]
(22)

= 26πZ2e6ρ

cm3v3ω2

cE2

8π

∑
k=0

xk

(2k + 3)2
. (23)

This result is applicable ifγ � 1, ξ � 1 in the regionξ/4 � γ ξ < 1, soy � 1, y−1/2 �
x < 1. Although the result (23) is expressed as a power series in terms of the field
intensity, it should not be interpreted in terms of a multiphoton expansion, as is easily seen
by comparison with equations (5) and (6).

The result is applicable to the case where the electron scattering is non-classical. An
equivalent result for classical electrons can be derived from the analysis in Pert (1979), but
the impact approximation (Pert 1995) is satisfactory in this regime.

6. Conclusion

In this paper we have re-examined the use of the Born approximation for calculating the
collisional absorption coefficient in high-radiation fields. It is found that there is a small,
but non-negligible, difference between the results obtained from this approximation, and
those from the impact model. It is believed that this stems from the use of perturbation
theory under conditions in which the collision can no longer be considered to be a small
effect. A similar problem arises in the use of the classical straight line path approaches.

In detail the difference can be tied down to the cut-offs used in the impact model.
In earlier work (Pert 1975, 1979) these were identified in perturbation calculations to be
determined by the total velocity. A more careful analysis shows that this is unsatisfactory,
and that the limit is determined by the thermal speed alone. In this case the Born calculation
is consistent with the impact model.

This raises the question as to whether the cut-off determined by the total velocity is
actually correct in the impact model. In the past the argument based on the asymptotic limit
of the straight line path theories has been used as a support. However, as we point out above,
this is no longer tenable. We must therefore re-examine the question from the consistency of
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the model itself. The familiar cut-off at an impact parameterv/ω is determined by the fact
that within the kinematics of an elastic collision, an overall change in the thermal velocity
can only occur if the collision is completed without significant change in the phase of the
electromagnetic wave. If a substantial phase change occurs during the collision, the quiver
oscillation is averaged out and no net energy occurs. The limiting parameter is clearly set
by an individual collision at a well defined phase. In this classical picture the collision is
controlled by the total velocity, not the average. The results of our earlier study (Pert 1995)
remain valid.

Acknowledgments

These general studies have benefited from much helpful discussion with Dr K Janulewicz.
The work is part of the x-ray laser programme supported by EPSRC.

Appendix

The asymptotic form of the Born approximation was investigated using saddle-point methods
to generate the impact approximation (Pert 1975). In that paper it was concluded that a
logarithmic cut-off was required when the momentum transferq satisfied two limits, whereas
in fact the following is correct:

M · q > 2p · q + q2 � mh̄ω

wherep = mv andM = mu0. On this basis it was suggested that the cut-off should be
q ′ = γmh̄ω/5 whereΠ = p + M , i.e. determined by the ‘total’ momentum, whereas the
correct value isq ′ = γmh̄ω/p.

A similar analysis also applies in the classical case (Pert 1979).
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