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Abstract 

The interaction of two-dimensional magnetic excitons with charged impurities in a system with spatially separated 
electron-hole layers is considered in the strong magnetic field limit. The energies of the lowest bound states are calculated 
for different projections of the total angular momentum M. The ground state of the impurity bound magnetic exciton in 
such a system depends on the interlayer separation. With increasing the interlayer separation the ground state changes from 
the M = 1 state to states corresponding to a higher momentum. @ 1997 Published by Elsevier Science B.V. 

PACS: 7 1.35.t~; 73.20.D~ 
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1. Introduction 

A two-dimensional (2D) electron-hole (e-h) sys- 

tem in a strong perpendicular magnetic field is one of 

the systems with a zero-dimensional spectrum of elec- 

trons and holes and presents a quite rare example of an 
exactly soluble many-body system. The exact ground 

state of such a system corresponds to the Bose con- 
densate of noninteracting 2D magnetic excitons with 
zero momentum [ 1,2]. Virtual transitions to the ex- 
cited Landau levels cause repulsive interaction and the 
ground state becomes a Bose condensate of weakly 

repulsive excitons [ 1,2]. 
Recently the properties of 2D systems with spatially 

separated electrons and holes in a strong magnetic 
field have received much attention. At small layer sep- 
arations, where the interlayer Coulomb interaction is 

strong, electrons and holes form excitons. The exci- 
tonically condensed state is then the preferable ground 
state [ 3,4]. With increasing the layer separation two 

independent Laughlin states [ 51 or charge-density- 

wave state [6,7] will be the ground state of the sys- 

tem, depending on the filling factor. In real coupled 
double quantum well systems it is possible to rear- 
range the exciton ground state by applying an ex- 
ternal perpendicular electric field. Under such condi- 
tions the interwell exciton becomes the ground state 

at sufficiently large values of the electric field [8]. 
Due to the long recombination lifetime, the conden- 
sation of interwell excitons is expected to occur in 

coupled double quantum well systems. The sugges- 
tive results for the Bose-Einstein condensation have 
been reported in photoluminescence experiments [ 91. 
The intrawell and interwell magnetoexcitons in the 
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In,Gat _,As/GaAs coupled double quantum well sys- 
tem were investigated both experimentally and theo- 
retically in Refs. [ IO,1 I]. 

The interaction of 2D magnetoexcitons (MX) with 

impurities is of great interest for the determination 
of the ground state in the presence of impurities and 
for the spectroscopy of centers. The case of 2D in- 
trawell magnetoexcitons bound to the impurities lying 

in the well was investigated in detail by Dzyubenko 

[ 121 (for theoretical studies of 2D electron complexes 

bound to the impurity in a strong magnetic field see 

Refs. [ 13,14 3, and references therein). The bound 
states of intrawell excitons on the impurities located in 
the barrier were studied experimentally in Ref. [ 151. 

The results indicate that the binding energies of such 

states depend very strongly on the doping location. 
In this paper the bound states of interwell excitons 

on the impurities located in the barrier are considered 

for different interlayer separations and for different im- 
purity positions within the barrier. We will neglect the 

layer width as well as the tunneling through the bar- 

rier. It is assumed that the spectrum of the e-h system 
is a simple two-band spectrum and the electron (hole) 

wave functions correspond to the motion of free 2D 

particles in a magnetic field. The magnetic field has to 

be strong enough, so that virtual transitions between 
Landau levels can be neglected. For simplicity only 

particles at the zero Landau level will be considered. 

rH << ae,h, (1) 

where a&h = e/m+?’ are the effective Bohr radii of 
an electron and a hole, me,, and E are the effective 
masses at H = 0 and the dielectric constant, respec- 

tively. In such a magnetic field regime the virtual tran- 
sitions of particles between the Landau levels both in 
the impurity field and due to interparticle interactions 

are unimportant. For simplicity, it will be assumed be- 

low that electrons and holes occupy only the zeroth 
Landau levels. We will consider bound states of in- 
terwell excitons on the Coulomb impurities located in 
the barrier and in the layers. To find the binding en- 

ergies of such states the technique developed in Ref. 
[ 121 will be used. 

The Hamiltonian of the system can be represented 

in the following form, 

(2) 

where rt (Q) denotes 2D coordinates of e (h) . Hoe + 
HOh is the Hamiltonian of two nOninteraCting two- 
dimensional particles with opposite charges in a mag- 

netic field and U, VI,* are the Coulomb potentials of 

the interparticle interaction and the interaction with 
the impurity. We suppose that the positive Coulomb 
impurity is located within the barrier at the distance 
dl from the electron layer. We have the following ex- 

pressions for c! K.2, 

2. Bound states of two-dimensional magnetic 
excitons in the spatially separated electron-hole 
system 

We shall consider a model where the electron layer 

and hole layer are separated by the distance d. The 
layer width as well as the tunneling between the two 
layers will be neglected throughout the paper. This 
means that the spread of the wave functions of elec- 
trons and holes in the direction perpendicular to the 
layers is negligibly small. Such a situation can be 
achieved by applying a strong perpendicular electric 
field to the coupled double quantum well systems [ 81. 
The magnetic field direction is perpendicular to the 
layers and the magnetic field H is assumed to be suf- 
ficiently strong enough that the following inequality 
holds, 

U(lrl - r2)) = -e*/.s d (q - r2)* + d*, 

V(hl> = -e*/q/(n)* +dl*, 

v2(14) = e*/q/(n)* + Cd - 4)*. 
In what follows we will use the cylindrical coordinate 
system (p, z, 4) with the z axis directed along the 
magnetic field and the symmetric gauge, 

A=;Hxr. (3) 

The eigenfunctions of HO, with definite projection of 
the angular momentum -m on the magnetic field di- 
rection can be written as (at the zeroth Landau level), 
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The corresponding eigenfunction for the hole (with 
the angular momentum projection m ) can be obtained 

by the complex conjugate of (4). 
The impurity bound states of a 2D exciton in a 

magnetic field can be described by the exact quantum 
number - the total generalized momentum M. Since e 
and h rotate in opposite directions in the magnetic field 
and therefore possess angular momenta of opposite 

signs, for given M there are a number of states for 

which mh-me = M. The wave function of the interwell 
exciton bound to the positive Coulomb impurity with 
M 3 0 can be represented in the form 

The coefficients A,,, and the eigenvalues should be de- 

termined by solving the corresponding secular equa- 
tion. Here we introduce the useful notation 

Im; n) G @$)(r&ro)(t*). (6) 

The matrix elements of the Hamiltonian (2) with re- 

spect to the wave functions (6) have the form 

where 

and i = 1,2. The pair interaction matrix elements for 

I 3 0 take the form 

U,,,(Z) = . A ( 
l/2 

(m+Z)! (n+Z)! ) J 
--y(q) xexp(_q*r~~(~~li~,(~~~(~). 

(9) 

Here Lf, is the Laguerre polynomial [ 161 and U(q) is 
the Fourier transform of the e-h interaction potential. 
For U(q) one obtains 

U(q) = - 
2re2 1 _qd 

--e 
1 Q 

We shall further use as unit of length the cyclotron 
radius TH and express all energies in units of the energy 
of the free exciton with zero momentum. The latter 

can be written in the following form, 

Ed = 
J 

d2q 
-U(q) exp( -q2/2). 
cm2 

(11) 

Note that this energy depends on the interlayer sepa- 

ration d. 
As was shown in Ref. [ 121 for the e-h system in a 

quantum well in a strong perpendicular magnetic field 
all matrix elements of Hamiltonian (2) decrease very 
fast with increasing m, n. The origin of such behavior 

is that with increasing m,n the separations from the 
impurity and between the particles also increase. In 
particular, the radius of the cyclotron orbit is 

(r2), = 2m + I c 12) 

and for the 2D exciton bound to the positive impurity 

we have 

(i-; - i$, = 2M. (13) 

So with increasing M the hole tends to be more in the 

outer orbitals. The limit M = IX corresponds to the 

electron bound to the impurity with m = 0 and the hole 
going to infinity and becoming free. It is interesting 
to note that in the case of a quantum well in a strong 

magnetic field the energy of the impurity bound elec- 
tron with m = 0 is equal to the binding energy of the 

zero-momentum exciton [ 171. Also, as one can see 

from expression (13) the states with M < 0 corre- 
spond to a hole closer to the impurity than the elec- 

tron when the impurity is located in the middle of the 
barrier (here we consider only this case). The energy 

of such states depends strongly on the doping location 
and lies above the energy of the M = 0 state. 

The decreasing behavior of the matrix elements al- 
lows us to consider only the N first terms in the sum 
(5) for sufficiently large N. In our calculations we 
take into account the first 20 terms in (5). The ener- 

gies of the bound states are obtained by the numerical 
diagonalization of 20 x 20 matrices corresponding to 
the secular equation where 10; M) , . . . ,I 19; M + 19) 
states are taken into account. The accuracy of these 
calculations is better than 10e3Ed for the lowest level 
at fixed M and for d < 10r~. Note that the binding 
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Fig. I. The evolution of the three lowest levels for M = 0 with 
the increasing of the interlayer separation d for the case dt = d/2. 
The binding energy and the interlayer separation are expressed in 
units of Ed and r”. respectively. 
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Fig. 2. The evolution of the three lowest levels for M = 1 with the 
increasing of the interlayer separation d for the case of dt = d/2. 
The binding energy and the interlayer separation are expressed in 
units of Ed and rH, reSpeCtiVdy. 

energies will only increase within the accepted accu- 

racy with allowance of more orbital mixing in (5). 
The evolution of the M = 0 and M = 1 states (the 

energies with opposite sign) with increasing interlayer 
separation d are shown in Fig. 1 and Fig. 2, respec- 
tively, for the case of an impurity located in the mid- 
dle of barrier (dr = d/2). The numbering 1, 2, 3 on 
the figures correspond to the three lowest levels (0, 1, 
2 in Ref. [ 121) . The impurity bound exciton energies 
for d = 0 coincide with the results obtained in Ref. 
[ 121. As in the case of a 2D MX in a quantum well 
the M = 0 state lies within the free magnetoexciton 
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Fig. 3. The dependence of the binding energies of lowest levels 
for M = 1,2,3,00 states on the interlayer separation d for the 
case of dt = d/2. The binding energy and the interlayer separation 
are expressed in units of Ed and rH. respectively. 

band. The energy of this state strongly depends on the 
position of the impurity in the barrier. This is due to 
the fact that the electron- and hole-impurity interac- 
tions are canceled in all matrix elements (7) only for 

the case d! = d/2 when VI, = -Vzm (in Ref. [ 121 the 

interaction of the M = 0 MX with any axially sym- 

metric external field is absent). 
As it was shown by Dzyubenko [ 121 the ground 

state of the impurity bound 2D magnetoexciton corre- 

sponds to M = 1. This situation dramatically changes 

in a system with spatially separated e-h layers. With 

increasing the interlayer separation the bound states 
with higher momenta become more favorable. The de- 
pendence of the binding energy of the lowest levels 
at fixed M on the interlayer separation d is shown in 

Fig. 3 for M = 1,2,3, cc and d1 = d/2. As one can 
see from Fig. 3 the state M = 1 is the ground state 
only at the very small interlayer separation d 6 0.13. 

For example, at 0.13 6 d < 0.5 1 the ground state is 
M = 2 and at 0.51 < d < 0.77 the ground state is 
M = 3. With further increasing d the states with the 
larger M become ground states. This picture does not 
depend qualitatively on the position of the impurity in 
the barrier if the interlayer separation is not too large. 
Fig. 4 shows the behavior of M = 1,2,00 states with 
changing the impurity position within the barrier at 
d = 0.5. One can see that the M = 2 state remains the 
ground state for all dl. 
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Fig. 4. The dependence of the lowest state binding energies on 

the position of impurity within the barrier for M = 1.2.00 states 

at tf = OS. The binding energy and the interlayer separation are 

expressed in units of Eo.5 and r-H. respectively. 

All the ground states (at different interlayer separa- 
tion) are mostly superpositions of the wave functions 
10; M), / 1; M + 1), 12; M + 2), in agreement with Ref. 
[ 121. For example, the wave function for the ground 

state M = 2 at d = 0.3 (dl = d/2) can be represented 
in the form 

1v2 x 0.95410; 2) + 0.29311; 3) 

+0.17~2;4)+0.112~3;5)+... (14) 

(the sum of the squares of coefficients is 1.037) and 
the ground state wave function for d = 1 (d, = d/2) 
is (the sum of the squares of coefficients is 1.009) 

?y, z 0.9810; 5) + 0.211; 6) 

+ 0.08412; 7) + 0.04313; 8) + . . . . (15) 

As one can see from (14), (15) with increasing the 

interlayer separation the contribution of the functions 

10;M),II;M+l),l2;M+2)to~increasestoo. 

3. Conclusion 

In conclusion, we have found the energies of low- 

lying states of the interwell magnetoexciton bound to 
the impurities in the strong magnetic field limit for 
different positions of the impurity and different inter- 
layer separations d. Contrary to the case considered 
in Ref. [ 121 the ground state of the interwell mag- 
netoexciton bound to the impurity is no longer the 

M = 1 state and it depends on the interlayer sepa- 
ration. The M = 1 state is the ground state only at 
very small d (d f 0.13). With increasing the inter- 

layer separation the bound states with higher momen- 
tum become more favorable. The dependence of the 

energy of bound states on the position of the impurity 
between two layers is strong, but the ground state re- 

mains the same (with the same M) for all impurity 
locations, if d < 1. For d > 1 the dependence of the 
ground state on the impurity position is very weak. 

The results obtained in this paper can be used for the 

ground state identification of the spatially separated 
2D electron-hole system in a strong magnetic field 

with the impurities invariably present in the quantum 

wells and in the barriers. The ground state of such a 
system may correspond to the “freezing out” of exci- 
tons at the centers and free excitons which can inter- 
act with the latter creating many-particle complexes 

or droplets. The calculation of the energies of such 
complexes is now in progress. Note that the existence 

of biexcitons and many-particle complexes in such a 
system was predicted earlier [ 61 in the absence of im- 
purities. 

Another subject of interest is the magneto-optics 

of shallow-impurity states in semiconductor quantum 

wells. Although the results of this paper are not di- 
rectly applicable to the coupled double quantum well 

systems in strong perpendicular electric and magnetic 
fields, they can be used for the qualitative description 

of impurity bound magnetic excitons in such systems. 

For a quantitative description the mixing between the 
Landau levels, the finite size of the wells and the mo- 

tion perpendicular to the quantum wells must be taken 
into account. This problem will be considered in a 
separate paper. 
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