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While the cluster statistics exponents for three-dimensional continuum systems have been shown to be
the same as those of lattices, the cluster structure and the conductivity exponents of such continuum sys-
tems have not been reported before. Here we present the first determination of both the fractal dimension
of clusters, D, and the conductivity exponent, ¢, for these systems. We further describe the ‘‘porcupine’’-
like morphology of the clusters and the conductivity behavior in continuum anisotropic systems.

In recent studies it has been established that critical
behavior of percolating two-dimensional continuum sys-
tems,! as well as their physical properties,2 are the same as
those of lattice systems. This universal behavior is expected
then to hold also in three dimensions. Indeed, a study?
which has considered the percolating clusters statistics for a
three-dimensional continuum system has shown that the
corresponding critical exponents, 8, y, 7, and v are the
same as those obtained for three-dimensional lattices.* On
the other hand, no study of clusters structure (dimensions
and morphology) and of a physical property (such as resis-
tivity) has been reported for three-dimensional continuum
systems.

In the present Rapid Communication we would like to re-
port such a study in order to establish that the universality
applies beyond the cluster statistics and in order to present
completely new information that is obtained for three-
dimensional anisotropic continuum systems.

For that purpose we have used a Monte Carlo procedure
which is in principle (but not in detail) similar to that re-
ported before for two- (Refs. 2 and 5) and three- (Ref. 6)
dimensional systems. We have randomly implanted (one by
one) N capped cylinders, all having a length L and radius r,
in a unit cube. Correspondingly, all the lengths to be men-
tioned below are given in this unit. The cylinders con-
sidered® are allowed to penetrate each other. Such inter-
penetrating or overlapping capped cylinders will be called
here intersecting ‘‘sticks.”” The orientation of a “‘stick’ is
defined by the angle it makes with the axis of uniaxial sym-
metry, z. We have used® a uniform random distribution of
angles between the two limits — 6, and 6,. Hence, the iso-
tropic case is given by 9,‘——-%17 and the smaller the 6, the
larger the anisotropy. The macroscopic anisotropy P, /P, is
defined as in the two-dimensional case® yielding for the
above described random orientation

Py /P1=C0[(0“/2) . (l)

For each stick ‘‘thrown’’ into the cube, its intersection
with all previous sticks is checked. If it does not intersect
any other stick it is given a cluster number, while if it does
intersect, it is given the cluster number of the stick it has
intersected. If a stick makes two previously separated clus-
ters join, the joint cluster receives one of the previous clus-
ter numbers. For the cluster statistics and cluster structure
study the computer stores the following information for
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every N: the number of sticks in every cluster, s, the
number of clusters of size s, N;, and the center (x;,y;,z;) of
each stick belonging to a given cluster. Using this informa-
tion the program computes the center of gravity of each
cluster (x.,y.,z.) and its radius of gyration’

R 1/2
Ro=| 3 /s] , @)
i=1

where 7%= (x;—x.)*+ (y;—y.)?+ (z;—2z)%. We have also
introduced a new density profiling check by counting the
sticks between parallel planes [e.g., x =x.+ (n —1)a and
x =X, +na] so that this “‘slicing’’ provides information con-
cerning the ‘‘mass distribution’” in the cluster. Finally, the
critical stick concentration for the onset of percolation, N,
is the smallest value N for which there is a cluster that in-
tersects the opposite boundaries. Because of the finite sam-
ples used, there is a statistical deviation between the values
of N, obtained in the different directions.® In what follows
we shall use the notation N.; for the threshold along the z
axis, and N, for the threshold along the x axis.

For the determination of the resistance of the cube along
the z axis, R, and perpendicular to this axis, R ;, we have
attached a unit resistor to each intersection of two sticks in
the percolating cluster. This cluster contains N, sticks.
Hence, as in our two-dimensional study,? the stick is as-
sumed to be an equipotential and the resistor network made
of the unit resistors is resolved. by the well known matrix
representation.

The assumption made needs some elaboration since the
distribution in the values of the resistors which can take
place in ‘‘real’’ continuum systems is unaccounted for. One
reason for such a distribution is that the resistance between
two conducting particles may depend on the degree of their
overlap. While no analog experiment or theoretical model
deals with this problem we note that at least for some com-
posites®® (for which a one-point tunneling contact has been
suggested) our assumption approximates the real situation.
Another reason for having a distribution in the values of
the resistors is the distribution of distances between inter-
sections of one conducting particle by other particles. That
such a distribution does not affect the critical behavior of
the resistance has been demonstrated, for two-dimensional
systems, by an analog experiment.2 The emphasis in this
work, however, is on the ‘‘correlation’’ aspect of the contin-
uum systems described. We know that a percolating system
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in the continuum can be presented by a correlated lattice.'”
In both the lattice and the continuum, we have random
resistors networks. The question which is addressed here is
how will the correlations in the resistors network affect the
values of the network’s resistance and its critical behavior?
In lattices, there are small discrete numbers of resistors
which have a common junction, while in our continuum
model there is a distribution of such numbers. In particu-
lar, it is interesting that the center of this distribution will
depend on the aspect ratio of the particles involved. This is
borne out by a recent observation!' that, for a system of
spheres close to the percolation threshold, the average
number of spheres intersecting a given sphere is 2.8, while
the same quantity for long (L >>r) sticks is 1.4. Corre-
spondingly, the ‘‘average building block’ of the spheres
system is a three resistor junction, while the junction of the
long stick has, on the average, half the number of resistors.
Following the above considerations our results are expected
to shed light on the ‘‘correlation’’ aspect of the continuum
while the effect of the resistors values distributions deserves
a separate study. Based on the much greater amount of
data for two-dimensional systems, one expects, however,
that both aspects of the continuum will not yield a different
critical behavior from that found for lattices.

To examine consistency with the previous reports,’ we
have checked first whether the reported critical exponents
are obtained in our isotropic system of three-dimensional
sticks. Using double logarithmic plots (but determining the
exponents by least-squares fit’?) we found from the N;
dependence on s (at N just above N.) that +=2.2+0.2,
from the dependence of N,/N on (N/N.—1) that
B=0.4+0.1, from the dependence of (ZN,s’)N) on
(N/N.—1) that y=1.8+0.2, and from the correlation
length, i.e., the average’ of R, that v=0.83 +0.09. These
values are, within the experimental confidence limits, the
same as those reported before.> The new observation, how-
ever, is that these values are obtained for spheres (L << r)
as well as for elongated sticks, i.e., that they are indepen-
dent of the aspect ratio of the corresponding sticks. This
suggests that the critical behavior is independent of the type
of objects of which the continuum system is composed.

The second search was for the dependence of the radius
of gyration R, [see Eq. (2) abovel on s for N just above N..
This search was done for both spheres and sticks in the iso-
tropic three-dimensional system. Typical results for large
(we have chosen s = 10) clusters’ are shown in Fig. 1. The
value obtained from the slope, i.e., D =2.5 £0.5 is in excel-
lent agreement with the predictions’ for the fractal dimen-
sion of large clusters, D =d —B/v, where d is the dimen-
sionality of the system and B/v, for the three-dimensional
system, is about 0.5.

Having a sticks system enables the introduction of aniso-

tropy into the system (see above). How will the introduced
anisotropy affect the structure of the clusters? First, we
found, as expected, that in isotropic systems the clusters
have a spherical shape but the radius of gyration increases
with increasing aspect ratio L/2r. The shape of the clusters
in the anisotropic systems has been revealed by the density
profiling described above. Typical results of such a section-
ing study are shown in Fig. 2. The x’s indicate the number
of sticks between two successive planes parallel to the yz
plane while the z’s indicate the number of sticks between
successive planes parallel to the xy plane.

A simple reconstruction which utilizes the sectioned pro-
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FIG. 1. Dependence of the radius of gyration of a cluster on its
size. A point indicates the existence of one cluster of the corre-
sponding s while a number indicates the number of clusters of the
corresponding s and their averaged R;.

files shown can yield the cluster cross section. While it is
clear from the data presented in Fig. 2 that the cluster has a
cylindrical shape the distribution of the sticks at the
cylinder’s ends, where the sticks are sparse, requires much
larger clusters (and thus larger sticks ensembles) than those
available in our study. Following this difficulty we have stu-
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FIG. 2. Number of sticks centers between x,+ (n—1)a and

x. +na (the x’s) and between z, + (n — 1)a and z, +na (the z’s) as
a function of the distance (n— —;)a from the cluster center
(X¢,Yerze). Here,a=0.05and n=1. ’
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FIG. 3. Longitudinal and transverse resistance of two isotropic
three-dimensional continuum systems as a function of the conduct-
ing particles concentration. The values of the exponents are derived
by a least-squares-fit procedure.

died the much larger clusters available for the two-
dimensional systems of widthless sticks. We found that
these clusters have a capped rectangle shape where the caps
are parabolic. Hence, we have drawn the curve connecting
the data points in Fig. 2 to be consistent with this shape.
This result suggests that the shape of the three-dimensional
cluster is the body of rotation of a capped rectangle. Corre-
spondingly, we also show the cluster cross section which is
in agreement with the data (reduced for convenience by a
factor of 2) and is consistent with a capped cylinder shape.
Of course, one has to recall that the clusters have a ‘‘swiss
cheese’’ structure’ and thus this overall shape is just the en-
velope of the cluster. The present clusters have also the
special property that parts of the sticks may be piercing this
envelope from within, yielding a ‘‘porcupine’’-like morphol-
ogy to the cluster. We further see that the bulk of the clus-
ter has quite a uniform density and that its ‘“‘skin’> (where
the density drops from the bulk value to zero) is almost
one-quarter of its diameter. The important general property
of the clusters in anisotropic systems, which is found here,
is that they are elongated, but their aspect ratio is always
smaller than the macroscopic anisotropy of the system.
Hence, a sublinear dependence exists between these two
quantities. More quantitative dependences of the cluster
shapes on the various possible parameters [L/r, 6,, s, and
(N/N,—1)1 will be reported elsewhere.

Turning to the resistance of the cubes, we have found
(for many seeds) its dependence on the sticks concentra-
tion, as is shown in the examples of Fig. 3. The clear
power-law behavior suggests that the critical exponent ¢ can
be obtained from the data. The ¢ values shown in Fig. 3
and their confidence limits were determined using the
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FIG. 4. Dependence of the apparent longitudinal (¢,) and
transverse (z,) conductivity exponents on the macroscopic aniso-
tropy of the system P /P .

least-squares-fit procedure of Ref. 2. The points to note are
that for these isotropic continuum samples the ¢ value is the
same as that found for three-dimensional lattices,”!? that
this value is independent of the sticks’ aspect ratio, and that
for the same N/N,—1 the resistance itself is almost in-
dependent of the aspect ratio or the ‘‘average building
block’ mentioned above. While the observed value of ¢
confirms the expected universality, the latter point deserves
some attention since one might expect that the longer sticks
would conduct more ‘‘efficiently.”” This expectation is ful-
filled if one considers the fact that much more ‘‘material’’ is
needed for the N spheres than for the N sticks (see the r
and L values in Fig. 3) to yield the same conductivity.

The effect of anisotropy on the resistance of a continuum
system can be readily studied in our system of elongated
particles (sticks). Plotting the R and R, data as in Fig. 3
for the various anisotropies has yielded, over the same
N/N.y—1 (or N/N.,—1) range, apparent power-law
dependences. Hence, we have obtained an apparent critical
exponent ¢, which is associated with R, and an apparent
critical exponent ¢; which is associated with R;. We have
chosen this presentation of the data since it was used for the
studies of anisotropic two-dimensional'>'* and three-
dimensional'? lattices. In these studies it was found that ¢,
increases with the deviation from the percolation threshold
and with increasing anisotropy while 7, decreases under the
same variations. As we show in Fig. 4 the same behavior is
also obtained in the continuum system studied here. This
finding, which has not been reported before for the two-
and three-dimensional continuum, appears to be universal.
Our results seem then to be also beneficial for the planning
of real practical systems such as composites made of
elongated particles.?®
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