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We analyse the superluminal propagation of optical narrow-band pulses at resonances in dissipative
media. We find that, for a broad class of optical systems holding this type of lossy faster-than-light trans-
mission capability, the output waveform is an attenuated, time-advanced version of the input which can
be interpreted as the result of the interference of two scaled replicas of the input having a positive rel-
ative delay. This analysis is shown to apply, among other scenarios, both in the propagation in a passive
bulk medium at an electronic resonance and in a dielectric waveguide coupled to a lossy micro-ring
resonator.
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1. Introduction superluminality in an active Raman medium can be brought about
Superluminal propagation is among the most striking phenom-
ena associated to the propagation of electromagnetic waves. It has
been known for long that it is possible to attain group velocities in
excess of c when propagation takes place in anomalous dispersive
media [1]. A large number of systems have been studied, both the-
oretically and experimentally, which hold group velocities larger
than c. Garret and McCumber [2] considered a smooth pulse prop-
agating through a dispersive absorbing medium and showed that
the pulse peak moves at the group velocity classically defined, even
if greater than c or negative. An experimental confirmation was gi-
ven in [3]. Superluminal group velocity was studied in transparent
media with inverted population by Chiao [4]. Steinberg et al. inves-
tigated photon tunnelling time [5] and superluminal propagation
with negative group velocity in a medium with a gain doublet
[6]. Bolda et al. considered propagation with negative group veloc-
ity due to a nearby gain line [7]. Later, Dogariu et al. demonstrated
superluminal pulse propagation by transparent linear anomalous
dispersion created through the use of two close Raman gain peaks
[8], and Schweinsberg et al. observed superluminal (as well as
slow) pulse propagation in an erbium-doped fibre (EDF) [9]. More
recently, Jiang et al. have given an experimental confirmation that
ll rights reserved.
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by a single frequency pump field [10].
Although superluminal behaviour might seem unphysical, it is

always found to be the result of some sort of artifact, so that the
group velocity being greater than c or negative at certain frequen-
cies does never imply an affront to relativity. In [11], a frequency-
varying concept of group velocity is chosen that maintains the
meaning of the function dx=d½ReðkÞ� even for pulses that experi-
ence considerable distortion through propagation; an experimen-
tal demonstration using this description is presented in [12].
From a mathematical point of view, loss or gain resonances are
responsible for the shaping of the linear dispersive properties of
the medium which permit to produce spectral regions with associ-
ated superluminal or negative group delays in bulk dielectric med-
ia. On the other hand, superluminal propagation in metastructures
such as those based on coupled micro-ring resonator (CMR) has
also been predicted [13], so the question immediately arises of
whether some connection exists, and to what extent, between both
phenomena. As we shall presently see, the basic physics of the
superluminal problem can be very insightfully addressed through
the analysis of a simple CMR structure having a lossy ring wave-
guide. We will show that the model of interfering scaled self-rep-
licas not only explains the superluminal operation of the CMR and
similar structures, but can also be translated to the context of
propagation through dielectric atomic (bulk) media near the
absorption resonances. Indeed, superluminal linear propagation
in such atomic media can be explained in terms of the interference
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with an echo of the input electromagnetic signal produced by the
resonant coupling with the medium via the linear polarisation.
We thus focus on the lossy CMR as a specially illustrative sample
system.

2. Physical model for a class of superluminal lossy photonic
systems

When only one mode of the electromagnetic (EM) field is in-
volved, propagation problems can be addressed using a scalar ap-
proach. Two representative examples are the propagation of
plane waves in homogeneous media (the vectorial formalism in
[11], for example, is in practical terms restricted to this case) and
that of fields in single-mode waveguiding structures. The pulse
propagation problem with a plane wave is entirely equivalent to
that of a waveguide mode, with the only proviso that the modal
field profile across the waveguide is invariant for all frequencies
in the pulse spectrum. This condition virtually applies in all cases
of interest, even with ultrashort pulses containing very few cycles
of the carrier. Therefore, in order to simplify the results, we use a
general approach using abstract scalar signals and linear systems
for the discussion of the propagation problems. This does not re-
strict the validity of the results and, further, shows that the same
principles are applicable to any linear system.

We thus consider a generic optical superluminal device which
consists of a section of a suitable photonic system. This could be,
for example, an absorbing atomic medium of finite length or a
waveguide mestastructure, but it does not need to be specified at
this stage. We assume a time-localised propagating signal with a
complex envelope (analytical signal) xðtÞ. We call XðXÞ the Fourier
transform (FT) of xðtÞ, with X ¼ x�x0 and x0 the carrier fre-
quency. We will denote yðtÞ the complex envelope of the output
signal, YðXÞ its FT, and HðXÞ ¼ YðXÞ=XðXÞ the system response.
Our study deals with superluminal propagation in resonant struc-
tures, so we will assume that HðXÞ has a resonance at X ¼ 0. The
‘‘superluminal condition” is then defined as

sg � �
d

dX
½arg HðXÞ�X¼0 < s0; ð1Þ

including the case sg < 0. For an atomic medium, s0 is the group de-
lay experienced during the propagation in a medium of the same
thickness and the same properties as the one considered, but with
the resonance at x0 removed from its response. For a CMR such
as that shown in Fig. 3, s0 would correspond to the straight wave-
guide alone, without the ring waveguide.

As seen below [c.f. expression (4)], the superluminal effect in
this case arises from a distortion caused when the propagation in
the medium essentially produces a first replica of the input pulse
with a delay s0; and a second replica with a delay s0 þ Ds: It is nec-
essary that the input pulsewidth be greater than Ds so that the sec-
ond replica can annihilate part of the first without significant
distortion. As a result, the output pulse is apparently time-ad-
vanced with respect to the first replica. Calling hðtÞ ¼FT�1½HðXÞ�,
i.e. the system impulse response, this simply means that

hðtÞ ¼ adðt � s0Þ � bdðt � s0 � DsÞ; ð2Þ

where a and b are real positive constants. Taking the FT of Eq. (2)
yields HðXÞ ¼ a expð�iXs0Þ � b expð�iX½s0 � Ds�Þ: If the spectrum
of xðtÞ is much narrower than the resonance peak, the phase is given
by

arg HðXÞ ’ �Xs0 þ arctan
bXDs
a� b

; ð3Þ

valid if a–b:
From expression (3), the relative group delay relative, defined as
the delay increase with respect to that of the medium or meta-
structure without the resonance, is given by

sg � s0 ¼ �
bDs

a� b
: ð4Þ

For superluminal propagation, it is necessary that b < a. Eq. (4) also
shows that, as a! b, the magnitude of the delay sg increases and
the amplitude, given by jHðXÞj ’ a� b, decreases. Actually, it is triv-
ial to see that the same superluminal situation can be accomplished,
for example, in a Mach-Zender interferometer with a phase mis-
match of p when the propagation delays (attenuation factors) of
the two arms are s0 (a) and s0 þ DsðbÞ, respectively. A detailed
study of the distortion and pulse fractional advancement can be
found in [14] for a generic linear system (not necessarily optical)
described by Eq. (2) and several pulse shapes.

3. Retarded interference in a ring resonator structure

We now analyse a 1-ring ‘‘scissor” (side-coupled integrated
spaced-sequence of resonators) as shown in Fig. 3. With an ideal
lossless ring waveguide, it acts as an all-pass optical filter. How-
ever, the presence of propagation losses, for instance, due to the
curvature, results in the appearance of a resonance in the transmis-
sion curve. Such losses play the same role as the absorption losses
in an atomic medium, which, in the last analysis, are due to the
electromagnetic energy being dissipated, e.g., radiated away by
spontaneous emission. The response of the structure is given by
[13]

HðXÞ ¼ h� re�ikl

1� rhe�ikl
; ð5Þ

where HðXÞ relates the complex envelopes of the output and input
modal electric fields, 0 < h < 1 is the real transmission coefficient of
the directional coupler (assumed lossless), l is the length of the ring
waveguide, 0 < r < 1 is the attenuation factor due to the radiation
losses in the curved sections, and k ¼ ðx=cÞ�n is the real propagation
constant of the waveguide, with �n being the modal index and
x ¼ x0 þX. The carrier frequency is chosen at a resonance of the
structure: x0l ¼ m2p; with m an integer, thus kl ¼ m2pþX�nl=c:
We then see that, if r � h << 1 (but r < h), expression (5) simpli-
fies to yield, by inverse transformation, the result Eq. (2):

hðtÞ ’ hdðtÞ � rdðt � DsÞ; ð6Þ

with Ds ¼ l�n=c Thus, h � a and r � b: [Note that, in this case, s0 ¼ 0
as the straight, unloaded waveguide is immaterial in the model of
Eq. (5).]

We study the propagation of optical Gaussian pulses using the
Transmission-Line Model method [15] to solve the time-domain
Maxwell equations in a two-dimensional geometry. We compare
two structures: A waveguide section and the same waveguide
loaded with a micro-ring resonator built with two straight seg-
ments of length 15.25 lm joining two semicircles of 18 lm radius.
This design permits a better control of the coupling from the wave-
guide to the ring. For all the (straight and curved) waveguide sec-
tions, the core refractive index is n1 ¼ 3:361, the cladding
refractive index is n2 ¼ 3:168 and the width of the core is
0.6 lm. The separation of the guides in the coupling region is
0.25 lm.

According to our model, the ideal conditions for the observation
of superluminal propagation in the micro-ring resonator structure
are defined by a large coupling to the ring so h is small and, simul-
taneously, large enough losses so r is comparable to (but smaller
than) h. We first inject a very short 5 fs pulse in order to compute
the transfer function. We compare the signal at a given distance
from the ring output with the reference signal at the same plane



P. Chamorro-Posada, F.J. Fraile-Pelaez / Optics Communications 282 (2009) 1095–1098 1097
propagating in the unloaded waveguide; these are considered the
output and input signals, respectively. Fig. 1 shows the amplitude
response and the net group delay, computed from the phase re-
sponse. The loss mechanism is supplied by the radiation in the
curved sections which increases with frequency. The net group de-
lay is negative, corresponding to superluminal propagation, up to a
frequency limit when the loss increase sets h > r. From that point
Fig. 1. Amplitude frequency response and relative group delay for the ring
geometry described in the text.

Fig. 2. Comparison of the normalised reference (A) and output (B) waveforms in the
ring geometry for (a) 1.5, (b) 3, (c) 6 and (d) 12 ps 1=e input Gaussian pulses.
Ds ’ 1:6 ps.

Fig. 3. Field amplitude distribution jEðx; z; t ¼ t0Þj at t0 when th
onwards, subluminal propagation at the resonances is found. As we
approach the critical frequency, the magnitude of the net group de-
lay becomes larger, in agreement with Eq. 1, and the resonances
become sharper.

Fig. 2 compares the normalised reference (A) and output (B) sig-
nal waveforms for four values of pulse duration: 1.5, 3, 6 and 12 ps.
The carrier frequency of 210.55 THz is tuned close to the centre of
the leftmost resonance in Fig. 1. The round-trip time in the ring is
approximately 1.6 ps. We observe how, as the pulse spectrum nar-
rows in relation with the resonance bandwidth, the propagation
distortion decreases. The relation between the output/input peak
signal levels ranges from �16 dB in case ðaÞ to �27 dB in case ðdÞ.

Fig. 3 shows the field amplitude jEðx; y; t ¼ t0Þj distribution at
time t0 when the leading tail of the 6 ps pulse is entering the ring.
For sufficiently long pulses, the shape of this distribution remains
constant until the pulse finally leaves the system. This draws a
quasi-stationary picture where, at each time instant, the whole
structure is filled by a small fraction of the input pulse which
can be regarded to hold a constant value. This whole picture
evolves slowly in time as the input amplitude varies.
4. Retarded interference in an atomic medium

We now turn to the atomic media, where superluminality oc-
curs for narrow-band pulses near a resonance. The dielectric sus-
ceptibility can be approximated by

v ’ v0 � vr
iþ D

1þ D2 ; ð7Þ

where v0 (real and constant) is the background contribution to v
from all the resonances above the one considered, and D � 2X=c
is the detuning factor normalised to the resonance width c=2. We
will now see that the concept of retarded interference still applies.
The key point is that the role of the ring waveguide in the CMR
structure is played by the electric polarisation in the atomic med-
ium. The atomic polarisability acts as an absorber and retarded ree-
mitter of the propagating photons. Under certain conditions to be
derived next, such function yields superluminal behaviour analo-
gous to that of the electromagnetic field when fed back into the
straight waveguide through the coupler in the CMR.

Starting from the wave equation for the electric field in the slab,
Eðz; tÞ; denoting ~Eðz; tÞ the complex field envelope, and using the
slowly-varying envelope approximation (SVEA), one obtains
e leading tail of a 6 ps Gaussian pulse is entering the ring.



Fig. 4. (a) Normalised input and output waverforms for the superluminal propa-
gation of a Gaussian input 58 ps pulse in a 9.5 lm thick medium with parameters
obtained from Ref. [3]. (b) Output waveforms as obtained from the analytical
solution and the difference Eq. 11.
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@~Eðz; tÞ
@z

þ n0

c
� 2a

c

� �
@~Eðz; tÞ
@t

¼ �a~Eðz; tÞ; ð8Þ

where n0 ¼ ð1þ v0Þ
1=2 is the background index of the material,

a ¼ vr
�x=ð2n0cÞ is the (strong) amplitude attenuation factor, with

�x the carrier frequency, tuned to that of the atomic resonance.
Eq. (8) is derived by considering the frequency dependence of the
resonant polarisation up to first order in x� �x; which is valid for
sufficiently slow (spectrally narrow) pulses. From Eq. (8) it follows
that the resonant group velocity is given by

v�1
g ¼

n0

c
� 2a

c
; ð9Þ

where the negative term modifies the background, nondispersive
value c=n0; and may lead to negative group velocities.

Now, using the transformations s ¼ t � zn0=c and f ¼ z; an
equation is obtained for the amplitude ~E0ðf; sÞ � ~Eðf; sþ fn0=cÞ in
the frame moving at the background group velocity. Further, ex-
cept for the exponential attenuation of the transmitted pulse, the
spatial and temporal variations are very slow: The global picture
of the evolution of the optical field in the medium is analogous
to that given in Fig. 3 for the CMR case. This is similar to the qua-
si-stationary behaviour described in the lossless barrier tunnelling
given by Winful [16], where the apparent superluminal tunnelling
of narrow-band pulses through a barrier is shown to be caused by
the modulation of a standing wave. So, by writing
~E0ðf; sÞ ¼ expð�afÞf ðf; sÞ the following equation is obtained for
the slowly-varying amplitude f ðf; sÞ:

@f
@f
¼ 2a

c
@f
@s
: ð10Þ

In order to bring the result calculations into the formalism of
Eqs. (2)–(4), we approximate Eq. (10) by a difference equation,
which can be done because f ðf; sÞ is a slow function, with the pro-
viso that the slab thickness L is sufficiently small. Writing
@f ðf; sÞ=@f ’ ½f ðL; sÞ � f ð0; sÞ�=L and
@f ðf; sÞ=@s ’ ½f ð0; sÞ � f ð0; s� DsÞ�=Ds, where Ds ¼ Ln0=c, we fi-
nally come to the result

~EðL; tÞ ’ a~Eð0; tÞ � b~Eð0; t � DsÞ; ð11Þ
with

a ¼ e�aL 1þ 2aL
cDs

� �
; b ¼ e�aL 2aL

cDs
: ð12Þ

Expression (11) is entirely equivalent to expression (2), with
xðtÞ � ~Eð0; tÞ and yðtÞ � ~EðL; tÞ: We see that jbj < jaj and jbj ! jaj
as ðcDsÞ=ð2aLÞ ! 0, which is the same regime as that considered
for the CMR case. Fig. 4a shows the input and output normalised
waveforms for a 58 ps 1=e width Gaussian pulse propagating in a
9.5 lm absorbing slab with the medium parameters obtained from
[3]. The output waveforms obtained using the analytical expres-
sion EðL; tÞ ¼ Eð0; t � L=vgÞ expð�aLÞ and the difference Eq. 11 are
displayed in Fig. 4b illustrating excellent agreement.

5. Conclusions

We have analysed the superluminal behaviour of a lossy ring
resonator structure by using a straightforward approach based
on the generic concept of retarded interference in linear systems.
We have established, in very simple terms, the conditions and
parameter ranges necessary to obtain superluminality in such a
waveguide resonator. Although we have focused on this particular
device in this paper, the generic approach employed is useful for
the study of other ring structures with different architectures, as
well as other interference devices such as a Mach-Zender interfer-
ometer. We have shown that the formalism also explains, in a uni-
fied manner, the superluminal propagation in an thin dielectric
slab, physically described by a linear wave equation near an atomic
resonance. In this case, the retarded atomic polarisation is the
agent that plays the role analogous to the ring waveguide, provid-
ing the suitable interference. The complex slow field envelope of
the optical field thus evolves in a similar fashion as the field ampli-
tude in the waveguide metastructure.
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