
Reconciliation of the Conwell-Weisskopf and Brooks-Herring formulae for charged-impurity

scattering in semiconductors: Third-body interference

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1977 J. Phys. C: Solid State Phys. 10 1589

(http://iopscience.iop.org/0022-3719/10/10/003)

Download details:

IP Address: 129.8.242.67

The article was downloaded on 04/02/2009 at 12:23

Please note that terms and conditions apply.

The Table of Contents and more related content is available

HOME | SEARCH | PACS & MSC | JOURNALS | ABOUT | CONTACT US

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/0022-3719/10/10
http://iopscience.iop.org/0022-3719/10/10/003/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/pacs
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact


J. Phys. C :  Solid State Phys., Vol. 10, 1977. Printed in Great Britain. @ 1977 

Reconciliation of the Conwell-Weisskopf and Brooks-Herring 
formulae for charged-impurity scattering in semiconductors : 
Third-body interference 

B K Ridley 
Department of Physics, University of Essex, Colchester, England 

Received 15 November 1976 

Abstract.The divergcnce at small scattering angles for unscreened charged-impurity scattering 
may be removed by including the probability that a closer scattering centre does not exist. 
This introduces an exponential function like the screening factor, which allows a straight- 
forward bridging to be made between non-screening and screening situations. An expression 
for the mobility which encompasses the Conwell-Weisskopf and Brooks-Herring results is 
derived. 

The problem of the scattering of an electron by a random distribution of charged centres 
is one of some importance in connection with the mobility of electrons in semiconductors, 
especially at low temperatures. Over a wide range of conditions, the Born approximation 
and an essentially two-body model is thought to be a reasonably valid approach. One of 
the difficulties is the well-known divergence of the cross section for the scattering off a 
Coulombic centre at small scattering angles, clearly caused by the preponderance of 
collisions with,in classical terms, alarge impact parameter. Such a catastrophe was avoided 
by Conwell and Weisskopf (1950) by arbitrarily cutting off the Coulomb field at a radius 
equal to  half the mean distance apart of the scattering centres. Arbitrariness was avoided 
by Mott (1936) and in semiconductors by Brooks and Herring (1951) by introducing 
another physical feature, namely screening, into the model and thereby causing the 
scattering potential to fall off with distance more rapidly than in the purely Coulombic 
case. (See also Dingle (1955). Mansfield (19561, Takimoto (1959), March and Murray 
(1962), Hall (1962), Moore (1967). Falicov and Cuevas (1967) and Csavinsky (1976). 
for developments connected with the Brooks-Herring formula.) On the whole, the 
Brooks-Herring (BH) formula was preferred over the Conwell-Weisskopf (CW) formula, 
but it was always clear that where screening electrons were plainly not available, as in 
many situations at low temperatures, the BH approach fails and the CW formula becomes 
the only viable replacement. It is the purpose of this paper to point out that this unsatis- 
factory situation is a direct consequence of a simple logical omission in the basic model, 
as recently discussed for the case of Rutherford scattering (Ridley 1976). 

The BH model relies on screening to limit the range of the scattering potential sur- 
rounding any one centre. and thereby to make a two-body approach possible. Thus screen- 
ing not only guarantees a finite cross section, it also allows the scattering problem to be 
reduced to scattering by a single centre, provided the distance apart of the scattering 
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centres is large compared with the screening length. When the latter condition is not met. 
the BH formula fails. 

The CW model, on the other hand, tackles directly the problem of scattering by many 
centres, and reduces the problem to one of scattering by a single centre by assuming that 
the scattering effects of all lying further away than half the average distance separating 
the centres add up to zero, and only the nearest centre is operative. 

There are two things in common in these approaches. Each model defines a charac- 
teristic length which defines the range of the scattering potential-screening length in the 
case of BH. half the average separation of centres in the case of CW. Each makes the 
assumptions that within the characteristic length there is only one centre, only that centre 
scatters and all other centres produce no effect. The essence of our approach is to quantify 
the assumption that only one centre is active, by introducing the probability that no 
second centre interferes. If a consistent one-centre scattering approximation is to be 
adopted, it would seem logically necessary to do this, It will be shown that this brings in an 
exponential function like the screening factor and allows a reconciliation of the BH and 
CW approaches. 

The matter is best discussed in terms of the classical impact parameter. If the scattering 
is to  be a two-body process, then only the closest scattering centre must be deemed to be 
effective and the effect of all others put equal to zero (on the grounds that all the individual 
forces add vectorially to zero because of the random distribution, except for the closest). 
But then it is necessary to weigh the differential cross section for scattering through an 
angle 0 by the probability P(b), where b is the impact parameter associated with the angle 
0, of there being no scattering centre with impact parameter less than b. If such a third 
body existed then in our two-body model our original centre is ineffective, a pheno- 
menon we may call third-body interference. The probability is given by (see the Appendix) 

P(b) = exp ( -nb2Na), ( 1) 

where a is the average distance between centres and N the density of scattering centres. 
Thus, in the simple unscreened case, the differential cross section becomes 

R2 exp [ - nNa,R2cot2(O/2)] 
4 sin4(O/2) 

a(0) = 

where 0 is the angle through which the particle is scattered, R = Z e 2 / 4 n ~ m v 2 ,  Z e  is the 
charge on the centre, E the permittivity, m the mass of electron being scattered and U its 
velocity. The rapidly decreasing probability of a two-body scattering event at increasing 
impact parameters removes the divergence totally. 

In the unscreened case, both classical and quantum theory give the same result for the 
differential cross section. The probability factor P(b), however, is obtained essentially in 
classical terms. We will continue to employ classical ideas to calculate P(b) in the screened 
case. This requires us first to obtain a relation between the impact parameter and the 
scattering angle, which is no longer given by b = Rcot(O/2). We do this by employing 
the basic relationship between differential cross section and impact parameter, namely 

a(8)dQ = 2nb Idb 1, (3) 
where, for the case of screening (e.g. Smith 1964), 
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dR is the elementary solid angle into which the particle is scattered, 

and 1, is the Debye screening length. From equations (3) and (4) we obtain 

R2(1 - x’) b2 = 
(2 + p - q 1  + p- ’ ) ’  (9 

where x = sin (8/2), and consequently we take as the probability of there being no third- 
body interference to be given by equation (1) with b2 given by equation (9. Thus our 
differential cross section becomes 

R2 
4 

a(8) = -(x2 + p-1)-2exp(-nR2Na(l - x 2 ) / [ ( x 2  + P-l)(l + P - ’ ) ] } ,  (7) 

which does not diverge at small angles even if screening is weak (p  + CO). 

We now proceed to calculate the mobility associated with this cross section for the 
usual case of non-degenerative statistics and parabolic, spherical band structure, in 
exactly the way the BH formula is calculated. We obtain 

where 

and L, the analogue of the logarithmic term in the BH and CW expressions, is given by 

(10) 

a = Z2e4Na/576n~2(kT)2, (1 1) 

/3 = 24m*~(k~~/e’h’N,, (12) 

UP = Z2e2m*Na/24nsh2N, (13) 

where 

and E,(z) is the exponential integral. (P is the expression given by equation (5)  with 
$m*v2 = 3kT.) N, is the screening density of electrons, free and trapped. Three regions 
can be defined : 

(i) a/? + I (screened) 

P 
l + P  

L -+ ln(1 + P) - ~ 

and hence we retrieve the Brooks-Herring formula exactly. 

(ii) 1 + + 1 + P (unscreened, dilute) 

L --t ln(aeY)-’, 
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where y is Euler’s constant. Choosing the average distance apart of scattering centres to 
be given by 

a = (4/71)e~YN-~/~, (16) 

we retrieve the Conwell-Weisskopf formula (apart from an insignificant additive factor 
of unity in the logarithm). 

I 

(iii) 1 + p 6 c t j  (unscreened. concentrated) 

L --* c t - l .  

I I /  
/ 

/ 
/ - 

However, equation (8) is valid only if L is weakly dependent on average electron energy. 
This is the case for the BH and CW regimes, but not for this condition, which corresponds 
to the situation in which the total momentum-change cross section, co turns out to be 
independent of electron energy, namely 

2 
cc = - 

N u  

Working out the mobility for this case leads to 

J2ea 
= 3(nm*kT)”2 

(which is bigger than that derived from equation (8) with equations (17) and (11) by a 
factor 3/2). This result agrees with the CW approach in the limit of large concentrations/ 
small temperatures. 

To sum up? the elimination of all but two-body scattering eliminates the catastrophe at 
zero scattering angle and allows us to derive a formula for the mobility limited by charged- 
impurity scattering in semiconductors which reconciles and encompasses the CW and 

/ 

$9 / 

’t 
I I I I 

lo-’ 1 10 102 
a/3 

Figure 1 .  Cross-over from BH to CW with decreasing screening. r = 

rithmic factor in the expression for mobility (see text). 
and Lis the loga- 
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BH formulae. It is shown that the CW formula is valid when screening is weak (UP % 1, 
regions (ii) and (iii)) and the BH formula is valid when screening is strong (clg < 1). The 
practical utility of our result is to define a boundary between the unscreened 
and screened regions given by clB = 1. It is the region near the boundary where our general 
expression is most useful. Figure 1 illustrates the cross-over from the screened limit (BH) 
to the unscreened limit (CW). 

Appendix 

To calculate P(b) we note first of all that. i f  p denotes the probability of there being no 
centre with impact parameter between b and b -t db, then 

p = 1 - 2nNabdb, 

since 2nNabdb is the probability that such a centre exists. Then, by the usual law of 
probabilities, 

P(b -t db) = P(b)p, 

and therefore it follows that 

P(b) = C exp ( -  nNab2). 

Since P ( 0 )  = 1. it follows that C = 1 and equation (1) is obtained. 
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