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Strain distributions in quantum dots of arbitrary shape
A. D. Andreev,a) J. R. Downes, D. A. Faux, and E. P. O’Reilly
Department of Physics, University of Surrey, Guildford GU2 5XH, United Kingdom

~Received 5 November 1998; accepted for publication 30 March 1999!

A method based on the Green’s function technique for calculating strain in quantum dot~QD!
structures has been developed. An analytical formula in the form of a Fourier series has been
obtained for the strain tensor for arrays of QDs of arbitrary shape taking into account the anisotropy
of elastic properties. Strain distributions using the anisotropic model for semiconductor QDs are
compared to results of a simplified model in which the elastic properties are assumed to be isotropic.
It is demonstrated that, in contrast to quantum wells, both anisotropic and isotropic models give
similar results if the symmetry of the QD shape is less than or equal to the cubic symmetry of the
crystal. The strain distribution for QDs in the shape of a sphere, cube, pyramid, hemisphere,
truncated pyramid, and flat cylinder are calculated and analyzed. It is shown that the strain
distributions in the major part of the QD structure are very similar for different shapes and that the
characteristic value of the hydrostatic strain component depends only weakly on the QD shape.
Application of the method can considerably simplify electronic structure calculations based on the
envelope function method and plane wave expansion techniques. ©1999 American Institute of
Physics.@S0021-8979~99!06713-4#
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I. INTRODUCTION

In recent years, research interest into semicondu
structures containing zero-dimensional objects~quantum
dots, QDs! has increased considerably. From the point
view of fundamental science, QDs provide an opportunity
study new physical effects arising from the thre
dimensional~3D! confinement of the carriers. On the prac
cal side, semiconductor heterostructures containing Q
have a wide range of potential applications as new or
proved optoelectronic devices such as QD lasers, creati
demand for the development of fast and reliable methods
modeling their physical properties. In most cases, QD str
tures are fabricated with an intrinsic elastic strain field a
ing from the lattice mismatch between the QD and ma
material~for example, Ref. 1!. Knowledge of this strain field
is crucial for further device modeling since the strain su
stantially modifies the electronic band structure which,
turn, strongly affects the performance of optoelectro
devices.2,3

The calculation of the intrinsic strain field requires so
ing a 3D problem in elasticity theory for the nontrivial g
ometry of the QD shape. Commonly used methods for
solution of this problem are finite-difference methods4,5 and
atomistic techniques.6 These methods require much comp
tation time and computer memory. A simple and eleg
method for calculating strain fields due to a singleisotropic
QD of arbitrary shape was presented by Downeset al.7 as a
simplification of the work of Eshelby.8 This method provides
analytic solutions for simple geometries such as cubic d
or pyramidal dots,9 and numerical solutions for more com
plex geometries, but neglects anisotropy.

a!On leave from A.F. Ioffe Physical-Technical Institute, 26 Polytek
nicheskaya, St.-Petersburg 194021, Russia;
electronic mail: a.andreev@surrey.ac.ok
2970021-8979/99/86(1)/297/9/$15.00
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Most semiconductor compounds crystallize in the zin
blende structure, giving cubic crystals. The elastic proper
of a cubic crystal are anisotropic. The anisotropy coefficie
defined in terms of the elastic constants as (C11

2C12)/2C44, is typically equal to 0.5 in III–V semiconduc
tors, compared to the isotropic value of 1. The sensitivity
some physical properties to strain suggests that anisotr
effects could be important in semiconductor materials a
that an isotropic approximation may be poor, particularly
certain crystallographic directions. On the other hand,
two-dimensional problems in which isotropic and anisotro
solutions are compared, the isotropic approximation appe
to be very good which suggests that it is generally not n
essary to perform the more complex calculation.10 No similar
comparison has been reported for QDs.

In this article, we present an original method based
the Green’s function technique for the calculation of stra
distributions in QD structures. While the real-space Gree
function in the isotropic limit has been known for some tim
the calculation of the elastic Green’s function for anisotro
cubic crystals has proved more challenging.11,12 Our method
takes account of the anisotropy of the elastic properties
cubic crystals and produces a nearly analytical solution
the strain field due to QDs of arbitrary shape. We study
influence of the QD shape on the strain distribution and
applicability of the isotropic approximation for QD struc
tures.

The article is organized as follows. In the next sectio
we derive a general analytical formula for the Fourier tra
form of the strain tensor for QDs of arbitrary shape. The Q
shape enters only through the Fourier transform of the
characteristic function which can be found analytically
most cases~expressions for the sphere, cube, hemisphe
pyramid, cylinder, cone, and truncated pyramid are presen
in the Appendix!. At the end of this section, we present
© 1999 American Institute of Physics
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straightforward expression for crystals with cubic symmet
We then treat the case of cubic crystals in detail in Sec.
where we compare the results of the isotropic model with
full anisotropic treatment for cubic crystals. It is demo
strated that, despite the relatively strong anisotropy in
elastic properties of semiconductor crystals, the results
be very similar in both cases. In Sec. IV, we study the infl
ence of the QD shape on the strain distribution by compa
results for the sphere, cube, hemisphere, pyramid, trunc
pyramid and flat cylinder. Finally, in Sec. V, we summari
the results and present the conclusions. We note that by
cluding sufficient terms, the Fourier series can be summe
calculate the real space strain distribution to any des
level of accuracy. Of equal or greater importance, the te
nique is also particularly well-suited as input to electron
structure calculations based on the envelope function me
and using a plane-wave expansion technique, because
strain-dependent matrix element linking any pair of pla
waves can be determined analytically.

II. THE GREEN’S FUNCTION METHOD FOR THE
CALCULATION OF STRAIN

The Green’s tensorGln(r ) gives the displacement atr in
the directionl due to a unit point force in directionn placed
at the origin. The Green’s tensor for infinite anisotropic el
tic media13 is the solution of the equation,

l iklm

]Gln~r !

]xk]xm
52d~r !d in ~1!

with the boundary conditionGln(r )→0 as ur u→`. In Eq.
~1!, r5(x1 ,x2 ,x3) is the space coordinate andl iklm is the
tensor of elastic moduli. Here and below, we use the us
rule for summation over 1,2,3 for repeating indices unl
the sum is indicated explicitly. In this article, as a first a
proximation, we assume that the Green’s tensor is the s
for the matrix and QD material. If necessary, the differe
elastic moduli can be considered as a perturbation.

To solve Eq.~1! and findGln(r ), we use a Fourier trans
form technique. For the Fourier transform of the Gree
tensor,G̃ln(j), we obtain from Eq.~1! the following linear
equation:

l iklmjkjmG̃ln~j!5
d in

~2p!3 . ~2!

The method of inclusions as proposed by Eshelby8 is
used to find the strain distribution in the QD structure. T
displacement in a structure with a single QD can be
pressed as the convolution of the Green’s tensor and
forces spread over the QD surface,

ui
s~r !5ui

TxQD~r !1E Gin~r2r 8!snk
T dSk8 , ~3!

wherexQD(r ) is the characteristic function of the QD, equ
to unity within the QD and zero outside;snk

T 5lnkprepr
T and

snk
T , epr

T andui
T are the components of the stress and str

tensors and the displacement caused by the ‘‘initial’’ str
due to the lattice mismatch. The superscript ‘‘s’’ indicates
that this expression refers to a single QD.
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The integration in Eq.~3! is carried out over the QD
surface. Using Gauss’s theorem, the strain tensor in a si
QD structure is given by

ei j
s ~r !5ei j

T xQD~r !1
1

2 EQD
F]Gin~r2r 8!

]xj]xk
1

]Gjn~r2r 8!

]xi]xk
G

3lnkprepr
T dV8, ~4!

where integration is carried out over the QD volume. Usi
the convolution theorem and then taking the Fourier tra
form gives

ẽi j
s 5ei j

T x̃QD~j!2
~2p!3

2
$j i G̃ jn~j!1j j G̃in~j!%

3lnkprjkepr
T x̃QD~j!, ~5!

wherex̃QD(j) is the Fourier transform of the QD characte
istic function. Equation~5! gives the general expression fo
the Fourier transform of the strain tensor in a structure c
taining a single QD of arbitrary shape. This is a gene
formula valid for crystals of cubic or any other symmetr
Note that the QD shape enters only as the Fourier transf
of the QD characteristic function.

The elastic problem is a linear one and so the solut
for a QD array is obtained as a superposition of the ela
fields for single QDs, namely,

ei j 5 (
n1 ,n2 ,n3

ei j
s ~x12n1d1 ,x22n2d2 ,x32n3d3!, ~6!

whered1 , d2 , d3 are the periods in thex, y andz directions,
respectively. An additional condition forei j arises from the
requirement of minimum elastic energy for the periodic Q
array. Equivalently, the strain tensor averaged over the
ementary 3D superlattice unit cell is zero (ei j̄ 50). From Eq.
~6! it follows that the coefficients for the Fourier series e
pansion ofei j are equal to@(2p)3/(d1d2d3)#ẽi j

s (jn), where
jn52p(n1 /d1 ,n2 /d2 ,n3 /d3). Finally, therefore, for the
strain tensor in a QD array we obtain

ei j 5
~2p!3

d1d2d3
(

n1 ,n2 ,n3

ẽi j
s ~jn!exp~ i jn•r !, ~7!

where the summation is carried out over all values ofn1 , n2 ,
n3 , except the case whenn15n25n350.

We now treat the specific case of crystals with cub
symmetry. Here, the tensor of the elastic moduli has th
independent components and can be represented in the

l iklm5C12d ikd lm1C44~d i l dmk1d imdkl!

1Can(
p51

3

d ipdkpd lpdmp , ~8!

whereC11, C12, C44 are the elastic moduli andCan5C11

2C1222C44 describes the anisotropic part of the tensor.
the isotropic limit,Can50 and the elastic moduli coincid
with the isotropic Lame´ constantsC125l andC445m.

Substituting Eq.~8! into Eq.~2!, we find that the expres
sion for G̃ln(j) has the form
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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(
l

$~C121C44!j ij l1C44d i l j
21Cand i l j i

2%G̃ln~j!5
d in

~2p!3 .

~9!

Introducing the ‘‘scalar’’ product (jG̃)n[j l G̃ln(j), Eq. ~9!
becomes

G̃in~j!5
d in /~2p!32~C121C44!j i~jG̃!n

C44j
21Canj i

2 . ~10!

Multiplying Eq. ~9! by 1/j i , performing the summation ove
i and rearranging for (jG̃)n yields

~jG̃!n5
1

~2p!3

jn

C44j
21Canjn

2

3H 11~C121C44! (
p51

3 jp
2

C44j
21Canjp

2J 21

. ~11!

Combining Eq.~10! and Eq. ~11!, the expression for the
Fourier transform of the Green’s tensor for crystals with c
bic symmetry is obtained,

G̃in~j!5
1

~2p!3

d in

C44j
21Canj i

2

2
1

~2p!3

~C121C44!j ijn

~C44j
21Canj i

2!~C44j
21Canjn

2!

3H 11~C121C44! (
p51

3 jp
2

C44j
21Canjp

2J 21

. ~12!

The Green’s function tensor can be found, in principle,
performing the inverse Fourier transform with the cor
sponding integral evaluated using the spherical coordin
system and the residue theorem.13 In the caseCan50, Eq.
~12! reduces to the well-known isotropic result.8

The strain tensor may be obtained by substituting
~12! into Eq. ~5!. For cubic crystals, the initial strain is

ei j
T 5

aM2aQD

aQD
d i j [e0d i j , ~13!

whereaM andaQD are the lattice constants of the matrix a
the QD materials, respectively. Combining this with the e
plicit expression for the elastic tensor we findlnkprepr

T

5e0(C1112C12)dnk and Eq.~5! is simplified for cubic crys-
tals to

ẽi j
s 5e0x̃QD~j!

3H d i j 2
~2p!3

2
~C1112C12!@j i~jG̃! j1j j~jG̃! i #J .

~14!

Using the explicit expression for (jG̃) i the final formula for
the Fourier transform of the strain tensor for QDs with cu
symmetry is obtained,
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ẽi j
s ~j!5e0x̃QD~j!H d i j 2

~C1112C12!j ij j /j2

11~C121C44! (
p51

3 jp
2

C44j
21Canjp

2

3
1

2 F 1

C441Canj i
2/j2 1

1

C441Canj j
2/j2GJ . ~15!

In the form of the Fourier series, this formula and Eq.~7!
give analytical expressions for the strain distribution in stru
tures containing QDs of arbitrary shape. The QD shape
ters in Eq.~15! only in the form of the Fourier transform
x̃QD(j) of the QD characteristic function. Analytical expre
sions for x̃QD(j) for different shapes~sphere, cube, hemi
sphere, cylinder, cone, pyramid, truncated pyramid! are
given in the Appendix. Note that Eq.~15! simplifies consid-
erably in the isotropic approximation. InsertingCan50, we
obtain

ẽi j
iso~j!5e0x̃QD~j!S d i j 2

3l12m

l12m

j ij j

j2 D , ~16!

where l5C12 and m5C44 are the Lame´ constants for an
isotropic elastic medium. From this equation, we imme
ately find that the hydrostatic component of the strain tens
eii

iso[eh , is constant inside the QD and zero outside in t
isotropic approximation and given by

eii
iso5e0

4m

l12m
xQD~r !. ~17!

Thus, the deviation of the hydrostatic strain from this co
stant value is characteristic of the influence of elastic anis
ropy on the strain distribution in QD structures.

All calculations presented in the following sections a
sume that the elastic constants of the dot and matrix are
same and equal to those of the matrix. It is possible, ho
ever, to treat the difference of the elastic moduli as a per
bation. In this case the Fourier transform of the elastic ten
is represented in the formẽi j 5ẽi j

(0)1ẽi j
(1)1ẽi j

(2)1 . . . , where
ẽi j

(0) is the strain tensor calculated using elastic consta
equal to those of the matrix@Eq. ~15!#, ẽi j

(N)}dlN is theNth
correction of the perturbation series, anddl;(dl) iklm

[l iklm
QD 2l iklm

M is the difference of the elastic constants b
tween the QD material and the matrix material. TheNth
correction,ẽi j

(N) , of this perturbation series can be express
as the convolution of the (N21)-th correction with the char-
acteristic functionx̃QD, providing a convenient and fast it
eration scheme to find the elastic strain with required ac
racy.

There are also arguments for choosing the elastic c
stants of the matrix forboth matrix and the dots as outline
in an earlier publication.15 First, the elastic constants of
semiconductor alloy are not generally known and interpo
ing between binaries, for example, may not necessarily y
accurate elastic constants for a ternary alloy. Second,
elastic constants of a material in a state of high strain m
also differ from those of the relaxed material, leading
further uncertainties as to the best choice of elastic consta
Finally, Keyes16 showed that, to a very good approximatio
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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the elastic constants in most III–V semiconductors dep
chiefly on the nearest-neighbor lattice spacing and he
posed an empirical scaling relationship. Experimental res
on the quaternary alloy GaInAsP have supported Key
scaling rule.17 For strained QD structures, the Keyes scali
relationship suggests that it is most appropriate to choose
elastic constants of thebarrier material forall materials in
the system because, prior to the relaxation of the m
strain, all materials possess the same lattice spacing.

III. ANISOTROPIC AND ISOTROPIC MODELS

For cubic crystals, the degree of elastic anisotropy
be characterized by the magnitude of the anisotropic p
Can5C112C1222C44, of the elastic tensor. IfCan50, we
have the isotropic limit and whenCan is comparable with
other elastic moduli, the elastic properties are strongly an
tropic. Elastic constants for some III–V binaries are listed
the Table I. From this table it follows that the elastic anis
ropy in III–V semiconductor compounds is rather stro
since the anisotropic part of the elastic tensor isuCanu;C12

;C44. For example, the effective Poisson’s ratio varies fro
n'1/3 for the~001! direction ton'1/5 for the~111! direc-
tion. This variation can result in a significant dependence
strain on the space direction. This is best illustrated
strained quantum wells~QWs! where the strain depend
strongly on the direction of the normal to the QW plan
which in turn affects the position of the energy levels of t
carriers localized in the QWs.18

It is natural to expect, therefore, that the elastic anis
ropy of III–V compounds is an important factor in determi
ing the strain distribution in QD structures. However, w
demonstrate in this section that this is not generally the c
In most cases, the elastic anisotropy gives a rather s
correction to the results of the isotropic approximatio
Qualitatively this fact can be explained as follows. In co
trast to the QW structures, the strain distribution in QD str
tures is determined by two physically different factors: fir
the degree of symmetry of the QD shape and, second,
anisotropy of the elastic properties.

Three separate cases can now be identified:~i! the QD
shape has higher symmetry than the cubic symmetry of
elastic properties;~ii ! the QD shape has cubic symmetry; a
~iii ! the symmetry of the QD shape is less than the cu
symmetry of the elastic properties. In the first case, the
isotropy in the strain distribution is caused largely by t
anisotropy of the elastic properties. Therefore, the isotro
and anisotropic models can give different results. On
other hand, in most cases when the symmetry of the
shape is less than or equal to the cubic symmetry, the do

TABLE I. Elastic moduli for some III–V semiconductors~see Ref. 14! ~in
units of 1011 Pa).Can is the measure of the elastic anisotropy.

Material C11 C12 C44 Can

GaAs 1.18 0.54 0.59 20.54
InAs 0.83 0.45 0.40 20.42
InSb 0.66 0.36 0.30 20.30
GaSb 0.88 0.40 0.43 20.38
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nant contribution to the anisotropy of the strain distributi
is caused by the ‘‘anisotropy’’ of the QD shape rather th
by the anisotropy of the elastic properties. Therefore,
isotropic assumption yields results which reproduce the m
features of the fully anisotropic model. To demonstrate t
point, we have performed calculations of the strain distrib
tion for the sphere, cube and the pyramid. Elastic consta
for GaAs, as presented in Table I, are used for all calcu
tions presented in this and the following section. The mi
strain,e0 , is 20.067 corresponding to InAs dots containe
in a GaAs matrix and, for the isotropic calculations,C12

50.5431011Pa andC4450.5931011Pa are used withCan

50.
The strain distribution is itself isotropic for an isotrop

spherical QD. The degree of anisotropy induced by the cu
symmetry of the elastic properties can be characterized
the radial component of the strain tensor in spherical coo
nates,err , which is plotted for three directions in Fig. 1
Inside the QD the isotropic and anisotropic models give c
stant strain with a value which is nearly identical for bo
models. Outside the QD the results of the two models
different. Along the~001! direction, the change inerr is
greater for the anisotropic model than for the isotropic mo
and the maximum value ofuerr u is ;30% larger. The reverse
situation occurs along the~111! direction. Here, the maxi-
mum value ofuerr u is less for the anisotropic model than fo
the isotropic model. Along the~110! direction the results of
the two models nearly coincide. Thus, for a spherical Q
the influence of the elastic anisotropy is very small inside
sphere, while outside the dot this influence is rather large
the ~100! direction and small in the~110! direction. Outside
the dot the isotropic model effectively gives the strain dis
bution averaged over different directions.

The comparison of the anisotropic and isotropic mod
for the cubic QD is presented in Fig. 2. Here, the symme
of the QD is the same as the symmetry of the elastic pr
erties. Therefore, the influence of the elastic anisotropy

FIG. 1. Radial strain tensor component,err , for different directions through
a spherical dot is presented for the isotropic~solid line! and anisotropic
~dashed and dotted lines! models. The radius of the QD is 3 nm and th
origin of the coordinate system is at the QD center. Parameters for G
~see Table I! have been used and the misfit strain is26.7%.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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much smaller than for the spherical QD. The maximum d
ference between the anisotropic and isotropic models a
occurs along~001!, analogous to the case of the sphe
However, in the cubic QDu(ei j

iso2ei j
aniso)/ei j

isou<10% for the
~001! direction and less than 5%–7% for other directions

For the pyramid, the symmetry of the QD shape is le
than the cubic symmetry of the elastic properties. Again o
can see that the results of the anisotropic and isotropic m
els are very similar qualitatively and quantitatively. In co
trast to the spherical QD, the difference between the
models is less outside the pyramidal QD than inside it.

In the previous section we showed that, in the isotro
limit, the hydrostatic strain componenteh5eii is a constant
inside the QD and zero outside. For the anisotropic mo
the componenteh has a weak spatial dependence~see Figs. 2
and 3!. In the case of the cube,eh is large in the center of the
QD and decreases slightly away from the QD center. For
pyramid,eh increases in the direction from the pyramid ce
ter to the top of the pyramid. However, the dependence oeh

on position is rather weak, reflecting our conclusion that
influence of elastic anisotropy on QD strain distributions
relatively small.

FIG. 2. Hydrostatic,eh , and biaxial,eb , strain components along selecte
directions for a cubic dot of length 6 nm are presented for the isotropic
anisotropic models. The origin of the coordinate system is at the QD ce
Parameters for GaAs have been used and the misfit strain is26.7%.
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IV. INFLUENCE OF THE QD SHAPE ON THE STRAIN
DISTRIBUTION

QDs of different shape can be fabricated by controlli
the material and growth conditions. The shape of fabrica
QDs is, however, not known accurately19 and therefore it is
important to study the influence of the QD shape on
strain field. It is clear that the strain tensor will be different
least in the areas where the QD shapes do not match, bu
there characteristics of the strain field which are similar
QDs of different shape? To answer this question we comp
the strain distribution in the sphere, cube, pyramid, he
sphere, truncated pyramid and flat cylinder. Again elas
constants for GaAs are used,e0520.067 and, for the iso-
tropic calculations, explicit values ofC12 and C44 are used
with Can50.

Figure 4 shows a contour plot of the radial component
the stress tensor for the sphere and cube calculated fo
isotropic model. In contrast to the sphere, the cube has s
edges and so near these edges, as well as inside the QD
stress distribution is different between the two cases.

d
r.

FIG. 3. Hydrostatic,eh , and biaxial,eb , strain components along selecte
directions for a pyramidal dot of base length 6 nm and height 3 nm
presented for the isotropic and anisotropic models. The base sides are
allel to thex and y axes and the origin of the coordinate system is at
center of the base. Parameters for GaAs have been used and the misfit
is 26.7%.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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outside the QD, the stress contours become very similar
the cube and sphere. For distances of the order of the
size the stress distributions outside the dot become inde
dent of the QD shape. The stress contours for the cube
come spherical and nearly coincide with those of the sph

Let us now consider the anisotropic model and focus
the hydrostatic strain component,eh5eii , and the biaxial
strain component,eb5ezz2(exx1eyy)/2. These strain com
ponents define the potential profile for the electrons and
splitting of the light and heavy hole states, respectively. F
ure 5 shows the dependence ofeh and eb for the spherical
and cubic QDs in the~001!, ~110! and ~111! directions. In
spite of the fact that the stress distribution inside the QD
the sphere and cube is different, the characteristic valu
the hydrostatic strain component is very close for the t
shapes. This means that the barrier height for electrons h
comparatively weak dependence on the QD shape. Along
~110! and ~111! directions the QD sizes are different an
thereforeeh drops to zero at different positions. The biaxi
strain,eb , for the two shapes is different near the QD boun
ary. Along the~001! directioneb is large inside the cube an
smaller outside compared to the sphere. The reverse situ
arises along~110!; inside the cubeeb is smaller, while out-
side it is larger. For both shapes, along the~111! direction,
the biaxial strain is zero due to symmetry.

A comparison of the strain distribution for the pyram
and hemisphere is presented in Fig. 6. The hydrostatic s
is similar for both shapes throughout most of the QD, sim
to the case of the cube and sphere. In the lower part of

FIG. 4. Radial strain component,e rr , surrounding a spherical and cub
inclusion with equal volume. The cube sides are of length 10 in arbitr
units and the sphere has a radius of (750/p)1/3. The calculation uses the
isotropic approximation. Parameters for GaAs have been used and the
strain is26.7%.
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pyramid and hemisphere,eh andeb are nearly identical, but
in the upper part the strain is different due to the sharp ed
of the pyramid and smooth boundary of the hemisphere
particular, in the~001! direction, the pyramid has a shar
corner which results in a steep variation of the biaxial stra
A similar effect can be seen in the~111! direction near the
pyramid edge. However, compared to the~001! direction, the
change in biaxial strain is not so steep because along
~111! direction the pyramid edge forms a sharp angle in o
direction only, while the top of the pyramid forms a sha
angle in two directions. In the~111! direction the biaxial
strain in the hemisphere has no extremum near the up
boundary and its variation is qualitatively the same as
sphere or cube along the~001! or ~110! direction. The be-
havior of the biaxial strain suggests a general rule: near sh
boundaries~edges or corners! the biaxial strain varies steepl
and has an extremum.

Figure 7 shows the shear strain tensor components
the pyramid and hemisphere. Forz,0, the shear component
are effectively identical and along the~001! direction the
shear components are zero due to symmetry. In the~101!
direction, the only nonzero shear component isexz . In this

y

sfit

FIG. 5. Hydrostatic,eh , and biaxial,eb , strain components along selecte
directions for a spherical and a cubic dot are presented for the anisotr
model. The radius of the spherical dot is 3 nm and the length of the c
dot is 6 nm. The origin of the coordinate system is at the center of the d
Parameters for GaAs have been used and the misfit strain is26.7%.
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direction, the variation ofexz for the two shapes is qualita
tively similar, but for the pyramid the amplitude of the jum
near the QD boundary is larger than that for the hemisph
Along the ~111! direction all three shear components a
non-zero andexz5eyz . In this direction, the pyramid has
sharp edge, therefore these strain components for the p
mid vary more steeply near the QD boundary.

The hydrostatic and biaxial strain for the cylinder a
truncated pyramid are presented in Fig. 8. Along the~001!
directioneh andeb are very close for the two shapes, exce
in a small area outside the dot near the boundary whereuebu
for the truncated pyramid is larger. In the QD plane@direc-
tions ~100! and ~110!#, the truncated pyramid and cylinde
have different sizes. Therefore, the hydrostatic compon
drops to zero at different positions, but again the charac
istic value ofeh is nearly equal for these two shapes. Al
note that in the QD plane the strain components outside
dot vanish over a distance of the order of a quarter of the
diameter or base length. This is much more rapid than in
~001! direction or for ‘‘nonflat’’ shapes~sphere, cube or

FIG. 6. Hydrostatic,eh , and biaxial,eb , strain components along selecte
directions for a hemispherical and a pyramidal dot are presented for
anisotropic model. The hemisphere radius is 3 nm and the pyramid h
base length of 6 nm and height 3 nm. The origin of the coordinate syste
at the center of the dots. Parameters for GaAs have been used and the
strain is26.7%.
Downloaded 06 Nov 2009 to 129.8.242.67. Redistribution subject to AIP
e.

ra-

t

nt
r-

e
D
e

hemisphere!, where the strain vanishes over distances of
order of the QD size along the corresponding direction.

V. CONCLUSIONS

In this article, we have presented a new method base
a Green’s function approach to calculate strain distributio
in QDs of arbitrary shape. Our general method includes e
tic anisotropy in full with specific results for cubic crysta
presented as a special case. The advantage of this meth
that it enables nearly analytical expressions for the str
distribution to be obtained in the form of a Fourier series a
the calculation is therefore much faster than other numer
methods. It becomes particularly effective for the calculat
of the strain distribution for periodic arrays, QD superlattic
or vertically coupled QDs. In these cases, the Fourier se
converges quickly and so fewer Fourier components are
quired in order to obtain accurate results. The other adv
tage of our method is that the QD shape enters only thro
the Fourier transform of the QD characteristic function~a 3D
analogue of the 1D Heaviside function!, which is calculated
analytically for all common QD shapes.

The calculation method is also particularly well suited
an input step in calculations of the electronic properties
quantum dots. Most calculations of confined state energie
quantum dots have used the envelope function method,
the wave functions calculated using a basis of plane w
states. Previous studies have often included two large i
gration steps in calculating the matrix element linking a
pair of plane wave states. Firstly, the real-space strain fiel
calculated explicitly throughout the structure. This real-spa
strain field is then used as input in a second integration s
to determine the strain-related contributions to the int

he
a

is
isfit

FIG. 7. Shear strain components for a hemispherical and a pyramidal do
presented for the anisotropic model. The hemisphere radius is 3 nm an
pyramid has a base length of 6 nm and height 3 nm. The origin of
coordinate system is at the center of the dots. Parameters for GaAs
been used and the misfit strain is26.7%.
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plane-wave matrix elements. By contrast, using the anal
presented here, each of these matrix elements can be d
mined analytically, being proportional to a single term in t
Fourier series we have introduced.

Comparing the results of the simplified isotropic mod
and the anisotropic model reveals that, in contrast to the
case, the two models generally give very similar results. T
elastic properties have cubic symmetry while, in most ca
the QD shape has lower symmetry. Therefore, the anisotr
of the strain distribution is mainly determined by the anis
ropy of the QD shape rather than by the anisotropy of
elastic properties of the media. Therefore, for QDs, ani
tropic and isotropic models give very similar results f
strain distributions. We have also calculated and compa
strain distributions in different QD shapes and found that
characteristic values of the hydrostatic strain component
pend only weakly on the QD shape. Strain distribution
structures with different shapes are qualitatively simi
throughout most of the QD. Differences mainly arise fro
the sharp edges and corners of some shapes when com

FIG. 8. Hydrostatic,eh , and biaxial,eb , strain components along selecte
directions for a truncated pyramid and a cylindrical dot are presented fo
anisotropic model. The pyramid base length is 6 nm, the width of the
face is 3 nm and its height is 1.5 nm. The diameter and height of
cylinder are 6 nm and 1.5 nm, respectively. The origin of the coordin
system is at the center of the dots. Parameters for GaAs have been use
the misfit strain is26.7%.
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to the smooth boundaries of others. Outside the dot, st
distributions become nearly independent of the QD sh
over distances of the order of the QD size. Finally, we n
that at present the dimensions of QDs are uncertain to at l
10% and so the isotropic approximation should suffice,
as technology improves and the shape and size of QDs
comes known to a greater precision, anisotropic calculati
may become necessary to accurately determine the strain
tributions.
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APPENDIX

The Fourier transform of the characteristic function is
3D integral

x̃QD~j!5E
QD

e2 i j•rdV, ~A1!

where the integration is carried out over the QD volume. F
most QD shapes, the functionx̃QD(j) can be found analyti-
cally. In this section, we present formulas for the sphe
cube, pyramid, cylinder, hemisphere, cone and trunca
pyramid.

For a sphere centered at the origin,

x̃QD~j!5
4p

j Fsin~jR!

j2 2
R cos~jR!

j G , ~A2!

whereR is the sphere radius.
For the cuboid,

x̃QD~jn!5
8

j1j2j3
sin~j1a1/2!sin~j2a2/2!sin~j3a3/2!,

~A3!

wherea1 , a2 , a3 are the cuboid dimensions and the orig
of the coordinates is at the center of the QD.

For the pyramid,

x̃QD~jn!5x1~j1 ,j2 ,j3 ,Lx ,Ly!1x1~j2 ,j1 ,j3 ,Ly ,Lx!

1x1~2j1 ,j2 ,j3 ,Lx ,Ly!

1x1~2j2 ,j1 ,j3 ,Ly ,Lx!, ~A4!

with

x1~j1 ,j2 ,j3 ,Lx ,Ly!

5
1

j2j3
H e2 i j3hF I e0S Lx

2
,2j11j3

Ly

Lx
1j2

2h

Lx
D

2I e0S Lx

2
,2j12j3

Ly

Lx
1j2

2h

Lx
D G

2I e0S Lx

2
,2j11j2

Ly

Lx
D1I e0S Lx

2
,2j12j2

Ly

Lx
D J ,

~A5!

e
p
e
e
and
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whereLx andLy are the pyramid base dimensions~the base
is assumed to form a rectangle!, h is the pyramid height,
I e0(a,j)5@ei ja21#/( i j), the origin of the coordinate sys
tem is at the center of the base and thex and y axes are
parallel to the base sides.

For the cylinder,

x̃QD~jn!5
2pD

j ij3
sin~j3h/2!J1S Dj i

2 D , ~A6!

whereJ1 is a Bessel function,h is the cylinder height,D is
the diameter and the origin of the coordinate system is at
center of the cylinder.

For the hemisphere,

x̃QD~j!5
1

2
x̃QD

sphere~j!1
2p i

j3
F R

j i
J1~Rj i!2R2I j 0~Rj3 ,Rj i!G ,

~A7!
wherex̃QD

sphereis the Fourier transform for the sphere,R is the
hemisphere radius,j i5Aj1

21j2
2 and I j 0 denotes the integra

I j 0~a,b!5E
0

1

x cos~aA12x2!J0~bx!dx, ~A8!

whereJ0 is a Bessel function. The integral in Eq.~A8! is best
calculated numerically.

For the cone,

x̃QD~j!5
2p i

jz
Fe2 i jzhI 2~j iR,jzh!2

R

j i
J1~j iR!G , ~A9!

whereR is the radius of the cone base,h is the cone height
and I 2 denotes the integral

I 2~a,b!5E
0

1

xJ0~ax!eibxdx. ~A10!

This integral can be expressed as a power series or calcu
numerically.
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For the truncated pyramid,

x̃QD~j!5x̃QD
pyr~j,Lx

b ,Ly
b ,hl !2e2 i jzhtx̃QD

pyr~j,Lx
t ,Ly

t ,hs!,

~A11!

where Lx
b and Ly

b are the base lengths,Lx
t and Ly

t are the
dimensions of the truncated face,ht is the height,
x̃QD

pyr(j,L1 ,L2 ,h) is the Fourier transform for a pyramid wit
base lengthsL1 and L2 and heighth; hs5Lx

t ht /(Lx
b2Lx

t )
andhl5Lx

bht /(Lx
b2Lx

t ). In the above formula, the origin o
the coordinate system is at the center of the QD base.

1Y. Androussi, A. Lefebvre, B. Courboule`s, N. Grandjean, J. Massies, T
Bouhacina, and J. P. Aime´, Appl. Phys. Lett.65, 1162~1994!.

2E. P. O’Reilly, Semicond. Sci. Technol.4, 121 ~1989!.
3E. P. O’Reilly and A. R. Adams, IEEE J. Quantum Electron.30, 366
~1994!.

4M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B52, 11969~1995!.
5T. Benabbas, P. Franc¸ois, Y. Androussi, and A. Lefebvre, J. Appl. Phys
80, 2763~1996!.

6M. A. Cusack, P. R. Briddon, and M. Jaros, Phys. Rev. B54, R2300
~1996!.

7J. R. Downes, D. A. Faux, and E. P. O’Reilly, J. Appl. Phys.81, 6700
~1997!.

8J. D. Eshelby, Proc. R. Soc. London, Ser. A241, 376 ~1957!.
9G. Pearson, A. D. Andreev, D. A. Faux, and E. P. O’Reilly~unpublished!.

10D. A. Faux and J. Haigh, J. Phys.: Condens. Matter2, 10289~1990!.
11P. H. Dederichs and G. Leibfried, Phys. Rev.188, 1175~1969!.
12T. Mura and N Kinoshita, Phys. Status Solidi B47, 607 ~1971!.
13I. M. Lifshits and L. N. Rosentsverg, Zh. Eks. Teor. Fiz.17, 9 ~1947! ~in

Russian! @Sov. Phys. JETP#.
14M. P. C. M. Krijn, Semicond. Sci. Technol.6, 27 ~1991!.
15J. R. Downes, D. A. Faux, and E. P. O’Reilly, J. Appl. Phys.82, 3754

~1997!.
16R. W. Keyes, J. Appl. Phys.33, 3371~1962!.
17A. D. Prins and D. J. Dunstan, Philos. Mag. Lett.58, 37 ~1988!.
18C. G. Van de Walle, Phys. Rev. B39, 1871~1989!.
19H. Lee, R. Lowe-Webb, W. Yang, and P. C. Sercel, Appl. Phys. Lett.72,

812 ~1998!.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp


