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Abstract

We consider how randomness can be made to play a useful role in quantum information processing—in particular, for
decoherence control and the implementation of quantum algorithms. For a two-level system in which the decoherence channel
is non-dissipative, we show that decoherence suppression is possible if memory is present in the channel. Random switching
between two potentially harmful noise sources can then provide a source of stochastic control. Such random switching can also
be used in an advantageous way for the implementation of quantum algorithms.
 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Randomness and noise are typically seen as having a detrimental effect on the coherent evolution of a quantum
system, and hence on the ability of the system to process quantum information [1]. For classical systems, the advent
of phenomena such as stochastic resonance, Brownian ratchets and the Parrondo effect, have shown that noise may
indeed play a helping role after all [2]. This opens up the intriguing question of whether randomness can play a
useful role in quantum systems, in particular given the widespread current interest in quantum information schemes
such as quantum computation [1].

Here we investigate how the intrinsic randomness of an open quantum system might actually be used to our
advantage for quantum information processing. First we consider the role of randomness in suppressing and
controlling decoherence (Sections 2 and 3). For a two-level system in which the decoherence channel is non-
dissipative, we show that suppression of decoherence is possible if memory is present in the channel. Random
switching between two potentially harmful noise sources, can then provide a source of stochastic control. Second,
we show how random switching can be used in an advantageous way for the implementation of quantum algorithms
(Section 4).
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2. Stochastic decoherence

Decoherence is a unique quantum phenomenon which results in a decay of the off-diagonal elements in a density
matrix. Simply put, it is the following process:

ρ0 :=
(
a b

b∗ c

)
t�→

(
a b′
b′∗ c

)
,

where|b′|< |b|. This results in the decay of superpositions of states into a probabilistic mixture.

2.1. Non-dissipative system

We now study decoherence in a two-level system under the physical assumptions that the channel is (i) non-
dissipative and (ii) isolated, i.e., no entanglement is allowed between the system and the environment. This
decoherence can be thought of as arising from the observers’ limited knowledge of the channel, e.g., due
to uncontrollable classical fluctuations. If we further assume discrete time evolution for simplicity, the above
assumptions imply that the final density matrix can be written asρn =Un . . .U1ρ0U

†
1 . . .U

†
n , where

Uk =
(
e−iθk/2 0

0 eiθk/2

)
.

Decoherence can only occur if our knowledge ofθk ’s is uncertain. To prove that such a lack of knowledge will
almost surely lead to decoherence, let us assume that the phase kicksθ are independent and identically distributed
with probability distributionP(θ). We will then have

ρn =
(

a bγ ne−inφ
b∗γ neinφ c

)
,

where

γ e±iφ :=
θhi∫

θlo

e±iθP (θ) dθ.

Hence,|γ | � 1 and the equality is satisfied if and only ifP(θ)= ∑
k pkδ(θ − a− k) for some constanta [3]. This

condition will only be met in exceptional circumstances—therefore stochastic decoherence will essentially always
arise in such a system.

We now let τ0 be the interaction time and setn = t/τ0. Letting P(θ) be exp(θ/ωτ1)/ωτ1 for θ � 0, we

find γ =
√

1+ω2τ2
1 andφ = arctan(ωτ1). This coincides with the main result in Ref. [4] where the constant

τ1 corresponds to the “time width of each event” [4]. On the other hand, by setting

P(θ) := 1

σ
√

2π
exp

[
− (θ −µ)2

2σ 2

]
,

whereµ := sin(ω/λ) and σ 2 := 2(1 − cos(ω/λ)), we recover the result in Ref. [6] if we identifyλ with the
“fundamental time of the universe” [6]. This observation makes sense because our assumptions are the most general
ones. Indeed for any decay factor of the form(γ eiφ)t/τ0 with γ < 1, we could pick

P(θ) := 1

σ
√

2π
exp

[
− (θ −µ)2

2σ 2

]
with µ := φ andσ 2 := −2 lnγ .
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Given that stochastic decoherence will almost always be present in a real-world quantum system, in accordance
with the discussion above, one can ask whether a method can be devised to control it. Unfortunately, we can show
that there is actually no way to suppress the stochastic decoherence discussed aboveif the channel has no memory.
The justification of this statement is as follows. Let us assume that such an operation is feasible and let us call itF ,
where

F :

(
a b

b∗ c

)
�→

(
a b′
b′∗ c

)
and where|b′| > |b| for a non-empty set ofb values. We require thatF be non-dissipative, i.e., we do not allow
dissipation in exchange for decoherence suppression. Hence

F
((

1 0
0 0

))(
1 0
0 0

)
, F

((
0 0
0 1

))
=

(
0 0
0 1

)
.

Letting

F
((

0 1
0 0

))
=

(
α β

γ δ

)
, F

((
0 0
1 0

))
=

(
α′ β ′
γ ′ δ′

)
,

we see that for someb, |β + eiθβ ′|> 1, whereeiθ = b∗/b. But if we now take

ρ0 := 1√
2

(
1 eiθ/2

e−iθ/2 1

)
,

then

F(ρ0)= 1√
2

(
1 β + eiθβ ′

(β + eiθβ ′)∗ 1

)
.

This latter quantityF(ρ0) will not have positive eigenvalues because the off-diagonal elements have norms greater
than 1, thereby contradicting the fact thatF is a superoperator. In other words, the above demonstration shows that
there is no “coherence booster”—even for particular states.

2.2. Dissipative system

Through the following example, we illustrate how a dissipative system may be modelled using a similar
stochastic process. Consider the following channel:

E(ρ)= pE0ρE
†
0 +pE1ρE

†
1 + (1− p)RzρR

†
z ,

where

E0 :=
(

1 0
0

√
1− α

)
, E1 :=

(
0

√
α

0 0

)
, Rz :=

(
e−iθ/2 0

0 eiθ/2

)
.

Hence

E(ρ)=
(

1− (1− αp)(1 − a) b[p√
1− α + (1− p)e−iθ ]

b∗[p√
1− α + (1− p)eiθ ] c(1− αp)

)
.

Keepingp fixed and assumingα, θ to be Gaussian and independent gives∫ ∫
E(ρ)Pad(α)Ppd(θ) dα dθ

=
(

1− (1− p
√

4λad/π )(1− |a|2) ab∗[p(1− √
λad/π )+ (1− p)e−λpd ]

a∗b[p(1− √
λad/π )+ (1− p)e−λpd ] |b|2(1−p

√
4λad/π )

)
,
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where we have assumedλad � 1, and a Taylor expansion has been used on the diagonal terms before integrating.
In particular, if it is known that the relevant timescales satisfyT1 � T2/2 (see, e.g., Ref. [5]), then we need

p � 1− e−λpd
1− e−λpd + √

λad/π
.

3. Control of decoherence via randomness

Decoherence control is crucial to the success of quantum computation. We now study the possibility of
controlling stochastic decoherence using further randomness.

3.1. A vector-rotating game

We start by introducing a classical vector-rotating game which shows a Parrondo-like effect [2]. This particular
game motivates much of the later development of decoherence control and the discussion of algorithms.

Game A. Consider a wheel with a vector drawn from the center to the circumference, i.e., the vector is a radial
line. Suppose the vector is originally vertical (i.e.,θ = 0) and the player plays by calling a robot (A) to rotate the
wheel. The robot can only rotate the wheel by 0, 2π/3 or 4π/3 radians, with equal probabilities. The player wins
if the vector ends up in the upper-half of the circle (i.e.,−π/2 � θ � π/2) and he loses otherwise. The game is
continued by rotating the wheel from the previous position, i.e., without restoring the vector to the vertical position.
The stationary states are such that the vector will end up atθ = 0, 2π/3 or 4π/3 with equal probabilities. Therefore
this game is losing for the player and the rate of losing is 1/3. In Parrondo’s original game, the losing rate is smaller
(i.e.,−2ε, whereε � 1).

Game B. This is the same as game A, except that the robot (B) can now only rotate the wheel by 0, 2π/7, 4π/7,
6π/7, 8π/7, 10π/7, 12π/7, with equal probabilities. Similar analysis as that for game A shows the player’s losing
rate is 1/7. In Parrondo’s original game, the losing rate is again smaller (i.e.,−11ε/5, whereε � 1).

Game A⊕ B. The player now plays a combined game in which he randomly selects either A or B at each timestep.
Operationally, one of the robots A or B is selected at random to rotate the wheel at each timestep. Simple geometric
analysis shows that the vector can now end up in 3× 7 = 21 different orientations, 11 of which are winning. The
corresponding 21× 21 transition matrix is doubly stochastic and so the stationary distribution will be equally
distributed among these 21 positions. Therefore the player now wins with probability 11/21≈ 0.5238> 1/2. In
Parrondo’s original game, the winning rate was 1/80− 21ε/10 as compared to the present, larger rate of 1/21.
It turns out there is nothing special about the numbers 3 and 7 chosen for this implementation. The games A
and B are originally losing simply because 3= 7 = 3 mod 4, and the combined game becomes winning because
3× 7 = 1 mod 4. Therefore, the above vector-rotating implementation of Parrondo’s effect works equally well for
all m,n such that(m,n) = 1 andm = n = 3 mod 4. By the same method, we can therefore construct two losing
games with rates−1/m < 0 and−1/n < 0 such that when they are combined at random, we obtain a winning
game with rate 1/mn > 0. One could also extend the Parrondo scheme to include random combinations ofany
even number of games.

3.2. Stochastic control

We showed earlier that it is impossible to control decoherence if the noise does not have any “memory”. This
then leads us to consider correlated phase kicks. Depending on the particular model employed, some of the control
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methods devised elsewhere might also work [7,8]. However, we choose here to focus on a stochastic suppression
of decoherence which mimics some form of Parrondo effect [2].

Motivated by the classical vector-rotation game we introduced earlier, we consider two probability distributions
PA,PB which are correlated to the previous rotated angle (θ1) in the following manner:

PA(θ2|θ1)=
{ 1

3[δ(0)+ δ(−π/2)+ δ(π/2)], θ1 ∈ {−π/2,0,π/2},
δ(0), otherwise,

PB(θ2|θ1)=
{ 1

3[δ(ε)+ δ(−3π/4)+ δ(π/4)], θ1 ∈ {−3π/4, ε,π/4},
δ(ε), otherwise.

If PA is the only noise in the system and if we assume the initial angle of rotation is 0, we will have

PA(θn, . . . , θ1)=
∏
i

PA(θi),

as theθi ’s always lie in the set{−π/2,0,π/2}. Therefore,

γAe
±iφA :=

∫
e±iθPA(θ) dθ = 1

3
.

Similarly,

γBe
±iφB :=

∫
e±iθPB(θ) dθ = 1

3
eiε

with γA = γB = 1/3.
Combining the two probability distributions at random gives

P(θ2|θ1)=
{

1
2δ(ε)+ 1

6[δ(0)+ δ(−π/2)+ δ(π/2)], θ1 ∈ {−π/2,0,π/2},
1
2δ(0)+ 1

6[δ(ε)+ δ(−3π/4)+ δ(π/4)], otherwise.

SinceRz(θ)Rz(φ)=Rz(φ)Rz(θ), we can writeρn as∫
Rz(θ1) . . .

∫
Rz(θn)ρ0R

†
z (θn)P (θn|θn−1)dθn . . .R

†
z (θ1)P (θ1) dθ1.

We now define the following functions recursively:

f1(θ) :=
∫
eiφP (φ|θ) dφ, fk+1(θ) :=

∫
eiφfk(φ)P (φ|θ) dφ

for 1 � k � n. Hereρ = fn(0), assuming that the initial angle is 0.
For the combined probability distributionP above, we see that the angles of rotation can only take on six values,

{−3π/4,−π/2,0, ε,π/4,π/2}. Furthermore, we can calculate thefk ’s to be the following:

f1 :

{ {−π/2,0,π/2} �→ eiε/2+ 1/6,

{−3π/4, ε,π/4} �→ 1/2+ eiε/6,

fk+1 :
{ {−π/2,0,π/2} �→ 1

2fk(0)+ 1
6fk(ε),

{−3π/4, ε,π/4} �→ 1
2fk(ε)+ 1

6fk(0).

Letting ε go to zero and writingeiε as 1+ O(ε), we see that thefk ’s always output 2/3 + O(ε). An immediate
consequence is thatρ(10)

n has an exponential decay factor of 2/3 + O(ε). This is animprovement over the value
1/3, which is the decay factor if we were to consider noisePA and noisePB separately. This result is reminiscent
of the Parrondo effect discussed earlier for classical systems [2]. We note in passing that Mancini et al. [9] have
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also devised a stochastic scheme to control quantum coherence. Although these authors invoke a memoryless
modulation of the cavity length, their model is dissipative. More specifically, their only source of decoherence
is the loss of photons—hence their results are fundamentally different from the present case of anon-dissipative
channel.

4. A stochastic algorithm

We now turn to an example involving quantum algorithms, in which cooperating with randomness may be a
better strategy than trying to fight it. We consider a game where the player’s goal is to obtain (i.e., measure with
a high probability) a fixed, unknown numberα in as few timesteps as possible. Here 0� α � 2n − 1. The initial
state has the form|ψ〉 = ∑2n−1

x=0 (1/
√

2n )|x〉. In this game, an infinite sequence of operatorsÔ1 . . . Ôm . . . will
be applied to|ψ〉. The player decides when to stop the sequence, i.e., he has the freedom to choosem such that
|ψf 〉 = Ôm . . . Ô1|ψ〉. The payoff is then determined by a measurement in the computational basis of|ψf 〉. The
game is winning if the player possesses a strategy that wins with probability> 1/2, and is losing otherwise. This
game incorporates strategic moves, since the set of strategies used by the player to decide the duration of the game
are equivalent to the set of natural numbersN.

Game A. Here Ôi = Â for all i, whereÂ(|x〉) = (−1)δxα |x〉. Geometrically,Â reflects the vector|ψ〉 about
|α〉. SinceÂ2 = I , the player’s freedom in choosing when to stop the game will always reduce to just one of
the following two scenarios:|ψf 〉 = Â|ψ〉 or |ψf 〉 = |ψ〉. Unfortunately for the player, the payoff|〈α|Â|ψ〉|2 =
|〈α|ψ〉|2 = 1/2n which is less than 1/2 for n� 2. Therefore the player does not possess a winning strategy, hence
game A is losing for him.

Game B. HereÔi = B̂ for all i, whereB̂ := 2|ψ〉〈ψ| − I . Geometrically,B̂ reflects|ψ〉 about itself. Again, the
player has the freedom to decide how manyB̂ are applied to the input state before measurement. However, since
B̂|ψ〉 = |ψ〉, the player can have no influence in determining the payoff in this game. The game is hence losing for
him because the payoff|〈α|ψ〉|2 = 1/2n which is less than 1/2.

Game A⊕B. The player combines games A and B at random. By this we meanÔi = Â or B̂ with equal probability.
Once again, the player has the freedom to decide when to stop the sequence and hence do the measurement. Since
Â2 = B̂2 = I andB̂|ψ〉 = |ψ〉, any given finite sequencêOi will always produce a final state with the following
form: |ψf 〉 = (B̂)ÂB̂ . . . ÂB̂Â|ψ〉. Now, numerical calculation suggests that form= 4k,

|ψf 〉 = Ôm . . . Ô1|ψ〉 =
k︷ ︸︸ ︷

(B̂Â) . . . (B̂Â) |ψ〉.
It can also be seen that̂B ◦ Â = Ĝ, whereĜ is Grover’s operator [1,10]. Hence a winning strategy for the player
is to choose to stop after the(4k)th operation wherek = �π√

2n/4�. The winning probability is> 1/2, and hence
we see that this combined game is winning for the player.

5. Conclusion

We have discussed potentially useful roles for randomness in quantum information processing—in particular,
decoherence control and quantum algorithms. The counter-intuitive conclusion is that such randomness/noise might
be of direct use in the quantum regime, as opposed to being a guaranteed nuisance. We hope that the present work
serves to simulate further research in this fascinating area.
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