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Abstract. Optical constants of gold and silver clusters of
various sizes are determined from measurements of their
optical extinction in the range from 1.5 eV to 4.5 eV
photon energy. For this purpose, it is shown that the
optical extinction by spherical clusters satisfies
a Kramers—Kronig relation, yielding the second quantity
needed for the determination of the complex dielectric
constant e of the cluster material. The dielectric constant is
then obtained applying a generalized Newton-Raphson
iteration method on the measured extinction data and the
Kramers-Kronig data. The results show a clear depend-
ence on cluster size, and also deviations from bulk dielec-
tric constants in the range of the interband transitions.
From the various e-data, a ‘‘bulk’’ dielectric constant of
gold and silver is obtained, which fits the positions of the
cluster plasmons more precisely than bulk dielectric con-
stants from the literature.

PACS: 36.40.#d; 78.20.Ci; 82.70.Dd

1. Introduction

Small particles and inorganic clusters have been a major
subject of interest in many investigations over the last
three decades. Some exciting results and hypotheses on
various properties of clusters have been formulated during
this time. Looking in particular at optical properties, the
most exciting phenomenon is the surface plasmon in clus-
ters of silver, gold, copper, aluminum and alkali metals,
which is easily established from optical extinction
measurements. However, interpretations of measured
spectra with concepts of classical electrodynamics, i.e. the
Mie-theory for spheres [1] or the Rayleigh—Gans theory
for ellipsoidal clusters [2], often fail, because these models
require the optical constants of the cluster material. For
clusters, the optical constants are modified with respect to
bulk matter due to size and quantum size effects [3—11].

The determination of the optical constants of clusters
with methods that work well for bulk, e.g. ellipsometry or

electron energy loss spectroscopy, is rendered more diffi-
cult, as it is hardly possible to measure on single isolated
clusters. A promising method for the determination of
optical constants seems to be the measurement of optical
extinction by the clusters, and the evaluation of the dielectric
constant from these data using a Kramers—Kronig analysis.

In this paper, a method is described which is based on
a Kramers—Kronig relation for the extinction, yielding
a new quantity, which is needed for the evaluation of the
dielectric constant. The dielectric constant is then ob-
tained by applying a generalized Newton—Raphson iter-
ation method on the measured extinction and the
Kramers—Kronig data. With this method, the dielectric
constant of several gold and silver clusters is obtained in
the spectral range from 1.5 eV and 4.5 eV. The data extend
the results of Kreibig [12, 13] to larger clusters and to
a much wider spectral range, including also the region of
interband transitions. From the obtained data, ‘‘bulk’’
dielectric constants are derived which allow a generally
improved interpretation of the optical extinction and scat-
tering spectra of gold and silver clusters.

Section 2 gives a brief introduction to the optical
extinction by ensembles of spherical clusters. In Sect. 3,
a Kramers—Kronig relation is derived for the extinction.
It yields a new quantity P which is needed for the evalu-
ation of the dielectric constant e. In Sect. 4, the method for
the evaluation of e is presented. Results for the dielectric
constant of several gold and silver clusters are exposed
and discussed in Sect. 5. In Sect. 6, a conclusion is given.

2. Optical extinction by ensembles of clusters

Optical extinction of light with photon energy +u by an
isolated spherical particle of diameter 2a is described by
the extinction cross-section
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following the concepts of classical electrodynamics (Mie-
theory [1]). In this equation, c is the vacuum velocity of



light, e
M
(u) accounts for the dielectric constant of the host

medium and Re means the real part. The scattering coef-
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For an ensemble of non interacting small particles, e.g.

in a colloidal suspension, the extinction is
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It is connected to the cross-section of (1) by Lam-
bert—Beer’s law,
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It is assumed that the ensemble consists of particles of
different sizes 2a

j
and concentrations N

j
/»; d is the thick-

ness and » is the total volume of the sample.
As the extinction depends on the dielectric constant

e(u) of the particle material, it is not possible to directly
determine e(u) from the inversion of the measured extinc-
tion data. For this purpose, a Kramers Kronig relation
must be derived which yields the second quantity P (u),
necessary for the separate evaluation of the real and imag-
inary part of e(u).

3. Kramers Kronig relation for the extinction
by spherical clusters

According to a method given by Landau and Lifshitz [14]
a Kramers-Kronig relation is derived for E(u) and P (u).
Rather than the extinction E (u), it is the sum over the
scattering coefficients a

n
and b

n
in (1) that satisfy the

conditions for a Kramers—Kronig relation.
Consider the complex function
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in the plane of complex frequencies )"u#id. Let u
0

be
a real and positive value. Then, the function
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can be integrated around a closed contour C, as illustrated
in Fig. 1. The principal value of the integral along the real

Fig. 1. Integration path along a closed contour C in the upper
complex half plane

axis is given by
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presuming that F(u) is analytic in the upper half plane.
Decomposition of (6) into real and imaginary parts yields
the connection between the real and imaginary parts of
F (u). Multiplication of (4) with 2nc2/e
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where Im means the imaginary part. Recall that u
takes only real, positive values. Then, P(u

0
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becomes
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since E (!u)"E(u). However, to use this relation,
the regularity of F(u) for uP0 and uPR must be
checked.

Consider first the case uPR. The parameters x and
y entering the computation of a

/
and b

/
are then identical
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Both decrease with decreasing u faster than the increase
in the prefactor u~2 of F (u). Hence lim

u?0
F(u)"0.

In applying (8) to measurements on systems contain-
ing isolated metallic clusters in suspension, one must take
into account that:

f The spectral region in which the measured data are
available is limited; consequently the Kramers—Kronig
(KK-) integral must be divided into parts.

f Outside the measured spectral range, the KK-inte-
gral can only be approximated by computations accord-
ing to the Mie-theory [1], using bulk optical constants.

f The missing optical constants at high and low
photon energies hinder this computation. The corres-
ponding integrals must be approximated.
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For these reasons, the complete integral is divided into
five parts
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with optical constants taken e.g. from Johnson and
Christy [15] Hagemann et al. [16], or Olson and Lynch
[17]. For continuity at u"u

IR
and u"u

UV
, the com-

puted spectra are multiplied with a factor that mainly
takes into account the particle concentration in the collo-
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As E(u) decreases monotonically with decreasing u as
well as with the increasing u, the integrand E(u) is ap-
proximated either by E (u
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). It follows
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It is clear that besides numerical inaccuracy, the computed
values of P(u) contain errors, because of the approxima-
tions in P

1
, P

2
, P

4
and P

5
. Hence, to check the accuracy of

this method, we first compute E (u) and P (u) for gold
particles of diameter 2a " 20 nm using Mie’s theory [1]
in the energy range +u

FIR
"0.855 eV4+u4+u

FUV
"27.55 eV, using optical constants from Johnson and
Christy [15] and Olson and Lynch [17]. The values of
P
KK

(u) are then computed in the range +u
IR
"1.5 eV

4+u4+u
UV

"4 eV, using E(u) from the above compu-
tations. This spectral range corresponds to that where
extinction data from measurements are available. The
results are then compared to the computed P (u). In
Fig. 2a, the values of P(u) and P

KK
(u) are compared, while

Fig. 2b shows the contributions of the five integrals
P
1
(u), 2 , P
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(u). The main contribution comes from

P
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(u) as expected. However, also P

4
(u) contributes to

a remarkable extent, in particular at larger photon ener-
gies. The contributions of P

1
(u) (far infrared) and P

2
(u)

(infrared) are negligible and are unresolved in this plot.
The differences between P

KK
(u) and P (u) are maximum at

+u"2.32 eV and 4 eV, where the relative error (P
KK

!P)/
P amounts to 3.6% and 7.9%, respectively. In the follow-
ing it is assumed that the relative error in P

KK
(u) is always

smaller than 8%.

Fig. 2. a Computed spectra of P(u) and P
KK

(u) in the spectral range
between 1.5 eV and 4 eV photon energy. b Partial integrals
P
1
(u), 2 , P

5
(u) of the Kramers-Kronig integral

4. Evaluation of the dielectric constant
with a generalized Newton-Raphson iteration method

After determination of P (u) from E (u), the complex di-
electric constant e(u)"e

1
(u)#ie

2
(u) can be determined.

For this purpose, an iterative method is used, the general-
ized Newton-Raphson iteration method (NRM). This is
an effective method for finding zeros of transcendental
functions. In its generalized form it is applicable to multi-
dimensional systems of transcendental functions. For
functions of complex arguments this method can simply
be formulated, separating the real and imaginary parts.
This provides a set of two equations for the ( j#1)-th
approximation to the zero, given the j-th approximation,
the complex function f"f
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are the elements of the inverse Jacobi matrix. For
complex numbers, the elements are connected to the de-
rivative df/dy in a simple way, namely
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In our case, the function f is
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It approaches zero if either D f D4 tolf or
D(y(j`i)!y(j))/y(j)D4 toly, where tolf and toly are the tol-
erances in finding a zero within the iteration. In the
present analysis they were chosen as tolf40.001,
toly40.005. Then, unavoidable measurement errors in
the extinction (*E"0.001) and the error in the deter-
mination of P

KK
(u) (smaller than 8%) did not undermine

the used NRM. On the other hand, the errors in e
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and
e
2

then became *e
1
40.2 and *e

2
40.05.

Finally, the complex dielectric constant is obtained
from the zero y(j`1) from the relation
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As initial guess for y(0), the dielectric constants from Joh-
nson and Christy [15] were used in (21) :
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and E
#0.165%$

(y(0)) and P
#0.165%$

(y (0) ) were computed
using Mie’s theory [1]. The next approach y(1) was
obtained from these values and E

.%!463%$
and P

KK
using

(17) and (20). Repeating for maximum 20 iterations, we
arrived in the zero y(j`1), which yielded the dielectric
constant from resolving (21).

5. Results and discussion

After having introduced the principles of the new method,
we now present results obtained for small silver and gold
clusters of various sizes. The particles are prepared in
aqueous suspension by chemical reduction of silver from
AgNO

3
following the recipe of Garbowski [18], and by

chemical reduction of gold from chlorogold acid HAuCl
4following the recipe of Zsigmondy [19]. Larger silver and

gold particles are prepared in a second step using the
smaller particles as nuclei for further precipitation of silver
or gold. This method is described for gold by Zsigmondy
[19] and is successfully adopted on silver. Transmission
electron microscopy is applied to determine shape and
size of the particles. In all examined samples the particles
are approximately spherical. Their mean sizes are given in
Table 1. The samples are numbered consecutively with
respect to increasing size. In addition, a parameter A
is given that accounts for the mean free path effect
[3—11]. Its determination is described below. Extinction
of light by the aqueous colloidal suspensions is measured
using a common spectrophotometer. The measured ex-
tinction data are finally used in a Kramers—Kronig analy-
sis as described in the previous section to determine
the optical constants of the particles in the samples. In
Fig. 3 the results for e

1
and e

2
of the various gold

and silver particles are presented. For comparison, the
data from Johnson and Christy [15] are also given as
dashed line.

Table 1. Mean diameters 2a and mean free path parameters A for
several gold and silver clusters

Sample Mean diameter Mean free path
2a [nm] parameter A

Au1 6.9 0.6
Au2 12.6 0.7
Au3 16 0.6
Au4 30.6 1.3
Au5 38 2
Ag1 16.6 2.5
Ag2 17.8 2.3
Ag3 20.4 2.5
Ag4 27.8 2
Ag5 32 3

Fig. 3. Dielectric constants of various gold and silver clusters, ob-
tained by Kramers-Kronig analysis of measured extinction data.
For comparison, the dielectric constants of the data from Johnson
and Christy [15] are plotted as dashed line

Apparently, the main deviation with respect to the
bulk values occurs for the imaginary part e

2
. A clear

dependence on particle size is recognized. With increasing
particle size, e

2
decreases, but does not approach the

bulk value. These results agree with previous work of
Kreibig [12, 13], who also derived quite similarly the
dielectric constant of gold and silver clusters by a Kramers
Kronig analysis. However, in the present paper the
photon energy range where the optical constants are de-
termined is strongly extended, including also the interband
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transitions. Further, the particle size range is extended to
much larger particles.

For interpretation of the data, we assume that the
dielectric constant of the clusters is size-dependent and
can be divided into a dielectric constant of the free elec-
trons (Drude model) and a susceptibility which accounts
for the interband transitions:

e
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u
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is the bulk plasma frequency and C(a) is the size-
dependent damping constant, given according to the
model of the mean free path effect [8, 9] as
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C
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is the bulk damping constant and v
F

is the Fermi
velocity in the metal. A is the mean free path parameter,
which must be chosen appropriately. For photon energies
+u4+u

IB
, the parameter A as well as s

*/5%3"!/$, -
(0) can be

determined for our samples from comparison of the di-
electric constants of Fig. 3 with dielectric constants com-
puted according to (24) and (25). In doing so, we find the
parameters A given in Table 1.

The approach for the damping rate C in (26) is purely
phenomenological, assuming that the electrons are addi-
tionally scattered at the surface after a time q\a/v

F
.

Almost all calculations which tried to explain this depend-
ence [3—11] reproduced this damping rate, but with differ-
ent parameters A. They are partly reviewed by Kreibig
and Genzel [20].

The physical reason of this size-dependent damping
are deviations from the model of a local dielectric constant
near the surface. Improvements of the calculations of
Kawabata and Kubo [5] were made for instance by
Zaremba and Persson [21]. In their paper, the influence of
a surface on the polarizability of a small metal particle in
vacuum was considered in the random phase approxima-
tion. In summary, the surface induces an additional con-
tribution to the Drude dielectric constant of the particle,
separately from the bulk dielectric constant, making it
nonlocal. Using the jellium model for the metal and intro-
ducing a surface polarization potential, which is missing in
the work of Kawabata and Kubo [5], the authors found
a damping rate proportional to 1/a. Assuming a step
potential for concrete calculations, the surface induced
relaxation time is obtained as q"a/(3v

F
), corresponding

to A"3! This value exceeds those obtained in the pre-
vious papers [3—11], where in most cases A is close to
unity for spherical particles. Nevertheless, Kreibig [22]
found that A can be larger than unity if the mean free

path of the electrons is limited owing to grain-boundary
scattering.

As it turns out from the work of Apell et al. [10] and
Monreal et al. [11], the additional damping and thus
A are material dependent, because it depends on the
electron density in the particle. Hence, the damping
should be influenced by physisorption, chemisorption or
even chemical reactions at the particle surface, which
induce changes of the density profile normal to the sur-
face. There is strong evidence for such an influence from
experiments by Charlé et al. [23], Kreibig [24], and most
recently Hövel et al. [25], Hövel [26] and Hilger [27] for
particles in matrices and Nusch [28] for particles with
adsorbed molecules. In our case, it can be assumed that
ions from the electrolyte and water molecules are
physisorbed at the surface of the particles, leading to large
halfwidths of the cluster plasmons.

In a recently published paper Persson [29] discussed
the origin of this effect and extended the work of Zaremba
and Persson [21] to include the influence of a layer of
atoms or molecules associated with the matrix environ-
ment of the particle. Besides the surface induced damping
already obtained by Zaremba and Persson [21], he found
a contribution to the surface plasmon halfwidth which
depends on the number of adsorbates per unit surface area
and the frequency-dependent cross section p

$*&&
for dif-

fusive scattering of the electrons by the adsorbates. The
dominant contribution to p

$*&&
occurs if the adsorbate has

a resonance state or virtual level at a distance \+u from
the Fermi level, due to adsorbate-substrate coupling. With
this assumption, Persson arrived in a good quantitative
interpretation of the experimental data from Charlé et al.
[23] and Kreibig [24]. In the present case of small gold
and silver particles in aqueous suspension, these effects
must also be considered, leading to large parameters A.
However, from the preparation method, we do not know
which and how many ions or water molecules are adsor-
bed at the surface of the particles, making it difficult to
predict the amplitude of the parameter A. Particularly for
silver, it seems that the adsorption of ions on the surface
leads to an increased damping of the surface plasmon,
resulting in parameters A between 2 and 3 in Table 1.

Although we found dielectric constants for several
silver and gold clusters of various size, it is of more
practical interest to have only one unique set of optical
constants for all gold or silver clusters, which can be easily
changed according to the model of the mean free path
effect. To find such a unique set of opti&cal constants, the
susceptibilities s

*/5%3"!/$
were computed for each sample.

For this purpose, the size-dependent Drude dielectric con-
stant was subtracted from the dielectric constants of the
clusters, using the mean free path parameters A from
Table 1. The resulting curves for each s

*/5%3"!/$,1
and

s
*/5%3"!/$,2

were quite close to each other, so that it was
possible to obtain one representative mean curve
s
*/5%3"!/$,1

and s
*/5%3"!/$,2

for each particle material. Addi-
tion of a bulk Drude dielectric constant, i.e. e

D36$%
(u, O),

finally yielded ,,bulk‘‘ dielectric constants of gold and
silver clusters. The obtained values are plotted in Fig. 4 in
comparison to the data from Johnson and Christy [15].
Again, it is to recognize, that the real part e

1
coincides

quite good with the real part of the data from Johnson
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Fig. 4. ‘‘Bulk’’ dielectric constants of gold and silver clusters, derived
from the dielectric constants of Fig. 3. For comparison, the dielectric
constants of the data from Johnson and Christy [15] are plotted as
dashed line

and Christy. The main differences are in the imaginary
parts. The band edges of gold at 2.5 eV and of silver at
4.0 eV are similar to those obtained from evaluation of the
data of Johnson and Christy [15]. However, the interband
transitions begin to contribute to the dielectric constant
already at lower photon energies, yielding an increased
imaginary part e

2
at photon energies of the corresponding

cluster plasmon. For silver there is a small peak in e
2

be-
tween 3 eV and 3.3 eV. This feature is also apparent in the
data of Johnson and Christy but at 3.65 eV photon energy
and its magnitude is quite small. The origin of this feature
is still unknown. At photon energies lower than 1.8 eV for
gold and 2.4 eV for silver, the imaginary part again in-
creases with decreasing photon energy. This increase is
caused by the Drude dielectric constant which only con-
tributes to e

2
in this region. Therefore, it was possible to fit

the data on pure Drude dielectric constants, resulting in
s
*/5%3"!/$,1

(0)"7.2$0.1 for gold and s
*/5%3"!/$,1

(0)"
2.25$0.1 for silver.

The advantage of these unique sets of optical constants
is that the position of the cluster plasmon is now fitted
very well for each particle size, in contrast to the data of
Johnson and Christy [15]. For fitting the halfwidth of the
cluster plasmons only a size-dependence of the Drude
dielectric constant according to the model of the mean free
path effect must be considered. It has been proved by
extensive computations according to Mie’s theory [1],
that in connection with the given unique dielectric con-

stants good agreement with the experimental extinction
spectra of the samples Au1,2 ,Au5 and Ag12 ,Ag5 can
be obtained using one mean free path parameter A"0.7
for all gold samples and one parameter A"2 for all silver
samples. This result is in agreement with the various
theories in references [3—11], where the parameter A is
material-dependent but not size-dependent. The increased
A for silver must be the result of additional damping due
to adsorbates, according to the theory of Persson [29].

6. Conclusion

In this paper, a method is presented which allows the
determination of the dielectric constant of clusters from
measured extinction spectra. It is based on a Kramers-
Kronig relation for the extinction, which can be easily
measured on ensembles of isolated clusters, and a general-
ized Newton-Raphson iteration method.

Applying this method to extinction spectra of gold and
silver clusters of various sizes, the dielectric constant of the
clusters was obtained at photon energies between 1.5 eV
and 4.5 eV. This region includes also the interband
transitions in silver clusters. The obtained data showed
a clear dependence on the size and changes in the inter-
band transition region with respect to data from literature
(Johnson and Christy [15] ). With the model of the mean
free path effect for clusters [3—11], the data could be
qualitatively interpreted. However, for silver the obtained
mean free path parameters A were strongly increased with
respect to those obtained in various calculations [3—11].
A first step to understand the origin of the increase in
A was given by Persson [29] who considered in detail the
influence of a surface layer of adsorbed molecules on the
damping rate of the surface plasmon. Compared to pre-
vious papers of Kreibig [12, 13] which were also con-
cerned with the determination of the dielectric constant of
gold and silver particles, the present data extend these
previous results to much larger particles and to a larger
spectral range.

In addition, ‘‘bulk’’ optical constants for each gold and
silver clusters could be derived with the help of the model
of the mean free path. They can be universally used for
simulation of the optical extinction by gold and silver
clusters of arbitrary size. For a correct treatment of the
halfwidth of the surface plasmon solely a proper mean free
path parameter A must be chosen. It has been proved for
all evaluated samples that only one parameter A"0.7 for
gold and A"2 for silver has to be chosen for good
agreement with measured extinction spectra when using
the unique data sets for gold and silver. However, it must
be emphasized that these parameters hold only for aque-
ous colloidal gold and silver suspensions. For other ma-
trices they may change but should stay independent of
particle size.
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