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We study restrictions imposed by quantum mechanics on the process of matrix-element transfer. This problem
is at the core of quantum measurements and state transfer. Given two systems A and B with initial density matrices
λ and r , respectively, we consider interactions that lead to transferring certain matrix elements of unknown λ into
those of the final state r̃ of B. We find that this process eliminates the memory on the transferred (or certain other)
matrix elements from the final state of A. If one diagonal matrix element is transferred, r̃aa = λaa , the memory
on each nondiagonal element λa �=b is completely eliminated from the final density operator of A. Consider the
following three quantities, Reλa �=b, Imλa �=b, and λaa − λbb (the real and imaginary part of a nondiagonal element
and the corresponding difference between diagonal elements). Transferring one of them, e.g., Rẽra �=b = Reλa �=b,
erases the memory on two others from the final state of A. Generalization of these setups to a finite-accuracy
transfer brings in a trade-off between the accuracy and the amount of preserved memory. This trade-off is
expressed via system-independent uncertainty relations that account for local aspects of the accuracy-disturbance
trade-off in quantum measurements. Thus, the general aspect of state disturbance in quantum measurements is
elimination of memory on non-diagonal elements, rather than diagonalization.
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I. INTRODUCTION

Quantum mechanics imposes constraints on information
processing. Among known examples of such contraints is
the fact that measuring an unknown quantum state inevitably
disturbs it. This fundamental feature was known since the early
days of quantum mechanics [1] and has been recently for-
malized via uncertainty relations and information-disturbance
trade-offs [2–7]; see Refs. [8,9] for reviews.

Another constraint is the no-cloning theorem, which states
that due to linearity and unitarity of quantum dynamics there
exists no physical process that can produce perfect copies of
a system that is initially in an unknown quantum state [10].
The theorem is closely related to the quantum-measurement-
induced state disturbance [11]. There are several important
generalizations of the no-cloning theorem [12–22].

Here we study limitations imposed by quantum mechanics
on the process of matrix-element transfer from one system to
another. This problem includes as particular cases quantum
measurement and cloning (see below for details). Before we
formally pose the problem in the next section, let us see where
such transfer processes are encountered.

A. Quantum measurement

Let a quantum system is prepared in a (generally, unknown)
state described by a density matrix ρS . For the measurement
of an observable Â pertaining to the system quantum theory
predicts that the probabilities of observing various eigenvalues
of Â are given by the Born rule:

Pr(Â = a) ≡ tr[ρS�̂Â(a)], (1)

where �̂Â(a) is the projector referring to the eigenvalue a

of Â.
For describing the measurement process one has to include

explicitly the measuring apparatus, which—prior to its interac-
tion with the system—is in a known state with a density matrix
ρM . Several requirements on ρM and the system-apparatus

interaction are to be satisfied by an ideal quantum measure-
ment [26]. The basic—and in a sense minimal—requirement
is that the initial probabilities Pr(Â = a) in Eq. (1) are
mapped to the final probabilities of the apparatus observable
B̂ [3,4,23,25,26]:

Pr(Â = a) = Prfin(B̂ = a) ≡ tr
[
ρfin

M �̂B̂(a)
]
, (2)

where ρfin
M is the final (after interacting with the system) density

matrix of the apparatus, �̂B̂(a) is the projector of B̂, and where
for simplicity we assumed that Â and B̂ have the same discrete
spectra.

Equation (2) implies that the probabilities (1) of Â can be
obtained by looking at the statistics of the apparatus observable
B̂. Relation (2) is satisfied with many models of ideal quantum
measurements [25–27]. It is supposed to hold for an arbitrary
initial density matrix ρS, because the latter is unknown.

Thus the quantum measurement means, in particular,
transferring the initial matrix elements of the tested system
in the representation where Â is diagonal. The full transfer
amounts to requiring (2) for all independent probabilities.
However, for concrete purposes we can be interested only
by certain probabilities Prin(Â = a) and then Eq. (2) is to be
imposed only for those probabilities.

For many models of quantum measurements it was ob-
served that after realizing an ideal measurements of the
observable Â, the system is left in a state with a density
matrix diagonal in the Â representation [25–27]. This feature
is closely related to the von Neumann projection [25–27]. It
is now interesting to ask what happens to the state of the
system after transferring ideally the diagonal matrix elements
according to Eq. (2), i.e., after satisfying the minimal condition
of quantum measurements.

B. Polarization transfer

Transfer of matrix elements is realized also in one of the
main methods of cooling, where polarization is transferred
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from one system to another [28–30], e.g., from highly polar-
ized electron spins to almost unpolarized nuclear spins [30].
Polarization transfer is well known in NMR and ESR, quantum
and atomic optics, semiconductor physics, etc. [28–30]. For
the simplest example take two spin- 1

2 density matrices for two
systems

λ = 1
2 [1 + �l · �σ ], r = 1

2 [1 + �r · �σ ],

where �σ are Pauli matrices and �l, �r are Bloch vectors. Trans-
ferring diagonal (nondiagonal) elements λ11 = r̃11 (λ12 = r̃12)
amounts to transferring the z (x and y) component(s) of the
Bloch vectors. Both these processes are well studied experi-
mentally [28–30,35]. Related processes of energy (excitation)
transfer are important in biological systems (e.g., photo-
synthesis) [31]. The energy transfer between two quantum
system means transferring the diagonal elements in the energy
representation.

C. State transfer

Quantum communication via (unknown) state transfer
plays an important role both for practical implementation
of scalable quantum processors and for understanding the
efficiency of quantum computation; see Refs. [32,33] for
reviews. In many theoretical studies devoted to the state-
transfer problem one simply assumes that the state of a finite-
dimensional quantum system (qubits or qutrits) is transferred
to another system. Qubits and qutrits can be understood
literally as real systems with a finite number of energy levels.
However, more often than not, finite-dimensional systems are
implemented in subspaces of a larger dimensional quantum
system; see Ref. [34] for a review. For instance, qubits can
be implemented via bosonic modes, or alternatively, they
can be placed in subspaces of a multiqubit system, the
purpose being immunization of the qubit from decoherence
(decoherence-free subspaces) of feasibility of error-correcting
schemes [34].

Without going into details of implementation of qubits and
qutrits in a larger dimensional systems (see Ref. [34] in this
context) one can state that in all those cases where qubits
and qutrits are not understood literally, the resulting quantum
state can be described via suitable matrix elements of the full
density matrix of the larger (embodying) system; see [35] for
experimental realizations. Thus, in all those cases transferring
quantum state refers to certain (not all) elements of the full
density matrix.

For various schemes of quantum state transfer it is of a clear
interest to understand what happens to the state of the source
system after the transfer has been realized, e.g., to what extent
this final state can serve as a source for another state transfer.

These examples show that transferring (certain) elements
of the (unknown) density matrix and understanding limitations
imposed by quantum theory on such processes is a relevant
task.

The article is organized as follows. We formally state the
studied problem in Sec. II. The next two sections discuss
limitations related to the ideal transfer of matrix elements. In
particular, Sec. III discusses how the obtained results related to
quantum measurements. Sec. V describes a setup for nonideal

transfer processes. Details of such processes are presented in
Secs. VI and VII. We summarize in the last section.

II. STATEMENT OF THE PROBLEM

Consider a finite-dimensional quantum system A. The
information is encoded into matrix elements of its density
operator λ; this situation is realized in the above examples. To
be a carrier of information this state has to be unknown. For
simplicity we assume that the state is completely unknown.

There is another, composite system B + C in some known
state with density operator ω. The Hilbert spaces of A and B

have the same dimension: dimHA = dimHB = N . The initial
state of the overall system A + B + C is λ ⊗ ω. Let p, r =
1, . . . , N and

{|p〉}np=1, 〈p|r〉 = δpr , {|p̄〉}np=1, 〈p̄|r̄〉 = δpr ,

be two orthonormal bases in HA and HB , respectively. The
interaction between A and B + C is described by unitary
operator U . It will be chosen such that for any initial density
operator λ of A, certain initial matrix elements λab = 〈a|λ|b〉
of

λ =
∑
pr

λpr |p〉〈r| (3)

are equal to the corresponding matrix elements of the final
state r̃ of B:

λab = r̃ab = 〈ā |̃r|b̄〉, r̃ = trA+C(Uλ ⊗ ωU †).

Here C is an auxiliary system (ancilla or environment). After
tracing it out, the considered dynamic operation amounts to a
trace-preserving completely positive map acting on A + B.

We aim to understand implications of the matrix-element
transfer from A to B on the memory of the transferred
elements λab (or some other elements of λ) in the final state
λ̃ = trB+C(Uλ ⊗ ωU †) of A (the formal definition of memory
is given in Sec. V).

Note that when all density matrix elements are transferred,
the final state of A cannot be equal to its initial state. This
follows from the no-cloning theorem: there exists no quantum
process that can produce perfect copies of a system that is
initially in an unknown quantum state [10]. The theorem is
closely tied to the fact that measuring the unknown quantum
state inevitably disturbs it [11]. However, the no-cloning
principle—even in the form of its various generalizations
[12–20]—cannot be applied directly to our problem, be-
cause here only certain (not all) matrix elements are copied
(transferred).

We choose the initial state of B + C as

ω = |1̄〉〈1̄| ⊗ |C〉〈C|, (4)

where |C〉 exists in the Hilbert spaceHC of C. This choice does
not restrict generality provided that there are no restrictions on
the dimensionality of the Hilbert space HC of C, and provided
that we are free to design unitary evolutions for B + C. Indeed,
an initial mixed state of B + C can be purified by extending
C to a larger Hilbert space, while the resulting pure state can
be rotated to |1̄〉 ⊗ |C〉 by a suitable unitary operator.
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We represent the unitary operator U as (p = 1, . . . , N)

U |p〉 ⊗ |1̄〉 ⊗ |C〉 =
∑
k,l

|k〉 ⊗ |l̄〉 ⊗ ∣∣Cp

kl

〉 ≡ |ψp〉, (5)

where all summation indices run from 1 to N , and where the
vectors |Cp

kl〉 with p, k, l = 1, . . . , N live in HC .
The unitarity of U amounts to (p, r = 1, . . . , N )

〈ψp|ψr〉 = δrp or
∑
kl

〈
C

p

kl

∣∣Cr
kl

〉 = δrp. (6)

The final states

λ̃ and r̃ =
∑
a,b

r̃ab|ā〉〈b̄|

of A and B, respectively, read from Eq. (5)

λ̃ =
∑
pr

λpr�pr, (7)

r̃ab =
∑
pr

λpr

∑
k

〈
Cr

kb

∣∣Cp

ka

〉
, (8)

where

�pr ≡
∑
kn

|k〉〈n|
∑

l

〈
Cr

nl

∣∣Cp

kl

〉
. (9)

The process of matrix-element transfer depends crucially
on which (diagonal or nondiagonal) elements are transferred.
We therefore study these cases separately. Note that a diagonal
density matrix λ (with unknown diagonal matrix elements)
carries only a classical information. Nondiagonal elements
represent quantum aspects of the information contained in the
unknown state λ.

III. DIAGONAL TO DIAGONAL TRANSFER:
THE IDEAL SITUATION

Assume that for every initial state λ of A a diagonal element
λaa of A is transferred to the diagonal element r̃aa of B:

λaa = r̃aa. (10)

For this it is necessary to have [see Eq. (8)]∑
k

〈
Cr

ka

∣∣Cp

ka

〉 = δprδpa for all pairs (r, p). (11)

Equation (11) for r = p = a implies
∑

k〈Ca
ka|Ca

ka〉 = 1. Com-
bining this with Eq. (6) under the same condition p = r = a

gives |Ca
kl〉 = 0 for l �= a. Equation (11) for r = p = c �= a

gives |Cc
ka〉 = 0 for every c �= a. Altogether, we get∑

l

〈
Ca

nl

∣∣Cc
kl

〉 = 0 for every c �= a or

�a �=c = 0, (12)

implying from Eqs. (7) and (9) that due to transferring λaa =
r̃aa the memory on each initial nondiagonal element λa �=c in
the final density operator λ̃ of A is lost; see Eq. (7).

Let us stress that the final state λ̃ of A need not be diagonal
and that the memory on λaa itself is conserved in λ̃. Note that
to be able to speak on the memory and its loss, we have to have

initially some freedom in choosing λa �=c, i.e., the latter should
carry some information.

Recall from our introductory discussion that transferring
the diagonal elements is an essential part of the quantum
measurement. The above result on the memory loss of nondi-
agonal elements shows in which specific sense the state of the
measured system is disturbed after the measurement. Studying
disturbances induced by various quantum measurements—in
particular, studying the inevitable disturbance as a function
of the measurement accuracy—is a known subject; see
Refs. [5–9] for reviews. In particular, the analysis of various
models for the quantum measurement led to a conclusion that
after the ideal measurement is completed, the postmeasure-
ment state is diagonal in the representation of the measured
variable (an effect sometimes attributed to decoherence)
[26,27]. It is seen from Refs. [7] and [9] and from Eqs. (10)–
(12) that after the ideal transfer of all diagonal matrix elements
the final state of A need not be diagonal, though it loses the
memory on all nondiagonal elements of the initial state of A.
Indeed, assuming that all diagonal elements are transferred we
get from Eqs. (10) and (12) for the final state λ̃ of A:

〈s |̃λ|t〉 =
∑

p

λpp

〈
C

p
tp

∣∣Cp
sp

〉
.

This means that the diagonalization of the postmeasurement
state was a consequence of various additional conditions
imposed on the quantum measurement process; see Ref. [26]
for a detailed discussion.

To repeat, the basic (and minimal) requirement for the
quantum measurement is the transfer of diagonal matrix
elements, and this requirement leads to elemination of memory
rather than to diagonalization.

IV. TRANSFER OF NONDIAGONAL ELEMENTS

Demanding∑
k

〈
Cr

kb

∣∣Cp

ka

〉 = δrbδpa for all (r, p) and a �= b, (13)

amounts to transferring ideally the corresponding nondiagonal
element:

r̃ab = λab

for arbitrary initial state λ of A; see Eqs. (7) and (9). The non-
negativity of

∑
k[α∗〈Ca

ka| + β∗〈Cb
kb|][α|Ca

ka〉 + β|Cb
kb〉] as a

function of two complex numbers α and β (Cauchy-Schwartz
inequality) leads to

1 =
∑

k

〈
Ca

ka

∣∣Cb
kb

〉
�

√∑
k

〈
Ca

ka

∣∣Ca
ka

〉∑
k

〈
Cb

kb

∣∣Cb
kb

〉
,

(14)

where the equality in Eq. (14) is due to Eq. (13) under r = a

and k = b. The inequality in Eq. (14) has to be saturated, be-
cause (6) implies

∑
k〈Ca

ka|Ca
ka〉 � 1,

∑
k〈Cb

kb|Cb
kb〉 � 1. Thus

we have
∑

k〈Ca
ka|Ca

ka〉 = ∑
k〈Cb

kb|Cb
kb〉 = 1, which together

with Eq. (6) gives for any k∣∣Ca
kl

〉 = 0 for l �= a and
∣∣Cb

kl

〉 = 0 for l �= b. (15)
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Equations (7), (9), and (15) lead to �a �=b = �b �=a = 0, i.e.,
the memory on the transferred nondiagonal element λab in the
final density operator λ̃ is lost; see Eq. (7).

Another consequence of saturating the inequality in Eq. (14)
is that |Cb

kb〉 = |Ca
ka〉 for any k, which leads to∑

l

〈
Ca

nl

∣∣Ca
kl

〉 = 〈
Ca

na

∣∣Ca
ka

〉 =
∑

l

〈
Cb

nl

∣∣Cb
kl

〉 = 〈
Cb

nb

∣∣Cb
kb

〉
,

i.e., �aa = �bb, meaning that memory on the difference of
diagonal elements λaa − λbb in the final density operator λ̃ is
lost; see Eq. (7). Thus one ideal nondiagonal-to-nondiagonal
transfer eliminates the memory on three real quantities, while
one diagonal-to-diagonal ideal transfer eliminates memory on
2(N − 1) real quantities. The difference between these two
cases is that for the ideal nondiagonal-to-nondiagonal transfer
the memory on the transferred element itself is eliminated from
the final state of A. This means that the nondiagonal elements
(as compared to diagonal ones) carry a different [more fragile]
type of information.

Let us note that when only the real part of the nondiagonal
element is transferred, Rẽrab = Reλab, for any initial density
matrix λ of A, the above result on elimination of the memory
on λaa − λbb still holds, while only the memory on the
imaginary part Imλab is eliminated from the final density
operator λ̃ of A (and vice versa when transferring the imaginary
part Imr̃ab = Imλab). Likewise, transferring the difference
between the eigenvalues, r̃aa − r̃bb = λaa − λbb, eliminates
the memory on Imλab and on Reλab. The derivation of these
facts is similar to that given around Eqs. (13)–(15). In this
sense these three quantities λaa − λbb, Imλab and Reλab are
complementary to each other.

It is seen that transferring an eigenvalue r̃aa = λaa implies
different (more severe) consequences for the memory of non-
diagonal elements than transferring an eigenvalue difference
λaa − λbb. Nevertheless, when all N − 1 independent diagonal
elements are transferred either directly, or via their differences,
the resulting damage to the memory of nondiagonal elements
is the same, i.e., the memory on all nondiagonal elements is
erased. For the direct transfer this is obvious from Eq. (12),
while for the second situation of transferring the eigenvalue
differences this follows from the fact that r̃aa − r̃bb = λaa −
λbb implies conditions (15).

V. NONIDEAL TRANSFER AND A MEASURE
OF MEMORY

While the above results refer to the ideal transfer, it is
important to see how much memory can be preserved under
a nonideal, finite-accuracy transfer. Naturally, the general
purpose of studying nonideal transfer is to find some com-
promise between transferring diagonal elements and erasing
the memory of nondiagonal elements in the final state of A.

First, let us recall an obvious fact that when transferring
(ideally or not) diagonal elements (i.e., positive numbers
summing to 1), we have to describe the transfer of independent
diagonal elements only.

Now if the ideal transfer corresponds to r̃ [id]
aa = λaa , its

nonaccurate version is defined to be

r̃aa = εaλaa, (16)

where we assume that εa does not depend on the initial state

λ and where r̃ [id]
aa −r̃aa

r̃
[id]
aa

= 1 − εa varies between zero and one,
0 < 1 − ε < 1, and characterizes the relative accuracy of the
transfer. [Clearly, one cannot have εa > 1, because the positive
diagonal elements should sum to one for all initial state λ;
we also recall that (16) is demanded for independent proba-
bilities only.] The notion of the relative accuracy is frequently
met in the standard analysis of experimental errors [36].

If λaa is considered as a signal, εa < 1 corresponds to
reducing (by a fixed amount) the signal magnitude without
introducing any bias. If some noise is present during the actual
transfer of the matrix element, this reduction will correspond
to decreasing the signal-to-noise ratio, because weaker signals
are more difficult to detect [36]. Conditions (16) are to be
imposed on independent probabilities only, so at best we can
have only N − 1 such constraints.

Note that condition (16) is certainly not the only way of
defining nonideal measurements. For instance, in the literature
devoted to quantum measurements one sometimes employs the
Heisenberg representation [4,24]. Within this representation
there is a reasonable definition of nonideality, which is related
to considering Heisenberg operators as signals [4,24]. In
particular, the Heisenberg operator of the apparatus variable
after the system-apparatus interaction is compared to the
system-variable Heisenberg operator before this interaction
[4]. Other approaches to nonideal measurements are reviewed
in Refs. [7–9].

However, condition (16) seems to be the simplest possibility
(at least within the employed Schroedinger representation) for
introducing a finite nonaccuracy without introducing any bias.

A. Quantifying the memory

The memory on the initial nondiagonal element λa �=c in
the final state (7) is most naturally quantified by checking the
response of the final state to perturbations in λa �=c. We take
another initial state λ′ of A such that all matrix elements of λ

and λ′ are identical besides the real and/or imaginary parts of
λa �=c. Naturally, such a λ′ can always be found, due to the basic
constraint on λa �=c: |λa �=c| � λaaλcc. [If λaa = 0 (or λcc = 0),
the very freedom in choosing λa �=c is absent, so there is no
point in discussing its memory loss.]

Provided that the (small) difference between λ and λ′ is
fixed, we look at the difference between the corresponding
final states λ̃ and λ̃′. This amounts to taking the derivatives
∂λ̃/∂Reλac|Imλac

and ∂λ̃/∂Imλac|Reλac
, which quantify, respec-

tively, the memory on the real and imaginary parts of λac.
These are still matrices, but the strength of the dependence
of λ̃ on Reλa �=c or on Imλa �=c can be characterized via
norms ||∂λ̃/∂Reλac|Imλac

|| and ||∂λ̃/∂Imλac|Reλac
||. Because

all norms are equivalent in a finite-dimensional Hilbert space—
i.e., given two norms ||.||1 and ||.||2, there exist positive
constants a and b such that a||A||2 � ||A||1 � b||A||2 for any
matrix A—we work with the Euclidean norm

||A|| ≡
√

tr(AA†), (17)
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where A† is the Hermitean conjugate of A. Finally, the memory
of λ̃ on λa �=c (i.e., on both Reλa �=c and Imλa �=c) is defined as

1

2

√
||∂λ̃/∂Reλac||2 + ||∂λ̃/∂Imλac||2 = ||�a �=c||, (18)

where 1
2 is introduced for convenience and where �ac is

defined in Eq. (9).
That the memory of λ̃ on (the real and imaginary parts of)

λac can be characterized by ||�ac|| is verified also by studying
the matrix gradient of λ̃, whose modulus is limited by ||�a �=c||
and 1√

2
||�a �=c|| from above and below, respectively [38].

Note that in the initial state ||�ac|| = 1 (perfect memory),
while after a trace-preserving completely positive map λ → λ̃,
we get that the memory on a matrix element can only
decrease ||�ac|| � 1. We skip the derivation of this fact,
because it is very similar to the derivation presented around
Eqs. (23)–(25). Now assume that after transferring matrix
elements, when A has reached the state λ̃, the system A is
subjected to a closed-system dynamics: λ̃ → Û λ̃Û †, where
Û is a unitary operator living in the Hilbert space of A and
generated by the free Hamiltonian of A. Physically, this means
that there is a time lag between realizing the matrix-element
transfer and checking for memory. Now as follows from the
unitary invariance of the norm (21), ||A|| = ||ÛAÛ †||, the
memory on a nondiagonal matrix element will not change
under a local (closed-system) dynamics.

It is thus seen that the introduced measure of memory does
have desired features that support its interpretation. The above
reasoning can be applied to quantifying the memory on various
combinations of matrix elements; see below.

1. Fidelity

Note that for describing the state disturbance during
quantum measurements and cloning one frequently employs
the fidelity between the final and initial state; see, e.g., Refs.
[8,9,15]. For our situation this implies that for quantifying
disturbances in the state of A, we try to use the fidelity F (λ, λ̃)
between the initial λ and final λ̃ states of A:

F (λ, λ̃) = (
tr
√

[λ1/2̃λλ1/2]
)2

.

Features of the fidelity are reviewed in Ref. [37]. In particu-
lar, F (λ, λ̃) varies between 0 and 1 and it is equal to 1 if
and only if λ = λ̃. Thus, its deviation from 1 is supposed to
quantify the “distance” between λ and λ̃. The largest “distance”
F (λ, λ̃) = 0 is achieved for orthogonal states λ and λ̃.

We saw above that the memory on nondiagonal elements
disappeared after the diagonal elements transfer. This naturally
means that the final state of A differs from its initial state, and
thus the fidelity is smaller than 1. The converse is clearly
not correct: the fidelity strictly smaller than one yet does not
imply the specific memory loss effect found above. In other
words, for the present problem the global measures of the state
disturbance (such as the fidelity) are not adequate, because they
can hide important physics. We need a local description of the
disturbances induced in the final state of the source system A,
such as the measure of memory introduced above.

Looking at the situation from a different angle, let us note
the following undesirable feature of the fidelity (as would-be
employed for the present situation). At the end of Sec. V A we

noted that the introduced measure of memory is invariant with
respect to unitary (closed-system) dynamics. This is clearly
not the case with the fidelity, because in general F (λ, λ̃) �=
F (λ, Û λ̃Û †) for a unitary Û . We note in this context that a
clear analysis of various general drawbacks of the fidelity is
presented in Ref. [21].

VI. DIAGONAL TO DIAGONAL TRANSFER:
NONIDEAL SITUATION

We shall study the maximal possible memory on the
initial nondiagonal elements λa �=c under a finite-accuracy
transfer (16). It proves more convenient to assume N � 3 and
to start immediately with the simultaneous nonideal transfer
of two (independent) diagonal elements of the N × N density
matrix:

r̃aa = εaλaa, r̃bb = εbλbb, 0 < εa < 1, 0 < εb < 1,
(19)

where εa and εb do not depend on the initial state λ and quantify
the nonideality. This case is generic, because the nonideal
transfer of one (or several) elements can be recovered from it;
see below. [For N = 2 we have only r̃aa = εaλaa instead of
Eq. (19).] Instead of Eq. (11) we get from Eq. (19)∑

k

〈
Cr

ku

∣∣Cp

ku

〉 = εuδprδpu for all (r, p) and u = a, b.

(20)

Equation (20) for r = p �= a and for r = p �= b gives for any
k∣∣Cp

ka

〉 = 0 for p �= a and
∣∣Cp

kb

〉 = 0 for p �= b.

(21)

Given Eqs. (19), (20), and (21) we now establish an upper
bound on ||�a �=c||. Let us define

z
rp

nlkl ≡ 〈
Cr

nl

∣∣Cp

kl

〉
, (22)

and let
∑′

l be the summation over l = 1, . . . , N excluding
l = a and l = b. We get from Eqs. (7) and (9)

||�a �=c||2 ≡
∑
k,n

∣∣∣∣∣∑
l

zca
nlkl

∣∣∣∣∣
2

�
∑
k,n

[∑
l

∣∣zca
nlkl

∣∣]2

(23)

�
∑
k,n

[∑
l

′√
zcc
nlnl

√
zaa
klkl

]2

(24)

�
∑

n

∑
l

′
zcc
nlnl

∑
k

∑
l

′
zaa
klkl, (25)

where the inequalities in Eqs. (24) and (25) are due to the
Cauchy-Schwartz inequality, while in Eq. (24) we additionally
used Eq. (24). We now get from Eqs. (25) and (6), (20), and (21)

||�a �=b|| �
√

(1 − εa)(1 − εb), (26)

||�a �=c|| �
√

(1 − εa) for every c �= a, c �= b. (27)

||�b �=c|| �
√

(1 − εb) for every c �= a, c �= b. (28)

These inequalities—which are akin to the uncertainty
relations—relate the nonideality of transfer to the maximal
possible amount of the conserved memory. Note that the bound
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on ||�a �=b|| is tighter than those on ||�a �=c|| and ||�b �=c||: once
the diagonal elements λaa and λbb are transferred, the memory
of the cross-nondiagonal element λab is the most vulnerable
one.

The extension of Eqs. (26) and (27) to transferring non-
ideally several matrix elements should be obvious, because
the nondiagonal elements under such a transfer fall naturally
into two classes, which correspond to Eqs. (26) and both (27)
and (28), respectively.

Let us show that the bounds [Eqs. (26) and (27)] are
saturated by the proper choice of |Cp

kn〉. To this end assume
that dimHC = 1: |Cp

kb〉 = C
p

kb|C〉, where C
p

kb are c numbers
satisfying Eq. (6). Thus we study a unitary interaction between
A and B. Choosing for N = 3

C1
11 = √

ε1, C1
13 =

√
1 − ε1, C2

22 = √
ε2, (29)

C2
23 =

√
1 − ε2, C3

33 = 1, (30)

while all other C
p

kb with p, k, b = 1, 2, 3 are zero, we satisfy
the unitarity conditions (6) and realize the optimal memory-
conserving nonideal transfer (19) with a = 1 and b = 2. Now
Eqs. (26) and (27) become equalities.

VII. NONIDEAL TRANSFER OF NONDIAGONAL
ELEMENTS

Let us now turn to a finite-accuracy, nondiagonal-to-
nondiagonal transfer

r̃ab = ηλab, a �= b and 0 < |η| < 1, (31)

where η can be a complex number and where |η| characterizes
the accuracy in the same sense as εa in Eq. (16). We shall
find out how the memory on the nondiagonal element ||�ab||
and the memory ||�aa − �bb|| on the difference between the
diagonal elements are bounded. Initially, we restrict ourselves
to finding the maximal possible memories for the c-number
case ∣∣Cp

kb

〉 = C
p

kb|C〉. (32)

Already this particular case will allow us to draw general
conclusions on the difference with the nonideal diagonal-to-
diagonal transfer. More general cases will be discussed below.

For Eq. (31) to hold for an arbitrary initial state λ of A we
need∑

k

Cr
kbC

p∗
ka = ηδrbδpa for all (r, p) and a �= b. (33)

This implies
∑

kC
a
kbC

a∗
ka = ∑

kC
b
kbC

b∗
ka = 0 and then

||�a �=b||2 = φa
aφb

a + φa
bφb

b + �ab, (34)

φu
v ≡

∑
k

∣∣Cu
kv

∣∣2
, (35)

�a �=b ≡
∑
[sl]

′
[∑

k

Ca
klC

a∗
ks

] [∑
n

Cb
nsC

b∗
nl

]
, (36)

where
∑′

[sl] means that the four pairs (s, l) =
(a, a), (a, b), (b, a), (b, b) are excluded from the summation
over s = 1, . . . , N and l = 1, . . . , N . In estimating |�a �=b|
from above we proceed by applying the Cauchy-Schwartz

inequality and using (34):

|�a �=b| �
∑
[sl]

′
[∑

k

∣∣Ca
kl

∣∣∣∣Ca∗
ks

∣∣] [∑
n

∣∣Cb
ns

∣∣∣∣Cb∗
nl

∣∣] (37)

�
∑
[sl]

′√
φa

l φa
s φb

l φ
b
s �

√∑
[sl]

′
φa

l φa
s

∑
[sl]

′
φb

l φ
b
s . (38)

Working out Eq. (38) and combining it with Eq. (34) we obtain

||�a �=b||2 � φa
aφb

a + φa
bφb

b (39)

+
√[

1 − (
φa

a + φa
b

)2
] [

1 − (
φb

a + φb
b

)2
]

≡ F, (40)

where we used
∑

k φr
k = 1; see Eqs. (35) and (6). We now

maximize F in the right-hand side of Eq. (40) to obtain a
bound on ||�a �=b||2 that holds for any {Cb

kl}. The maximization
is carried out under two constraints: (i) φa

aφb
b � |η|2, which

follows from applying the Cauchy-Schwartz inequality to
Eq. (33) with r = b and p = a; (ii) φa

a + φa
b � 1 and φb

b +
φb

a � 1, which follow from the unitarity condition (6). Note
from conditions (39) and (40) that the maximum of F over
φb

a can be reached only at the boundaries of its range, i.e., at
φb

a = 0 or at φb
a = 1 − φb

b . The same holds for φa
b . Direct

inspection shows that the maximum of F is reached for
φb

a = φa
b = 0 and φa

a = φb
b = |η|:

||�a �=b|| �
√

1 − |η|2. (41)

Comparing condition (41) with condition (27) we see that the
maximal amount of the preserved memory on the nondiagonal
element is larger for the nonideal nondiagonal-to-nondiagonal
transfer than for the diagonal-to-diagonal transfer with the
same degree of nonideality.

For the transfer r̃21 = ηλ21 and for N = 2 the bound (41)
is saturated by the following choice of {Cb

kl}
C1

11 = 1, C1
21 = C1

12 = C1
22 = 0, (42)

C2
21 =

√
1 − |η|2, C2

12 = η, C2
22 = C2

11 = 0, (43)

with an obvious generalization to N � 3. For the example
given by Eqs. (42) and (43) let us write down the final states
of A (̃λ) and B (̃r):

λ̃ =
[

λ11 + λ22|η|2 λ12

√
1 − |η|2

λ21

√
1 − |η|2 λ22

(
1 − |η|2)

]
, (44)

r̃ =
[

λ11 + λ22
(
1 − |η|2) η∗λ12

ηλ21 λ22|η|2
]

. (45)

Equation (44) shows that for a very inaccurate nondiagonal-to-
nondiagonal transfer |η| � 1, the disturbance introduced in the
final state of A can be a higher-order effect, ∝ |η|2, i.e., in the
perturbative sense the disturbance can be neglected. This effect
is clearly impossible for the inaccurate diagonal-to-diagonal
transfer. There for a small ε the induced disturbance is at
least of order ε; see conditions (26)–(28). An explanation of
this difference is that for the diagonal-to-diagonal transfer the
accuracy factor ε is strictly non-negative. So after the zero-
order term 1 in the memory-disturbance factor one can have a
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first-order term proportional to ε; see conditions (26)–(28).
In contrast, for the nondigonal-to-nondiagonal transfer the
accuracy factor η is generally complex; thus the first-order
factor |η| cannot appear (because it is not smooth with respect
to Reη and Imη), and the expansion starts from the second-
term |η|2.

It remains to see what happens to the memory on the diago-
nal element difference λaa − λbb under nonideal transfer (31).
This memory is quantified by

1√
2
‖�aa − �bb‖, (46)

where the factor 1√
2

is introduced for convenience. The
suitability of this memory measure can be argued for in the
same way as after Eq. (18). In particular, (46) is equal to its
maximal value 1 in the initial state.

We now have:

‖�aa − �bb‖2 = ‖�aa‖2 + ‖�bb‖2 − 2tr (�aa�bb) . (47)

Recalling that we are restricted to the c-number situation
|Cp

kb〉 = C
p

kb|C〉, and denoting µ
pr

ls ≡ ∑
nC

p

nlC
r∗
ns we get

tr (�aa�bb) =
∑
ls

∣∣µab
ls

∣∣2 �
∣∣µab

ab

∣∣2 = |η|2, (48)

where we employed (33) in the last equality. Combining (47)
and (48) with ‖�aa‖ � 1 and ‖�bb‖ � 1, we get

1√
2
‖�aa − �bb‖ �

√
1 − ε2. (49)

This is the sought upper bound on the memory of λaa − λbb.
It has the same form as (41).

For N = 3 this limit is reached by a unitary in the first three
rows of which only the following elements are nonzero

C1
11 = 1, C2

12 = ε, C2
32 =

√
1 − ε2, C3

13 = 1. (50)

This example shows a general property of the nullification of
‖�ab‖ in the regime where 1√

2
‖�aa − �bb‖ is in its maximum

(we omit the formal proof of this statement). However, the
maximization of ||�ab|| does not nullify 1√

2
‖�aa − �bb‖. The

example (42) and (43) illustrates this fact because it leads to
1√
2
‖�aa − �bb‖ = 1 − ε2, which is naturally smaller than the

optimal bound (49).

A. Extending the bound (41) to more general situations

In obtaining the bounds (41) and (49) we constrainted
ourselves by (32)—i.e., by one-dimensional Hilbert space
HC , which amounts to a unitary interaction between A and
B—because so far we were not able to get more general
analytic results. It is interesting to know whether taking larger
dimensions of HC can improve the bounds (41) and (49).
This question was studied numerically for several values
of dim HC and dim HA = HB . We imposed condition (31)
and numerically maximized the memories over the available
unitary transformations. The standard optimization routine
NMaximize of MATHEMATICA 7 has been employed. Our
numerical results fully confirmed the bounds (41) and (49);

TABLE I. The maximal value of ||�a �=b||2 for dimHA =
dimHB = 3 and various values of dim HC and the nonideality
parameter ε. The numerical results were obtained via running the
NMaximize routine of MATHEMATICA 7 for 37 iterations. The values
for ||�a �=b||2 are close to the bound (41). For the presented parameters
of ε these bound values are 0.91 and 0.36.

ε = 0.3 ε = 0.8

dim HC = 2 0.90601 0.35990
dim HC = 3 0.90739 0.35994
dim HC = 5 0.90997 0.35996

see Tables I and II. We conjecture that these bounds hold for
arbitrary values of dimHC .

VIII. SUMMARY

We studied how quantum mechanics constrains the process
of transferring density matrix elements from a system A to
another system B. It was argued that the problem of matrix
elements transfer lies at the core of quantum measurements
and quantum state transfer; see Sec. I.

Assuming that the initial density matrix (state) λ of A is
completely unknown, we show that transferring one diagonal
element λaa eliminates the memory on all initial nondiagonal
elements λa �=b from the final state of A.

In contrast, transferring the real part Reλa �=b (respectively,
the imaginary part Imλa �=b) of a nondiagonal element λa �=b

eliminates the memory on Imλa �=b (respectively, Reλa �=b), and
in addition the memory on the diagonal element difference
λaa − λbb is eliminated. Likewise, transferring λaa − λbb

eliminates the memory on both Reλa �=b and Imλa �=b.
Thus there is a complementarity between the diagonal and

nondiagonal elements, as well as within the triple Reλa �=b,
Imλa �=b, and λaa − λbb. Transferring one element of this triple
eliminates the memory on two others. Interestingly, transfer-
ring one diagonal element implies (in general) more severe
consequences for the memory as compared to transferring a
difference between two diagonal elements.

We also studied the maximal memory that can be preserved
under a finite-accuracy [i.e., nonideal] transfer. The proper
measure of memory is introduced in Sec. V A and shown
to possess features necessary for its consistent interpretation.
For each type of transfer the maximal memory relates to the
amount of nonideality via system-independent relations. For
the transfer of nondiagonal elements we saw that for a very
inaccurate transfer, ε � 1, the disturbance introduced in the
memory can scale as ε2 and thus can be in a sense neglected.
This is impossible when transferring diagonal matrix elements.

TABLE II. The same as in Table I but for 50 iterations.
Convergence to 0.91 and 0.36 [these values are implied by the
bound (41)] is seen clearly.

ε = 0.3 ε = 0.8

dim HC = 2 0.90906 0.35993
dim HC = 3 0.90913 0.35999
dim HC = 5 0.90999 0.35999
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Below we shall outline relations of our findings with
previous results known in literature. Recall that transferring
diagonal matrix elements is an essential part of quantum mea-
surement. Our relations—between the accuracy of the diagonal
elements transfer and the amount of memory preserved for
related nondiagonal elements—resemble uncertainty relations
established over the years for characterizing the information
obtained during a quantum measurement versus the induced
disturbance of the state of the measured system; see Refs. [4–9]
for recent reviews on this subject.

In the first approach (see, e.g., Refs. [6,8,9]) both the
information and disturbance have a global meaning. The
information is quantified, e.g., by the Shannon measure [6,8,9],
while for characterizing the disturbance one employs the
fidelity between the initial and final state of the measured
system. The difference with our setup is primarily that we
focus on explicitly described quantum measurements and
local quantities: the quality of measurement is determined
with us by the [relative] accuracy of transferring diagonal
matrix element(s). We also use a local measure of memory.
Employing here the fidelity (or any other global measure of
the state change) will not be adequate. Moreover, as we argue
in Sec. V A1, the fidelity does not possess some features, which
are necessary for its consistent application in this problem.

In the second approach the lack of information on the
measured variable is quantified via the overall uncertainty

of the measured quantity in the Heisenberg representation,
while for characterizing the disturbance introduced in the
state of the measured system one looks at the statistics of
those variables that do not commute with the measured one;
see Refs. [4,5] for reviews. This approach is well suited for
describing the Heisenberg-type uncertainty relations [4,5].
Now our approach is more flexible, because it does not insist
on doing the full measurement of the system quantity. Indeed,
the full measurement would mean transferring all diagonal
elements from one system to another. Instead, we concentrate
on situations where only some (not all) diagonal elements are
transferred. Moreover, our approach studies the transfer of
nondiagonal elements that clearly goes beyond the schemes
of quantum measurements studied in Refs. [4,5]. On the other
hand, we work in the Schroedinger representation and study
disturbances introduced (due to transfer) in the memory of the
final state of the source system.

With all these differences taken into account, it will
be suitable to disclose that we presented a new setup of
studying information transfer from one quantum system to
another.
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