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Strain distributions in quantum dots of arbitrary shape
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A method based on the Green’s function technique for calculating strain in quantuf@Dpt
structures has been developed. An analytical formula in the form of a Fourier series has been
obtained for the strain tensor for arrays of QDs of arbitrary shape taking into account the anisotropy
of elastic properties. Strain distributions using the anisotropic model for semiconductor QDs are
compared to results of a simplified model in which the elastic properties are assumed to be isotropic.
It is demonstrated that, in contrast to quantum wells, both anisotropic and isotropic models give
similar results if the symmetry of the QD shape is less than or equal to the cubic symmetry of the
crystal. The strain distribution for QDs in the shape of a sphere, cube, pyramid, hemisphere,
truncated pyramid, and flat cylinder are calculated and analyzed. It is shown that the strain
distributions in the major part of the QD structure are very similar for different shapes and that the
characteristic value of the hydrostatic strain component depends only weakly on the QD shape.
Application of the method can considerably simplify electronic structure calculations based on the
envelope function method and plane wave expansion techniqued99® American Institute of
Physics[S0021-897809)06713-4

I. INTRODUCTION Most semiconductor compounds crystallize in the zinc-
0li)lende structure, giving cubic crystals. The elastic properties

In recent years, research interest into semiconduct s ) : . o
of a cubic crystal are anisotropic. The anisotropy coefficient,

structures containing zero-dimensional objectpantum ined | h lasti
dots, QD$ has increased considerably. From the point Ofdeflne in terms of the elastic constants a€qy

view of fundamental science, QDs provide an opportunity to~ C12/2Caa, is typically equal to 0.5 in IlI-V semiconduc-
study new physical effects arising from the three-tors, compared to the isotropic value of 1. The sensitivity of

dimensional(3D) confinement of the carriers. On the practi- SCM€ Physical properties to strain suggests that anisotropic
cal side, semiconductor heterostructures containing QDEf€Cts could be important in semiconductor materials and
have a wide range of potential applications as new or imihat an isotropic approximation may be poor, particularly in
proved optoelectronic devices such as QD lasers, creating @"ain crystallographic directions. On the other hand, for
demand for the development of fast and reliable methods fofVo-dimensional problems in which isotropic and anisotropic
modeling their physical properties. In most cases, QD strucSolutions are compared, the isotropic approximation appears
tures are fabricated with an intrinsic elastic strain field arist© P& very good which suggests that it is generally not nec-
ing from the lattice mismatch between the QD and matrix€SSary to perform the more complex calculati®hlo similar
material(for example, Ref. I Knowledge of this strain field comparison has been reported for QDs.

is crucial for further device modeling since the strain sub-  In this article, we present an original method based on
stantially modifies the electronic band structure which, inthe Green’s function technique for the calculation of strain

turn, strongly affects the performance of optoelectronicdistributions in QD structures. While the real-space Green's
devices?? function in the isotropic limit has been known for some time,

The calculation of the intrinsic strain field requires solv- the calculation of the elastic Green'’s function for anisotropic

ing a 3D problem in elasticity theory for the nontrivial ge- cubic crystals has proved more challengtfig? Our method
ometry of the QD shape. Commonly used methods for théakes account of the anisotropy of the elastic properties in
solution of this problem are finite-difference methbtland ~ cubic crystals and produces a nearly analytical solution for
atomistic technique$These methods require much compu- the strain field due to QDs of arbitrary shape. We study the
tation time and computer memory. A simple and eleganinfluence of the QD shape on the strain distribution and the
method for calculating strain fields due to a singgletropic  applicability of the isotropic approximation for QD struc-
QD of arbitrary shape was presented by Dowaeal” as a  tures.
simplification of the work of Eshelb§This method provides The article is organized as follows. In the next section,
analytic solutions for simple geometries such as cubic dotgve derive a general analytical formula for the Fourier trans-
or pyramidal dot$, and numerical solutions for more com- form of the strain tensor for QDs of arbitrary shape. The QD
plex geometries, but neglects anisotropy. shape enters only through the Fourier transform of the QD
characteristic function which can be found analytically in
30n leave from A.F. loffe Physical-Technical Institute, 26 Polytekh- most ?ases{_exmessmns for the sphere, CUb.e’ hemisphere,
nicheskaya, St.-Petersburg 194021, Russia; pyramid, cylinder, cone, and truncated pyramid are presented
electronic mail: a.andreev@surrey.ac.ok in the Appendix. At the end of this section, we present a
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straightforward expression for crystals with cubic symmetry.  The integration in Eq(3) is carried out over the QD

We then treat the case of cubic crystals in detail in Sec. llisurface. Using Gauss’s theorem, the strain tensor in a single

where we compare the results of the isotropic model with th&)D structure is given by

full anisotropic treatment for cubic crystals. It is demon-

strated that, despite the relatively strong anisotropy in thees(r):eT (r)+ lf
- . . ij ijXQD

elastic properties of semiconductor crystals, the results can 2 Jaop

be very similar in both cases. In Sec. IV, we study the influ-

T ’
ence of the QD shape on the strain distribution by comparing X Mnkprprd V', )

results for the sphere, cube, hemisphere, pyramid, truncatgghere integration is carried out over the QD volume. Using

pyramid and flat cylinder. Finally, in Sec. V, we summarizeé he convolution theorem and then taking the Fourier trans-
the results and present the conclusions. We note that by ifgm gives

cluding sufficient terms, the Fourier series can be summed to

calculate the real space strain distribution to any desired _ T 2m® . ~

level of accuracy. Of equal or greater importance, the tech-  &ij — €ijXep(§) = —5—1£Gjn(8) + £;Gin(8)}

nique is also particularly well-suited as input to electronic

structure calculations based on the envelope function method X Nnkpréx€pXan(£), (5

2{; ginu-zlggei dglrin?n-\;\;i\;eelee)(nazxul)igk'i[EChg:wque,aitr)egf U‘T’aengv'\%erej(@(f) is the Fourier transform of the QD character-
P be determined ticall g any p PlaNSistic function. Equation5) gives the general expression for
waves can be determined analytically. the Fourier transform of the strain tensor in a structure con-

taining a single QD of arbitrary shape. This is a general
Il. THE GREEN’S FUNCTION METHOD FOR THE formula valid for crystals of cubic or any other symmetry.
CALCULATION OF STRAIN Note that the QD shape enters only as the Fourier transform
of the QD characteristic function.
The elastic problem is a linear one and so the solution
for a QD array is obtained as a superposition of the elastic
fields for single QDs, namely,

ﬁGin(r—r’)+ann(r—r’)
&Xjﬁxk (9Xi(9xk

The Green’s tensdg,(r) gives the displacement atn
the directionl due to a unit point force in direction placed
at the origin. The Green'’s tensor for infinite anisotropic elas
tic medid? is the solution of the equation,
dGp(r) - s

LA , €= e (Xy—n1dq,Xo—Nn5d5,X3—N3d3), 6

iKim G % 8(r) Sin (1) ij n1%:”3 ij(Xy—=N1dy, X, —Npdz, X3— N3dg) (6)
with the boundary conditiorG,,(r)—0 as|r|—. In Eq.  whered,, d,, d; are the periods in the, y andz directions,
(1), r=(x1,Xz,X3) is the space coordinate ang, is the  respectively. An additional condition fa; arises from the
tensor of elastic moduli. Here and below, we use the usualequirement of minimum elastic energy for the periodic QD
rule for summation over 1,2,3 for repeating indices unlessarray. Equivalently, the strain tensor averaged over the el-

the sum _is indicated explicitly. In this article, as a first ap-ementary 3D superlattice unit cell is zerg;=0). From Eq.
proximation, we assume that the Green’s tensor is the samg, it follows that the coefficients for the Fourier series ex-
for the matrix and QD material. If necessary, the dlfferentpansion Ofeij are equa| tc[(zfn-)3/(dld2d3)]'élsj(§n)’ where

elastic moduli can be cqnsidered as a perturbatign. £,=2m(n,/d;,n,/d,,ng/d3). Finally, therefore, for the
To solve EQ(l) and flndGm(r), we use a Fourier trans- strain tensor in a QD array we obtain

form technique. For the Fourier transform of the Green’s

~ 3
tensor,G,,(&), we obtain from Eq(1) the following linear o (2m) s exni£. 1 v
equation: ij dldzdsnl%,% ij(&nexpig,-r), (7
~ O where the summation is carried out over all valuea gfn,,
NiamékEmGin(£) = (2m)3 @ ns, except the case whan =n,=n;=0.

The method of inclusions as proposed by Eshlisy We now treat the specific case of crystals with cubic

) neiusions as prop y symmetry. Here, the tensor of the elastic moduli has three
used to find the strain distribution in the QD structure. The: .
displacement in a structure with a single QD can be eX_lndependent components and can be represented in the form
pressed as the convolution of the Green’s tensor and the )., =C,68,m+ Cas 8 Smk+ Simbki)

forces spread over the QD surface, s
! / +C (S 6 (S (S y 8
WD =Ulxgpln)+ [ Gl —r)ohas. ® a2 3p koo oy ®

wherexqp(r) is the characteristic function of the QD, equal WhereCy;, Cyp, Cyq are the elastic moduli an@,,=Cy,

to unity within the QD and zero OUtSide{rEk:)\nkpregr and —Cq,—2C,, describes the anisotropic part of the tensor. In
O--rl;kv e:)—r and u;r are the components of the stress and strairthe isotropic |imit,Ca0=0 and the elastic moduli coincide
tensors and the displacement caused by the “initial” strainwith the isotropic LameconstantsC,,=\ andCy,= .

due to the lattice mismatch. The superscript’ ‘indicates Substituting Eq(8) into Eq.(2), we find that the expres-
that this expression refers to a single QD. sion forém(g) has the form
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~ 2
2 {(Coo+ Canbiéi+ Caadii €7+ Candi §18n(9) = 7 53
(9)

Introducing the “scalar” product £G),=¢,G,(8), Eq. (9)
becomes

S8inl(2m)3—(C12+ Cup) &(£G),
Cys€?+ Cyné?

Gin(d= : (10)

Multiplying Eq. (9) by 1/, performing the summation over

i and rearranging for§G),, yields

1 én
(27)3% Cyuf®+ Coré?
3

(§é)n:

& o
X1+ (Cot+Cyuy) >~ 2
12 4 p=1 C44§2+Can P

. (1D

Combining Eq.(10) and Eq.(11), the expression for the
Fourier transform of the Green’s tensor for crystals with cu-

bic symmetry is obtained,

1 5
Cin(8)= 23 CoZr Con?

B 1 (C12+Cui)éién

(27)% (Cy4?+ Can?)(Cya?+ Cantd)
3 §;23
=1 Cusé®+ Canéy

-1

X{ 14 (Cypt C44)p (12

The Green’s function tensor can be found, in principle, by
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o ~ (Cut2C1)&i&1E
& (&) =eoxon(d) | &j— 3 = 2
1+(C1p+Chp) S —— 2
12 2 1CaE + Candy
1 1 1
(15

Xz +
2| Cugt Cané{ 1€ CuytCanéf/ €

In the form of the Fourier series, this formula and Ed).
give analytical expressions for the strain distribution in struc-
tures containing QDs of arbitrary shape. The QD shape en-
ters in Eq.(15) only in the form of the Fourier transform
Xop(€) of the QD characteristic function. Analytical expres-
sions for’yqop(£) for different shapegsphere, cube, hemi-
sphere, cylinder, cone, pyramid, truncated pyramide
given in the Appendix. Note that EqL5) simplifies consid-
erably in the isotropic approximation. Inserti,,=0, we
obtain

3N+2u ﬁ
N+2u €2

where \=C,, and u=C,, are the Lameconstants for an
isotropic elastic medium. From this equation, we immedi-
ately find that the hydrostatic component of the strain tensor,
ef’=ey,, is constant inside the QD and zero outside in the
isotropic approximation and given by

BEA&) = egXon(H)| 8ij— (16)

. 4u
e = éomxoo(f)- 17
Thus, the deviation of the hydrostatic strain from this con-
stant value is characteristic of the influence of elastic anisot-
ropy on the strain distribution in QD structures.

All calculations presented in the following sections as-

performing the inverse Fourier transform with the corre-syme that the elastic constants of the dot and matrix are the
sponding integral evaluated using the spherical coordinatgame and equal to those of the matrix. It is possible, how-

system and the residue theoréirn the caseC,,=0, Eq.
(12) reduces to the well-known isotropic restilt.

ever, to treat the difference of the elastic moduli as a pertur-
bation. In this case the Fourier transform of the elastic tensor

The strain tensor may be obtained by substituting Edjs represented in the for); :éi(jo)+~ei(jl)+§i(j2)+ ..., Where

(12) into Eq. (5). For cubic crystals, the initial strain is

am—agp
e=———— 8=y, (13

Nei(jo) is the strain tensor calculated using elastic constants
equal to those of the matrpEq. (15)], éi(jN)oc S\N is theNth
correction of the perturbation series, ar®h ~(S\)im
=\3D — M. is the difference of the elastic constants be-
tween the QD material and the matrix material. TRéh

wherea,, andagp are the lattice constants of the matrix and correction ", of this perturbation series can be expressed
the QD materials, respectively. Combining this with the eX-s the convolution of theN— 1)-th correction with the char-

plicit expression for the elastic tensor we ﬁr}qﬂ(pregr
= €9(Cq1+2C1») 6, and Eq.(5) is simplified for cubic crys-
tals to

é?j = 60';(QD( E3)

(2m)° - -
i~ T(CllJrZClz)[fi(fG);+§j(§G)i] :

(14

I3

Using the explicit expression fo&G); the final formula for

acteristic functioriygp, providing a convenient and fast it-
eration scheme to find the elastic strain with required accu-
racy.

There are also arguments for choosing the elastic con-
stants of the matrix foboth matrix and the dots as outlined
in an earlier publicatiod® First, the elastic constants of a
semiconductor alloy are not generally known and interpolat-
ing between binaries, for example, may not necessarily yield
accurate elastic constants for a ternary alloy. Second, the
elastic constants of a material in a state of high strain may
also differ from those of the relaxed material, leading to

the Fourier transform of the strain tensor for QDs with cubicfurther uncertainties as to the best choice of elastic constants.

symmetry is obtained,

Finally, Keyed® showed that, to a very good approximation,
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TABLE I. Elastic moduli for some IlI-V semiconductofsee Ref. 1%(in 0.00 -
units of 13*Pa).C,, is the measure of the elastic anisotropy.

Material Cll C12 C44 Can -0.02 4
GaAs 1.18 0.54 0.59 —-0.54
INAs 0.83 0.45 0.40 —0.42
InSh 0.66 0.36 0.30 -0.30 -0.04 1
GaSh 0.88 0.40 0.43 -0.38
=
-0.06 -

the elastic constants in most IlI-V semiconductors depend
chiefly on the nearest-neighbor lattice spacing and he pro- -0.08 1
posed an empirical scaling relationship. Experimental results
on the quaternary alloy GalnAsP have supported Keyes’ 010 . . . ,
scaling rulet’ For strained QD structures, the Keyes scaling o 2 4 6 8 10
relationship suggests that it is most appropriate to choose the distance, nm
elastic constants of thearrier material forall materials in FIG. 1. Radial strain tensor componeay, , for different directions through
the system because, prior to the relaxation of the misfik spherical dot is presented for the isotrofsolid line) and anisotropic

strain, all materials possess the same lattice spacing. (dashed and dotted linesnodels. The radius of the QD is 3 nm and the
origin of the coordinate system is at the QD center. Parameters for GaAs

(see Table)l have been used and the misfit strain-6.7%.

Ill. ANISOTROPIC AND ISOTROPIC MODELS

For cubic crystals, the degree of elastic anisotropy can
be characterized by the magnitude of the anisotropic parfjant contribution to the anisotropy of the strain distribution
Can=C11— C1o,—2Cy,, of the elastic tensor. I€,,=0, we is caused by the “anisotropy” of the QD shape rather than
have the isotropic limit and whe@,,, is comparable with by the anisotropy of the elastic properties. Therefore, the
other elastic moduli, the elastic properties are strongly anisasotropic assumption yields results which reproduce the main
tropic. Elastic constants for some 111V binaries are listed infeatures of the fully anisotropic model. To demonstrate this
the Table I. From this table it follows that the elastic anisot-point, we have performed calculations of the strain distribu-
ropy in lll-V semiconductor compounds is rather strongtion for the sphere, cube and the pyramid. Elastic constants
since the anisotropic part of the elastic tensofdg,|~C,,  for GaAs, as presented in Table I, are used for all calcula-
~Cy4. For example, the effective Poisson’s ratio varies fromtions presented in this and the following section. The misfit
v~ 1/3 for the(001) direction tor=~1/5 for the(111) direc-  strain, €y, is —0.067 corresponding to InAs dots contained
tion. This variation can result in a significant dependence ofn a GaAs matrix and, for the isotropic calculatiorG,,
strain on the space direction. This is best illustrated for=0.54x 10'*Pa andC,,=0.59x 10''Pa are used witlC,,
strained quantum well§QWs) where the strain depends =0.
strongly on the direction of the normal to the QW plane, The strain distribution is itself isotropic for an isotropic
which in turn affects the position of the energy levels of thespherical QD. The degree of anisotropy induced by the cubic
carriers localized in the QWS. symmetry of the elastic properties can be characterized by

It is natural to expect, therefore, that the elastic anisotthe radial component of the strain tensor in spherical coordi-
ropy of IlI-V compounds is an important factor in determin- nates,e,,, which is plotted for three directions in Fig. 1.
ing the strain distribution in QD structures. However, we Inside the QD the isotropic and anisotropic models give con-
demonstrate in this section that this is not generally the casstant strain with a value which is nearly identical for both
In most cases, the elastic anisotropy gives a rather smathodels. Outside the QD the results of the two models are
correction to the results of the isotropic approximation.different. Along the(001) direction, the change im,, is
Qualitatively this fact can be explained as follows. In con-greater for the anisotropic model than for the isotropic model
trast to the QW structures, the strain distribution in QD struc-and the maximum value ¢&,,| is ~30% larger. The reverse
tures is determined by two physically different factors: first, situation occurs along th€l11) direction. Here, the maxi-
the degree of symmetry of the QD shape and, second, theum value ofle,| is less for the anisotropic model than for
anisotropy of the elastic properties. the isotropic model. Along th€l10 direction the results of

Three separate cases can now be identifiedthe QD  the two models nearly coincide. Thus, for a spherical QD,
shape has higher symmetry than the cubic symmetry of ththe influence of the elastic anisotropy is very small inside the
elastic propertiegji) the QD shape has cubic symmetry; and sphere, while outside the dot this influence is rather large in
(iii) the symmetry of the QD shape is less than the cubi¢he (100) direction and small in th€110 direction. Outside
symmetry of the elastic properties. In the first case, the anthe dot the isotropic model effectively gives the strain distri-
isotropy in the strain distribution is caused largely by thebution averaged over different directions.
anisotropy of the elastic properties. Therefore, the isotropic  The comparison of the anisotropic and isotropic models
and anisotropic models can give different results. On thdor the cubic QD is presented in Fig. 2. Here, the symmetry
other hand, in most cases when the symmetry of the Qf the QD is the same as the symmetry of the elastic prop-
shape is less than or equal to the cubic symmetry, the domerties. Therefore, the influence of the elastic anisotropy is
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FIG. 2. Hydrostaticey,, and biaxial,e,, strain components along selected FIG. 3. Hydrostaticg,,, and biaxial,e,, strain components along selected

directions for a cubic dot of length 6 nm are presented for the isotropic andlirections for a pyramidal dot of base length 6 nm and height 3 nm are

anisotropic models. The origin of the coordinate system is at the QD centepresented for the isotropic and anisotropic models. The base sides are par-

Parameters for GaAs have been used and the misfit strait®ig%. allel to thex andy axes and the origin of the coordinate system is at the
center of the base. Parameters for GaAs have been used and the misfit strain
is —6.7%.

much smaller than for the spherical QD. The maximum dif-

ference between the anisotropic and isotropic models agaiR, |NELUENCE OF THE QD SHAPE ON THE STRAIN

occurs along(001), analogous to the case of the sphere. sTRIBUTION

However, in the cubic QD(ej;’— €{"*)/e%<10% for the

(001) direction and less than 5%—7% for other directions. QDs of different shape can be fabricated by controlling
For the pyramid, the symmetry of the QD shape is lesgshe material and growth conditions. The shape of fabricated

than the cubic symmetry of the elastic properties. Again on€Ds is, however, not known accurat&lyand therefore it is

can see that the results of the anisotropic and isotropic modmportant to study the influence of the QD shape on the

els are very similar qualitatively and quantitatively. In con- strain field. It is clear that the strain tensor will be different at

trast to the spherical QD, the difference between the twdeast in the areas where the QD shapes do not match, but are

models is less outside the pyramidal QD than inside it. there characteristics of the strain field which are similar in
In the previous section we showed that, in the isotropicQDs of different shape? To answer this question we compare

limit, the hydrostatic strain componeat=eg;; is a constant the strain distribution in the sphere, cube, pyramid, hemi-

inside the QD and zero outside. For the anisotropic modelsphere, truncated pyramid and flat cylinder. Again elastic

the componeng,, has a weak spatial dependerisee Figs. 2 constants for GaAs are useeb=—0.067 and, for the iso-

and 3. In the case of the cube,, is large in the center of the tropic calculations, explicit values &, and C,, are used

QD and decreases slightly away from the QD center. For thavith C,,=0.

pyramid,e;, increases in the direction from the pyramid cen-  Figure 4 shows a contour plot of the radial component of

ter to the top of the pyramid. However, the dependenag, of the stress tensor for the sphere and cube calculated for the

on position is rather weak, reflecting our conclusion that thésotropic model. In contrast to the sphere, the cube has sharp

influence of elastic anisotropy on QD strain distributions isedges and so near these edges, as well as inside the QD, the

relatively small. stress distribution is different between the two cases. But
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FIG. 4. Radial strain componeng,, , surrounding a spherical and cubic
inclusion with equal volume. The cube sides are of length 10 in arbitrary
units and the sphere has a radius of (#50f%. The calculation uses the
isotropic approximation. Parameters for GaAs have been used and the misfit
strain is—6.7%.

strain

3 6
distance, nm

outside the QD, the stress contours become very similar for
the cube and sphere. For distances of the order of the QBG. 5. Hydrostatice,, and biaxial,e, , strain components along selected
size the stress distributions outside the dot become indepef#irections for a spherical and a cubic dot are presented for the anisotropic
dent of the QD shape. The stress contours for the cube b%lOd.EI' The radius 9f_ the spherical _dot is 3 nm a_nd the length of the cubic
. .. . ot is 6 nm. The origin of the coordinate system is at the center of the dots.

come spherical and nearly coincide with those of the Sph(:"rQ’arameters for GaAs have been used and the misfit strair5ig%.

Let us now consider the anisotropic model and focus on
the hydrostatic strain componerg,=e¢;;, and the biaxial
strain componentg,=e,,— (e+€yy)/2. These strain com- pyramid and hemisphere;, ande,, are nearly identical, but
ponents define the potential profile for the electrons and th& the upper part the strain is different due to the sharp edges
splitting of the light and heavy hole states, respectively. Fig-of the pyramid and smooth boundary of the hemisphere. In
ure 5 shows the dependenceepf and e, for the spherical particular, in the(001) direction, the pyramid has a sharp
and cubic QDs in th€001), (110 and (111) directions. In  corner which results in a steep variation of the biaxial strain.
spite of the fact that the stress distribution inside the QD forA similar effect can be seen in tH@11) direction near the
the sphere and cube is different, the characteristic value qfyramid edge. However, compared to th€1) direction, the
the hydrostatic strain component is very close for the twochange in biaxial strain is not so steep because along the
shapes. This means that the barrier height for electrons has(all) direction the pyramid edge forms a sharp angle in one
comparatively weak dependence on the QD shape. Along thdirection only, while the top of the pyramid forms a sharp
(110 and (111) directions the QD sizes are different and angle in two directions. In th€11l) direction the biaxial
thereforee,, drops to zero at different positions. The biaxial strain in the hemisphere has no extremum near the upper
strain,e,, for the two shapes is different near the QD bound-boundary and its variation is qualitatively the same as the
ary. Along the(0021) directioney is large inside the cube and sphere or cube along th@01) or (110 direction. The be-
smaller outside compared to the sphere. The reverse situatidravior of the biaxial strain suggests a general rule: near sharp
arises alond110); inside the cubes, is smaller, while out- boundariesedges or cornejshe biaxial strain varies steeply
side it is larger. For both shapes, along thé&1) direction, and has an extremum.
the biaxial strain is zero due to symmetry. Figure 7 shows the shear strain tensor components for

A comparison of the strain distribution for the pyramid the pyramid and hemisphere. Fox 0, the shear components
and hemisphere is presented in Fig. 6. The hydrostatic straiare effectively identical and along th@01) direction the
is similar for both shapes throughout most of the QD, similarshear components are zero due to symmetry. In(1ig8)
to the case of the cube and sphere. In the lower part of thdirection, the only nonzero shear componeng,s. In this
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FIG. 7. Shear strain components for a hemispherical and a pyramidal dot are
0.107 presented for the anisotropic model. The hemisphere radius is 3 nm and the
pyramid has a base length of 6 nm and height 3 nm. The origin of the

0.057 coordinate system is at the center of the dots. Parameters for GaAs have
] been used and the misfit strains6.7%.
£ 0.00
g
®.0.057

hemispherg where the strain vanishes over distances of the

-0.104 . . . .
order of the QD size along the corresponding direction.
-0.15 T T T 1
-6 -3 0 3 6
distance, nm V. CONCLUSIONS
FIG. 6. Hydrostaticg,,, and biaxial,e, , strain components along selected In this article, we have presented a new method based on

directions for a hemispherical and a pyramidal dot are presented for thg Green’s function approach to calculate strain distributions

anisotropic model. The hemisphere radius is 3 nm and the pyramid has . . _
base length of 6 nm and height 3 nm. The origin of the coordinate system iﬁl QDs of arbitrary shape. Our general method includes elas

at the center of the dots. Parameters for GaAs have been used and the midf¢ anisotropy in full With specific results for CUbiC_ crystals .
strain is—6.7%. presented as a special case. The advantage of this method is

that it enables nearly analytical expressions for the strain

distribution to be obtained in the form of a Fourier series and

the calculation is therefore much faster than other numerical
direction, the variation oé,, for the two shapes is qualita- methods. It becomes particularly effective for the calculation
tively similar, but for the pyramid the amplitude of the jump of the strain distribution for periodic arrays, QD superlattices
near the QD boundary is larger than that for the hemispherer vertically coupled QDs. In these cases, the Fourier series
Along the (111) direction all three shear components areconverges quickly and so fewer Fourier components are re-
non-zero ance,,=ey,. In this direction, the pyramid has a quired in order to obtain accurate results. The other advan-
sharp edge, therefore these strain components for the pyréage of our method is that the QD shape enters only through
mid vary more steeply near the QD boundary. the Fourier transform of the QD characteristic functiar8D

The hydrostatic and biaxial strain for the cylinder andanalogue of the 1D Heaviside functigprwhich is calculated

truncated pyramid are presented in Fig. 8. Along tbel) analytically for all common QD shapes.
directione,, ande, are very close for the two shapes, except  The calculation method is also particularly well suited as
in a small area outside the dot near the boundary wiegte an input step in calculations of the electronic properties of
for the truncated pyramid is larger. In the QD pldmérec-  quantum dots. Most calculations of confined state energies in
tions (100 and (110, the truncated pyramid and cylinder guantum dots have used the envelope function method, with
have different sizes. Therefore, the hydrostatic componerthe wave functions calculated using a basis of plane wave
drops to zero at different positions, but again the characterstates. Previous studies have often included two large inte-
istic value ofey, is nearly equal for these two shapes. Alsogration steps in calculating the matrix element linking any
note that in the QD plane the strain components outside thpair of plane wave states. Firstly, the real-space strain field is
dot vanish over a distance of the order of a quarter of the QRalculated explicitly throughout the structure. This real-space
diameter or base length. This is much more rapid than in thetrain field is then used as input in a second integration step
(001 direction or for “nonflat” shapes(sphere, cube or to determine the strain-related contributions to the inter-
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024 T ol }oytinder to the smooth boundaries of others. Outside the dot, strain
(001) I Sh}truncated pyramic distribL_Jtions become nearly independe_nt of _the QD shape
014 b over distances of the order of the QD size. Finally, we note
£ ' that at present the dimensions of QDs are uncertain to at least
= 10% and so the isotropic approximation should suffice, but

as technology improves and the shape and size of QDs be-
comes known to a greater precision, anisotropic calculations
may become necessary to accurately determine the strain dis-
6 9 tributions.
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APPENDIX
1
9 The Fourier transform of the characteristic function is a
3D integral
Xoo(&)= f e '¥rdv, (A1)
QD

where the integration is carried out over the QD volume. For
most QD shapes, the functigi,p(£) can be found analyti-

cally. In this section, we present formulas for the sphere,
cube, pyramid, cylinder, hemisphere, cone and truncated

pyramid.
-0.20 T T : For a sphere centered at the origin,
distance, nm 5 47 [sin(éR) RcogéR) A2)
FIG. 8. Hydrostaticg,,, and biaxial,e,, strain components along selected XQD( 9= 3 52 '3 '

directions for a truncated pyramid and a cylindrical dot are presented for the . .
anisotropic model. The pyramid base length is 6 nm, the width of the topVNereR is the sphere radius.
face is 3 nm and its height is 1.5 nm. The diameter and height of the =~ For the cuboid,

cylinder are 6 nm and 1.5 nm, respectively. The origin of the coordinate

system is at the center of the dots. Parameters for GaAs have been used and _ 8 . . .
the misfit strain is—6.7%. XQ p(&)= £16065 sin(£12,/2)sin(£28,/2)sin(£3235/2),
(A3)

\g/hereal, a,, az are the cuboid dimensions and the origin
f_the coordinates is at the center of the QD.
For the pyramid,

plane-wave matrix elements. By contrast, using the analysi
presented here, each of these matrix elements can be det
mined analytically, being proportional to a single term in the

Fourier series we have introduced. Xoo(&n) = x1(€1,62,83,L4,Ly) + x1(€2,€1,€3,Ly,Ly)
Comparing the results of the simplified isotropic model

and the anisotropic model reveals that, in contrast to the QW txu(—é1.62,85,L00Ly)

case, the two models generally give very similar results. The +x1(— €2,61,65,Ly,L)), (A4)

elastic properties have cubic symmetry while, in most cases, .

the QD shape has lower symmetry. Therefore, the anisotrop‘f}"th

of the strain distribution is mainly determined by the anisot-y, (¢;,&,,&3,L,,L,)

ropy of the QD shape rather than by the anisotropy of the

elastic properties of the media. Therefore, for QDs, aniso- :i e-idahl | (5 e ﬂ+§ @)
tropic and isotropic models give very similar results for &4 el g SLTS3L T2
strain distributions. We have also calculated and compared

strain distributions in different QD shapes and found that the _|eo<b, — & §3ﬂ+ §2§”

characteristic values of the hydrostatic strain component de- 2 Lx Ly

pend only weakly on the QD shape. Strain distribution for L L L L

structures with different shapes are qualitatively similar —Ieo(?x,—gﬁ §2L—y +lgg ?X,—gl—gzl_—y) ]
X X

throughout most of the QD. Differences mainly arise from
the sharp edges and corners of some shapes when compared (A5)
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whereL, andL, are the pyramid base dimensioftse base
is assumed to form a rectanglé is the pyramid height,
leo(a, &) =[e'$3—1]/(i£), the origin of the coordinate sys-
tem is at the center of the base and thendy axes are
parallel to the base sides.

For the cylinder,

(AB)

~ D §u
Xoo( &)= F—7—sin(é3h/2) 3| ——

2w
§1é3

whereJ; is a Bessel functiory is the cylinder heightD is

the diameter and the origin of the coordinate system is at th

center of the cylinder.
For the hemisphere,

%QD(f): E 31(R§|)_Rz'jo(R§3aR§u)},

(A7)
wherey is the Fourier transform for the sphefRjs the
hemlsphere radiug;, = \/521 522 andl o denotes the integral

27| R
~ spher IR
R [a

~ sphere

1
Ijo(a,B)zfoxcos(a\/l—xz)Jo(Bx)dx, (A8)
whereJ, is a Bessel function. The integral in E@\8) is best
calculated numerically.

For the cone,

e L (EREN - S A(ER) |, (A9)

Xqo(§)= g‘

whereR is the radius of the cone bade,js the cone height
andl, denotes the integral

z

I,(a, B)—f xJo(ax)e'P*dx. (A10)

1
This integral can be expressed as a power series or calculat

numerically.
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For the truncated pyramid,

')'(’())y[g(f I—b L h|) e_'gzhtXPyr(g Lt Lt )
(A11)

Xqo(é)

whereLy and L) are the base lengths, and L) are the

dimensions of the truncated facd), is the height,

XBo(&L1,L>,h) is the Fourier transform for a pyramid with

base IengthsLl and L2 and heighth; h=L! <N /(Lb LX)
ndh;=L%h,/(L2—LY). In the above formula, the origin of
e coordinate system is at the center of the QD base.
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