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In order to explain the X-ray beam confinement in a thin absorbing crystal and its emission from the edge observed in
experiments, we study the rate of beam confinement on the base of a resonant dynamical theory of X-ray diffraction. The rate
is related to the absorption factor, which shows that the confinement occurs for an absorbing crystal but not for a nonabsorbing
crystal. The confinement can be maximized when the linear absorption coefficient is effectively diminished by the dynamical
diffraction effect in the Bragg case. The optimum condition for the confinement is estimated as a function of crystal thickness

as well as scattering factor. [DOI: 10.1143/JJAP.45.2830]
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In recent years, X-ray diffraction with resonant scattering
has been studied, and several characteristic phenomena have
been reported. For example, Kato,” and Fukamachi and
Kawamura,? have studied the dynamical diffraction caused
by only the imaginary part of the anomalous scattering factor
in the Bragg case and pointed out that the rocking curve
becomes very sharp. Using a complex dispersion surface,
Fukamachi et al.® have investigated that the sharp rocking
curve is caused by an ensemble scattering of all the resonant
atoms in the crystal when the linear absorption coefficient 1
is effectively diminished by the anomalous transmission due
to the Borrmann effect. Fukamachi et al.*> have pointed out
that some of the incident X-rays can be confined in a thin
finite crystal just like a crystal waveguide when absorption is
effectively diminished by the dynamical diffraction effect in
the Bragg case. They have observed the emission of the
confined beams from the side edge of a thin Ge crystal by
using X-rays from synchrotron radiation. The schematic
diagram of the incident, diffracted, transmitted and emitted
beams for a crystal waveguide is shown in Fig. 1. The
enhancement of the X-rays emitted from the side edge has
also been observed by increasing the width of the incident
X-rays along the direction from the incident point to the
edge of the crystal. In this paper, we report on the rate of the
confinement based on a resonant dynamical theory of
diffraction (RDT) to clarify the condition of the confine-
ment.

We denote the atomic scattering factor as f = fO+ f' +
if" with f being the normal scattering factor and f’ + i "
the anomalous scattering factor. The k-th Fourier component
of X-ray polarizability x; is expressed as

Xn = Xnr + iXni = |xnr] €xplioy,) + i| x| explios;), (1a)

with
4 0 L .
Xir = — wzvz;ufj +fexp(ih - r)®;  (1b)
]:
and
dr &, _
Xni ==~ ij exp(ih - r))®;. (Ie)

J=1
Here, the atomic units (A = ¢ = m = 1) are used. oy, and pj
are the phases of x;, and x, respectively. w is the X-ray
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Fig. 1. Schematic diagram of diffraction geometry. The confined beam is
indicated by the dashed arrow.

energy, V the unit cell volume, r; the position of the j-th
atom in a unit cell, ®; the temperature correction factor for
the j-th atom, and n the number of atoms in a unit cell. We
define an absorption factor k as

k= thil/thrI' @

k is zero when f°=£0 and f' = f” =0 (in the case of
only Thomson scattering), and k = oo when f* + f =0
(xwr = 0) and f” # 0. In the following, we will study the
symmetric Bragg case for X-rays of o-polarization, while
ignoring the temperature correction (© ;i =1). In addition,
for a crystal having a center of symmetry, xy, and x; are
both real, and the relation x;, = x_; holds. Then ¥, is given
by

Xn = | Xur| €xplicp)[1 + ik exp(if)]

= | Xurl(1 + &%) expliay,) exp(£i6), €)
where
0 = tan~ 'k, 4)
and
d=ap —ap, =0 or <, 5)

In eq. (3), the positive sign is taken if § = 0 and the negative
sign is taken if § = 4.

When X-rays satisfying the condition k = oo are incident
on an infinitely extended thin parallel crystal of thickness H

at a Bragg condition, the reflection rate R and transmission .

rate T are given by
R = [sH/(1 + sH)] (6)
T =1/(1 4 sH)?, (7
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Fig. 2. Variations of R, T, and R + T for k = oo (f” only). The dotted line
shows R + T for k = 0.

according to eqgs. (3) and (4) of Negishi er al.® Here, s is
given by

§ = KOr(thrI2 + iXhiIz)l/z/(z sin 919), (8)

and ry, is the real part of the average wavenumber in the
crystal and @ the Bragg angle. In Fig. 2, variations of R, T,
and R + T are shown as functions of sH. When sH increases
from 0, T decreases rapidly from 1, whereas R increases
slowly from 0. R + T decreases from 1 at sH = 0 to 0.5 at
sH =1, then it increases gradually up to 1 for sH = 00. We
define the rate n by

n=1—R+T)=2sH/(1 + sHY, 9)

which gives the amount of X-rays that do not come out of
the crystal (referred as the rate of confinement). When
k = oo, 1 is not zero for 0 < sH < 0o. When k = 0, on the
other hand,

R = (sHY*/[1 + (sH)] (10)
and
T =1/[1+ (sH)*] (11)

at the normalized Bragg angle (defined later) W = £1. The
relation R4+ T = 1 always holds and the flux is conserved.
Then 5 = 0 and no beams are confined in a crystal.

In order to study the difference between these two cases,
i.e., diffraction only by f” (k= 00) and that only by f°
(k =0), the complex dispersion surfaces are shown in
Fig. 3(a) for k = 0, (b) for k = oo and (¢) for k = 0.1. The
real part Yp, is shown by the thick line and the imaginary
part Yy by the dotted line. The abscissa is the distance W
defined by

W = —2X cos 6/ [kor (e * + 1D (12)

() (b) ©

Fig. 3. Complex dispersion surfaces for (a) k=0, (b) k=00, and
(¢) k = 0.1. Thick solid lines show the real part, and the dashed lines the
imaginary part. The ordinate is Yy, and Yy, and the abscissa is W.

The details of the dispersion surface and the related
notations are given in ref. 3. For k = oo, Yy = ¥y, =0 is
satisfied at W = 0, i.e., at an exact Bragg condition. As the
absorption coefficient w is proportional to Yy, Yyp; = 0 means
i =0. For k=0, on the other hand, Yy, =¥, =0 is
satisfied at W = =1, and for k = 0.1 at W = 0.995. Among
these three cases, the beam confinement is not expected for
k = 0, as shown above. For k& = 0.1, the beam confinement
has been observed at W = 0.995 in experiments.*> Y;, =
Yo = 0 is a necessary but not sufficient condition for the
beam confinement. At the condition Yy, = Yy = 0, W= is
given by

Wyo = £1/(1 + K32 (13)

Here, W0 <0 i 8 =0and W, = 0if § = &=
According to RDT, the electric fields for the incident (EF:
o polarization), transmitted (E;) and diffracted (E;) beams
near the condition Yy, = Yp; = 0 are given by
Ei(r’ t) =

explilwt —k-r)] (14a)

- 1

01+ sH exp(kip)
and

» (E)sH exp(£ip)

Eyr, 1) =E ———
n(ry 1) 0 1+ sH exp(ZLiyp)

expli(wt — k- r)]. (14b)

The phase factor ¢ is related to € as
p=m/2—6. (15

As for the double sign before iy in eqgs. (14a) and (14b), the
negative sign is taken if § =0 and the positive sign if
8§ =+m. As for the double sign in the parentheses in
eq. (14b), the positive sign is taken if ap =0 and the
negative sign is taken if oy = .

For any value of k, the reflection and transmission rates
are given by

R = (sH)*/[1 + (sH)* + 2sH sin 6] (16)
and
T = 1/[1 + (sH)* + 2sH sin 4]. (17)
The rate of confinement n becomes
n = 2sH sin 6/[1 + (sH)* + 2sH sin6]. (18)

For k=0, =0, ¢ = m/2, and sinf = 0, no confinement
occurs (n=0). fk=o00, 6=m/2, ¢=0, and sinf =1,
then 7 is maximized. In Fig. 4, variations of n are shown as a
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Fig. 4. Calculated curves of confinement rate as a function of sH for
k=0.1,0.2, 0.5, 1.0, and oo.

2831



Jpn. J. Appl. Phys., Vol. 45, No. 4A (2006)

T. FUKAMACHI et al,

function of sH for k = 0.1, 0.2, 0.5, 1.0, and co. We can see
that n becomes large as k increases. For any &k (except for
k =10), n becomes maximum at sH = 1, then decreases
gradually as sH increases. We can expect the beam
confinement for a thicker crystal (sH > 1) to a certain
extent.

In summary, we have obtained the following results.

1) We have derived the diffraction condition for the beam
confinement.

2) The rate of confinement is given in terms of siné as
given in eq. (18).

3) The rate of confinement is given in terms of absorption
factor k [eqgs. (2), (4), (15), and (18)].

4) The beam confinement can be observed for any
absorbing crystal.

5) When sH 1is constant, the confinement becomes
maximum for k = oco. When k is constant, it becomes
maximum for sH = 1.

In the previous work,*> the confinement was observed for
k~0.1-0.2 and sH =~ 20. The rate of confinement is
estimated to be approximately 1-2%. If k is increased and
sH is decreased by thinning a crystal, a much higher rate is
expected. It is noted that the present study can be applied to
explain the interference fringes observed in the emitted
beams from the side edge.”’ Because the beam confinement
is observed when u becomes minimum at room temperature,

the analysis including the temperature factor should be
needed. The beam confinement at a finite temperature and
the electric flux in a crystal under the confinement are to be
investigated in our future work.
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