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1. INTRODUCTION

The problem of electron heat transport is one of the
key issues in laser fusion. The nonlocal nature of heat
transport in a laser plasma is confirmed both by exper-
imental data [1–3] and by theoretical results [4–9]. It is
now well established that, on temperature scale lengths
that are on the order of or shorter than 100 electron
mean free paths, the electron heat flux differs from the
local one in the classical theory [10, 11]. So far, theo-
retical models of electron heat transport have been
developed based on the quasi-stationary approxima-
tion, in which the heat flux is considered to be nonlocal
in space but local in time. This implies that electron
thermal conductivity does not depend explicitly on
time. On the other hand, in kinetic simulations, it was
found that not only the spatially nonlocal nature of heat
transport processes but also their nonstationary nature
play an important role in a description of transport in a
plasma with small-scale temperature variations [12]. It
should be noted that the problem of nonstationary
transport has a long history: it was formulated many
years ago [13, 14] in a hydrodynamic model approach
by supplementing the classical hydrodynamic equa-
tions with an equation for the temporal evolution of the
heat flux. Even this simplest model showed that the
character of transport processes can change substan-
tially. The objective of the present paper is to investi-
gate the nonstationary nature of electron heat transport
by solving the kinetic equation with the exact collision
integral. As an example, we consider the relaxation of a
thermal perturbation that occurs initially on a spatial
scale shorter than the electron mean free path.

The problem of the temperature relaxation under
nonlocal heat transport conditions is of interest not only
from the standpoint of fundamental studies but also
because it is a challenging problem in the implementa-
tion of the idea of using speckled laser beams in laser
fusion experiments in order to control unavoidable non-
uniformities in laser radiation, to ensure a high effi-
ciency of laser energy deposition in a fusion target, and
to achieve a uniform compression of the targets. It
should be noted, however, that the speckles (hot spots)
arising in the plasma are fairly small—their transverse
dimensions (about 1–3 

 

µ

 

m) are less than the electron
mean free path; consequently, the classical transport
theory cannot be used to describe their relaxation,
which occurs under intermediate collisional conditions,
i.e., between the collisionless and collisional transport
regimes. In addition, the characteristic relaxation time
of such small-scale temperature inhomogeneities is
comparable to the electron collision time. The problem
of the relaxation of an individual laser hot spot was
solved in [15] on the basis of the quasi-stationary trans-
port theory. It is now clear that the initial size of such a
spot is bounded from below. Moreover, the nonstation-
ary effects have a great influence on the relaxation of a
thermal perturbation that occurs initially on a spatial
scale on the order of the electron mean free path.

The paper is organized as follows. In Section 2, we
obtain an exact kinetic solution to the initial-value
problem of the relaxation of a small thermal perturba-
tion. In Section 3, we analyze the relationship between
the nonlocal and nonstationary transport effects for the
case of a periodic single-mode thermal perturbation. In
Section 4, we study the relaxation of a spatially local-
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ized perturbation of the mean electron energy (effective
temperature) of a hot spot. Finally, in Section 5, we
draw conclusions about the conditions under which
nonstationary effects can manifest themselves in elec-
tron heat transport and about their regular properties.

2. SOLUTION OF THE INITIAL-VALUE 
PROBLEM OF THE RELAXATION
OF A THERMAL PERTURBATION

As a background, we consider a plasma in which the
electrons have the density 

 

n

 

e

 

 and temperature 

 

T

 

e

 

 and are
characterized by a Maxwellian distribution function

 

F

 

0

 

(

 

v

 

)

 

. Let us consider the Cauchy problem for a small
deviation 

 

δ

 

f

 

e

 

(

 

v

 

, 

 

x

 

, 

 

t

 

)

 

 from the distribution function

 

F

 

0

 

(

 

v

 

)

 

 due to perturbations of the equilibrium density
and temperature [12, 15]: 
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. Since we are
interested only in the relaxation of the thermal energy,
we take into account exclusively the temperature per-
turbations 

 

δ

 

T

 

(0)

 

 and set 

 

δ

 

n

 

(0)

 

 = 0. This corresponds,
e.g., to the problem of the relaxation of a rapidly devel-
oping hot spot when the density perturbations due to
the excitation of plasma waves are small, which is the
case if the temperature is perturbed on spatial scales
much larger than the Debye radius. Hence, we charac-
terize the initial perturbation 

 

δ

 

f

 

e

 

(

 

v

 

, 

 

x

 

, 0)

 

 by the per-
turbed mean electron energy (temperature) 

 

δ

 

T

 

(

 

x

 

, 0)

 

:

 

(1)

 

where 

 

v

 

Te

 

 = 

 

 is the thermal velocity of an elec-
tron with mass 

 

m

 

e

 

 and charge 

 

e

 

.

The linearized kinetic equation for the (

 

ω

 

, 

 

k

 

) Fourier
component of the perturbation 

 

δ

 

f

 

 has the form

 

(2)

 

where 

 

E

 

 is the self-consistent longitudinal electric field
and 

 

C

 

ei

 

 and 

 

C

 

ee

 

 are the electron–ion and electron–elec-
tron collision integrals. Expanding the perturbation 

 

δ

 

f

 

in Legendre polynomials, 

 

δ

 

f

 

 = (

 

ω
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k
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v

 

)

 

P

 

l

 

(

 

θ

 

),

 

we obtain the following infinite set of equations for the
angular harmonics 

 

f

 

l

 

 of the perturbed distribution func-
tion:
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where νei(v) = 4πZnee4Λ/( ) is the velocity-
dependent electron–ion collision frequency, Λ is the
Coulomb logarithm, and Z is the ion charge number in
the plasma. The set of equations is written for a highly
ionized plasma, Z � 1; in this case, the electron–elec-
tron collisions can be ignored in comparison with the
electron–ion collisions in the equations for all the angu-
lar harmonics of the distribution function, except in the
equation for its symmetric (l = 0) part, because this
equation does not incorporate electron–ion collisions.

The procedure of summation of an infinite series in
order to obtain a solution to Eqs. (3)–(5) was described
in [9, 16]. It implies introducing the modified electron
collision frequency νl that satisfies the recurrence rela-
tion

(6)

Applying this procedure, we obtain the following
expression for the first angular harmonic f1 of the distri-
bution function:

(7)

where the symmetric part f0 of the function satisfies the
equation

(8)

The general solution to Eq. (8) can be written as a linear
combination of the basis functions ψA (A = N, T),

(9)

which satisfy two identical equations with different
source terms SA:

(10)

with SN = 1 and ST = v 2/( ) – 1.
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The thermal perturbations at an arbitrary time are

determined by the moments  of the basis functions
ψA because (cf. [9])

(11)

where

(12)

For potential perturbations, the current and electric
field are related through Ampère’s law:

(13)

Substituting into relationship (13) the expression for
the electric current, whose Fourier component is deter-
mined in accordance with expression (7) by

(14)

we can eliminate the electric field from relationship (11).
As a result, we arrive at the final expression describing
the relaxation of a given initial thermal perturbation:

(15)

Here, we have introduced the dielectric function for a
collisional plasma [17],

(16)

where λDe = vTe/ωpe is the electron Debye radius and

ωpe =  is the electron plasma frequency.

Note that, in the thermal relaxation problem, the
terms proportional to ~kλDe � 1 are small corrections;
they can be ignored for most applications because the
characteristic spatial scales of the perturbations are
much larger than the electron Debye radius λDe. As a
matter of fact, this corresponds to the quasineutral
plasma approximation. In this case, expression (15) can
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be conveniently treated as a solution to the heat conduc-
tion equation in the k-representation,

(17)

with the thermal conductivity κ from nonlocal nonsta-
tionary transport theory [17]:

(18)

In what follows, we will analyze in detail the relaxation
of different types of initial temperature perturbations
δT(x, 0).

3. PERIODIC INITIAL THERMAL 
PERTURBATION

We consider a periodic initial single-mode perturba-
tion δT(x, 0) = T0cos(k0x). Studying such a perturbation
will allow us to understand how the characteristic relax-
ation time depends on the temperature scale length, L =
1/k0. Since the thermal perturbation that occurs on a
given spatial scale can be qualitatively characterized by
a certain Fourier component—the one that makes the
main contribution to the temperature distribution—
solving the relevant problem makes it possible to qual-
itatively predict the regular features of the time evolu-
tion of the perturbation.

In the classical local model [10, 11], as well as in the
nonlocal quasi-stationary model [9], the thermal con-
ductivity does not depend explicitly on time (in
Eq. (18), this corresponds to ω = 0) and its temporal
evolution is determined only by the slow time depen-
dence of the parameters of the main plasma state.
Accordingly, the evolution of the temperature perturba-
tion is in fact described by the expression
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scale length), τ ∝ . However, the classical transport

theory cannot be applied when k0λei > 0.06/ ,
because, in this case, it would greatly underestimate the
characteristic relaxation time of the temperature pertur-
bations, so the nonlocal theory should be used. In [15],
it was shown that, with allowance for the nonlocal
nature of heat transport, the characteristic thermal
relaxation time should be redefined as follows:

(20)

this corresponds to nonlocal thermal conductivity (18),
which is well approximated in the quasi-stationary
limit (ω = 0) by the expression κ = κSH /[1 +

10( k0λei )0.9] [9]. Note that this quasi-stationary
approach is applicable only to the case of sufficiently

slow relaxation of the initial perturbation, τ > 1/

(  = /Z) [17], which corresponds to characteristic

perturbation scale lengths of k0λei < 1/  and refers to
the strongly collisional limit.

Let us now consider the evolution of thermal pertur-
bations in the collisionless limit, k0λei � 6Z2/3 [17]. We
begin with expression (15) and write the moments of
the basis functions in the form

(21)

where J+(x) = xexp(–x2/2)  is the stan-

dard dispersion function used in collisionless plasma
theory [18] and p = ω/(k0vTe). As a result, we obtain
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tions (corresponding to plasma oscillations) on the
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ation of the thermal perturbation, ∝exp(– ),
and the integral of the second term can be approximated
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by ∝exp(– ), so we have δT(x, t) =
δTkin(t)cosk0x, where

(23)

Hence, in the kinetic limit, the relaxation of a thermal
perturbation is an essentially nonstationary process
occurring on a characteristic time scale of ~1/(k0vTe).

For characteristic initial perturbation scale lengths

of k0λei � 1/ , the relaxation time becomes τ �

1/ , which is at the limit of applicability of the quasi-
stationary theory [17]. For such inhomogeneity scale
lengths, the relaxation of thermal perturbations should
be described with allowance for the time dependence of
the thermal conductivity. In this case, there does not
exist a simple analytic solution of form (19) and the
relaxation of thermal perturbations cannot be described
in terms of only one characteristic time scale, as was
done for a strongly collisional plasma. In essence, the
thermal perturbations behave as if they relax simulta-
neously in nonlocal hydrodynamic (19) and collision-
less kinetic (23) regimes.

For arbitrary values of the parameter k0λei, the tem-
perature relaxation is well described (with an accuracy
of up to 10%; cf. the solid curves versus the circles in
Fig. 1) by the following approximate expression, which
combines the limiting formulas (19) and (23):

(24)

where the coefficient 0 < A < 1 determines the relative
contributions from collisionless and collisional trans-
port. In Fig. 2, the coefficient A is given as a function of
the collisionality parameter k0λei . For k0λei < 0.3, we
have A ≈ 1 and the temperature relaxes in accordance
with the quasistatic theory. As the parameter k0λei

increases, the coefficient A decreases (Fig. 2); in this
case, it can be approximated by the simple dependence
A = [1 + (k0λei)0.8]–1. For k0λei > 1, the fast kinetic and
slow hydrodynamic (see representation (1)) stages
show up clearly in the relaxation of the thermal pertur-
bation, in accordance with relationship (24). The
kinetic term in fact describes the relaxation of the ther-
mal perturbation before the first collision, i.e., during
the collisionless expansion of the electrons. On time

scales t � 1/ , the temperature evolution is deter-
mined by the hydrodynamic time. For inhomogeneity

scale length of k0λei � 1/ , this time differs from that
in the quasistatic theory [12] and can be approximated
by the expression
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Figure 2 shows the asymptotic behavior of the inverse
hydrodynamic time of relaxation of a thermal perturba-
tion, dlnδThydro(t)/dt. For k0λei � 10, this time is well
described by approximate expression (25). Strictly

speaking, for k0λei < 1/ , the relaxation of a thermalZ

perturbation should be described in terms of character-
istic relaxation time (20) by the quasi-stationary theory.

On the other hand, for k0λei < 1/ , approximate
expression (25) yields relaxation times differing from
those given by more exact expression (20) by no more
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Fig. 1. Time evolution of periodic temperature perturbations at different initial spatial scales k0 (circles) for Z = 10 and the corre-
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tion (dashed-and-dotted curves). The solid curves were calculated from approximate formula (24).
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than 30%. This justifies the use of approximate expres-
sion (25) for determining the characteristic hydrody-
namic time of relaxation of temperature perturbation
(24) for almost all spatial scales within the range 0 <
k0λei � 10.

4. LOCALIZED INITIAL THERMAL 
PERTURBATION

Note that the one-dimensional temperature relax-
ation model proposed in Section 3 in fact describes the
evolution of one Fourier component of an arbitrary ini-
tial spatial thermal perturbation δT. Consequently, the
above results can also be applied to the general case if
we perform an inverse spatial Fourier transform. In this
section, this is exemplified by the case of relaxation of
a localized initial perturbation. To be specific, we con-

sider a one-dimensional laser hot spot characterized by
the Gaussian temperature profile

(26)

where L is the characteristic size of the spot.
Figure 3 illustrates the time evolution of the ampli-

tude of a thermal perturbation in a small laser spot with
the initial size L = 0.1λei . As in the case of an initially
periodic perturbation, the electron energy relaxes in
two regimes—kinetic and hydrodynamic. However, a
transition from the first to the second regime is gov-
erned not only by nonstationary effects but also by the
change in the characteristic size of the hot spot (the
decrease in the effective spatial scale k0), i.e., by the
expansion of the spot. It is because of this latter effect
that the characteristic relaxation time of the thermal
perturbation changes during its evolution.

Figure 4 shows the spatial profiles of the effective
temperature calculated numerically for different times
(circles) from exact formula (15). The spatiotemporal
distribution of the perturbed temperature δT(x, t) is well
described by approximate formula δT(x, t) =

(t)exp(ikx)/(2π), where by T0 in the definition of

δT(t) (see Eqs. (19), (23), (24)) is meant the spatial Fou-
rier component of initial perturbation (26). The results
from the approximate model coincide with those from
the exact theory to within several percent, except for a
narrow central region, where they differ by no more
than 30%; moreover, this difference takes place only
over a short time interval. On the whole, the evolution
of a Gaussian thermal perturbation differs from that
described by the quasi-stationary theory [15] to a lesser
extent than from the evolution of a periodic perturba-
tion. The reason is that the characteristic size of the spot
increases rapidly and forces the relaxation of the ther-
mal perturbation to proceed in the quasistatic hydrody-
namic regime. This result, as well as the above investi-
gation, shows that the quasi-stationary theory describes
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fairly accurately (with an accuracy of 30%) a localized
thermal perturbation at initial spatial scales of L � λei .

5. CONCLUSIONS

In the present paper, we have obtained an analytic
solution to the linear nonlocal problem of the relaxation
of an initial thermal perturbation having an arbitrary
shape and occurring on an arbitrary spatial scale. We
have investigated the relationship between the nonlocal
and nonstationary effects in electron heat transport. It
has been found that, when the temperature varies on

spatial scales L � , the nonstationary nature of
the heat flux begins to play an important role in trans-
port processes and should be incorporated in their
description. The result of including nonstationary
effects in the problem of evolution of a small-scale ther-
mal perturbation is that the plasma evolves in two
regimes—kinetic and hydrodynamic.

The general solution of the initial-value electron
temperature relaxation problem has been exemplified
by considering the relaxation of a periodic single-mode
thermal perturbation and a spatially localized thermal
perturbation. It is shown that the rapid expansion of a
Gaussian initial thermal perturbation causes the relax-
ation of a hot spot to proceed in the quasistatic hydro-
dynamic regime. The solution obtained in the approxi-
mate model based on the exact solution to the kinetic
equation is shown to agree well (with an accuracy of
30%) with the exact solution.

The above study has made use of the linear theory
and, strictly speaking, cannot pretend to provide an
exact quantitative description of the relaxation of large-
amplitude thermal perturbations. The model, however,
revealed a qualitatively new feature of the behavior of
thermal perturbations: the existence of two qualita-
tively different relaxation regimes, resulting from the
nonstationary nature of electron heat transport. This
makes it possible to refine the limits of applicability of
transport models based on the quasi-stationary theory
[19].
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