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1. INTRODUCTION

Investigation of the cyclotron maser instability in
plasma regions of finite length is of interest primarily
because the experimental data obtained during the past
decade have clearly shown that the sources of auroral
kilometric radio emission are spatially bounded regions
(cavities) in which the low-density hot plasma is very
different from the surrounding, denser and cold, back-
ground plasma. Auroral kilometric radiation (AKR),
which was first recorded by the 

 

Electron-2 

 

satellite in
1965 [1], is the most intense nonthermal natural emis-
sion from the Earth; its power can be as high as 

 

10

 

7

 

–
10

 

9

 

 W [2]. It has been established experimentally that
AKR is generated in plasma regions of depressed den-
sity in which the electron Langmuir frequency is much
lower than the electron gyrofrequency [3]. Wu and Lee
[4] were the first to suggest that the source of AKR is
electron cyclotron maser instability. At present, it is this
instability that is thought to be the most probable phys-
ical mechanism responsible for the generation of the
Earth’s AKR and of similar types of radiation from the
solar system’s planets having their own magnetic field
(Jupiter, Saturn, and Uranus). The sources of free
energy that goes into the excitation of electromagnetic
waves are hot electron fluxes from the Earth’s magneto-
spheric tail into the auroral region. Time-resolved mea-
surements performed by the 

 

FAST 

 

satellite showed that
the electron distribution function in the AKR source has
a “horseshoe” shape with 

 

∂

 

f

 

/

 

∂

 

v

 

⊥

 

 > 0, which results in
efficient energy transfer from the electrons to the waves
[5]. Until recently, the generation of AKR due to the

development of cyclotron maser instability was investi-
gated under the assumption that the plasma is homoge-
neous. However, an analysis of the experimental data
from the 

 

Viking

 

 spacecraft showed that, in a plane per-
pendicular to the magnetic field, the length of the AKR
generation region in one of the directions usually does
not exceed 100 km, whereas the length in the latitudinal
direction, as well as the length of the source along the
magnetic field, is greater than 1000 km [6]. The width
of the transition layer separating a denser cold back-
ground plasma from a low-density hot plasma of the
AKR source is less than or on the order of the charac-
teristic radiation wavelength. The electron energy in the
source region is on the order of several keV, the energy
of transverse motion of the electrons being much higher
than their energy along the magnetic field. The cyclo-
tron maser instability generates waves at frequencies
close to the local electron gyrofrequency. Since the
plasma density in the AKR source is lower than the den-
sity of the surrounding background plasma, the cutoff
frequency of electromagnetic waves around the source
is higher than the frequency of the excited waves. This
is why the waves cannot immediately escape from the
region where they were generated. The Earth’s mag-
netic field decreases with altitude; therefore, for the
waves to escape into the surrounding medium, they
should propagate upward until their frequency becomes
equal to the local cutoff frequency in the background
plasma. The first waveguide model of the generation of
AKR was developed by Louarn and Le Quéau [7]. They
derived a dispersion relation and solved it numerically
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for different source parameters. In what follows, how-
ever, it will be shown that the results obtained in [7] are
valid only for waves whose wave vector component in
the latitude direction is zero. We believe that the
waveguide model of the generation of AKR holds con-
siderable promise, especially in the light of recent
experimental results. This motivated us to derive a dis-
persion relation that describes the generation of electro-
magnetic waves propagating in an arbitrary direction.
We also present the results of numerically solving the
dispersion relation for plasma parameters close to the
experimentally observed ones and investigate how the
spectral parameters of the AKR depend on the energy
parameters of the electron plasma component in the
source region. In the conclusion, we discuss our results
in the context of comparing them with satellite observa-
tional data.

2. FORMULATION OF THE PROBLEM
AND BASIC EQUATIONS

In order to investigate cyclotron maser instability in
an auroral density cavity of finite dimensions, we use a
model in which the AKR source is considered to be a
plane waveguide that has the width 

 

L

 

 = 2

 

l

 

 along the

 

x

 

 axis and is infinite in the 

 

y

 

 and 

 

z

 

 directions (see
Fig. 1). The 

 

z

 

 axis is directed oppositely to the back-
ground magnetic field. The width of the transition layer
between the low-density hot source plasma and the sur-
rounding denser cold background plasma is assumed to
be much less than the wavelength of the excited waves.
The electron distribution in the waveguide is approxi-
mated by a ring function, 

 

f

 

(

 

v

 

z

 

, 

 

v

 

⊥

 

) = (2

 

π

 

v

 

⊥

 

0

 

)

 

–1

 

δ

 

(

 

v

 

⊥

 

 –

 

v

 

⊥

 

0

 

)

 

δ

 

(

 

v

 

z

 

 – 

 

v

 

0

 

),

 

 where 

 

v

 

0

 

 is the directed electron veloc-
ity along the magnetic field. That the use of such an ide-
alized distribution function to investigate the genera-
tion of AKR is quite justified was shown in [8–10],
where the results of calculations for a homogeneous
plasma with a ring electron distribution were compared
with those for more realistic distributions. The ions in
our model are assumed to be immobile and to play the
role of a neutralizing background.

Under the assumption that the plasma parameters
vary on a characteristic spatial scale much greater than
the source width, the plasma inside and outside the
waveguide can be treated as homogeneous. We turn to
Maxwell’s equations for each of the three plasma
regions, namely, the source region 

 

–

 

l

 

 

 

≤

 

 

 

x

 

 

 

≤

 

 

 

l

 

 and the sur-
rounding background plasma regions 

 

x

 

 > 

 

l

 

 and 

 

x

 

 < –

 

l

 

,
with the corresponding dielectric tensor and apply the
Fourier transformation in the 

 

y

 

 and 

 

z

 

 coordinates to
them to write

(1)

where 

 

c

 

 is the speed of light,  is the dielectric tensor,
and 

 

—

 

 = (

 

∇

 

x

 

, 

 

ik

 

y

 

, 

 

ik

 

z

 

)

 

. Substituting the ring function
chosen for the electron distribution, 

 

f

 

(

 

v

 

z

 

, 

 

v

 

⊥

 

) =

— H× i
ω
c
---- ε̂E( ), —– E× i

ω
c
----H,= =

ε̂

 

(2

 

π

 

v

 

⊥

 

0

 

)

 

−

 

1

 

δ

 

(

 

v

 

⊥

 

 – 

 

v

 

⊥

 

0

 

)

 

δ

 

(

 

v

 

z

 

 – 

 

v

 

0

 

)

 

, into the expressions for
the dielectric tensor elements [11] and taking into
account the fact that, in the AKR generation region, the
electron Langmuir frequency 

 

ω

 

p

 

 is much lower than the
electron gyrofrequency 

 

ω

 

c

 

 and the characteristic wave-
length of the excited waves is much larger than the elec-
tron gyroradius, we obtain

(2)

Here, 

 

ε

 

1

 

 = 

 

 and 

 

ε

 

2

 

 = 

 

 for the plasma in the AKR

source region and 

 

ε

 

1

 

 = 

 

 and ε2 =  for the surround-
ing plasma, with

(3)

In relationships (3), we have introduced the dimension-
less variables ω' = ω/ωc (below, we will also introduce
the dimensionless variable γ' = γ/ωc; for simplicity, the
primes by the variables will be omitted), Nz = kzc/ωc,

u0 = v0/c, δΣ = (  + )/2c2, ‡ αi = , and α0 =

εxx εyy ε1, εzz≡ 1,= =

εxy εyx– ε2, εxz≡ εyz εzx εzy 0.= = = = =
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Fig. 1. Geometry of the AKR source model.
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. In the latter two variables, ωpi and ωp0 are the
electron plasma frequencies inside and outside the
source, respectively. Using Eqs. (1) and relationships (2),
we can express all the electromagnetic field compo-
nents in terms of the longitudinal components of the
electric and magnetic fields:

(4)

(5)

where Ny = kyc/ωc and x' = xωc/c. The longitudinal com-
ponents Ez and Hz satisfy the dimensionless equations

(6)

which describe the propagation of an ordinary and an
extraordinary wave. For strictly transverse propagation
(Nz = 0), Eqs. (6) are independent of one another; the
first of them describes an ordinary wave (O mode) and
the second describes an extraordinary wave (X mode)

with  = (  + ) < 1 (ω2/  ≈ 1).

In the general case, the solution to Eqs. (6) for the
source region describes a superposition of two extraor-
dinary and two ordinary waves. Accordingly, in the
source region –l ≤ x ≤ l, the general solution has the
form

(7)
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For the background plasma in the region x > l, the
solution to Eqs. (6) can be written as

(8)

and, for the region x < –l, the solution has the form

(9)

In expressions (7)–(9), N1 and N3 are transverse
wavenumbers of the X mode inside and outside the
source, respectively, and the transverse wavenumbers N2
and N4 refer to the O mode inside and outside the
source. For each of the regions under analysis, the
transverse wavenumbers are solutions to the dispersion
relation in the case of a homogeneous plasma with the
corresponding permittivity ε1 or ε2:

(10)

In the general case, the dispersion relation for deter-
mining the eigenmodes of the waveguide are found
from the continuity conditions for the electromagnetic
field components Hz, Ez, Hy, and Ey at the boundaries of
the waveguide region.

3. ANALYSIS OF THE DISPERSION RELATION

3.1. Eigenmodes with Nz = 0

The X mode (Ez = 0) and O mode (Hz = 0) propagat-
ing perpendicular to the magnetic field are independent
of one another. Therefore, in this case, only the terms
describing the X mode should be taken into account in
general solution (7)–(9); i.e., we must set a2 = b2 = A2 =
B2 = 0. Substituting solution (7)–(9) into expression (5)

and using the boundary conditions  =  and  =

 at x = l and  = , and  =  at x = –l, we
arrive at the set of four equations

,

,
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,

where Di is given by expression (5) with  and  and

D0 is given by the same expression but with  and .
The condition for Eqs. (11) to be consistent with one
another yields the dispersion relation

(12)

.

Note that dispersion relation (12) depends on , as
it should be, because there is no difference between
waves propagating in the positive or negative direction
of the y axis. In [7], cyclotron maser instability was
investigated using a model identical to that adopted
here. However, the dispersion relation obtained in [7]
depends on Ny; therefore, it is valid only for Ny = 0.

The solutions to dispersion relation (12) with Ny = 0
constitute a discrete family of waveguide eigenmodes,
each of which can be assigned an integer n. In our
analysis, we define this integer as n ≈ 1 + N1L/π (where
L = 2lωc /c), i.e., as the number of maxima of the func-
tion |Hz |.

For each n value, the real and imaginary parts of the
wave frequency as functions of Ny were found by
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numerically solving dispersion relation (12). In what
follows, we will present the results calculated for the
parameter values αi = 0.002, α0 = 0.01, δΣ = 0.0075, and
l = ωcl/c = 60, which are typical of AKR generation
regions [6]. These parameter values are such that, at
altitudes with the electron gyrofrequency fc ≈ 200 kHz,
the source width is ~30 km; the electron density and
energy inside the source are ~1 cm–3 and ~4 keV,
respectively; and the background plasma density out-
side the source is ~5 cm–3. In this section, we set u0 = 0,
because, according to experimental data, the energy of
the directed motion of the electrons is much lower than
their thermal energy. The role of the directed electron
motion (u0 ≠ 0) will be discussed below. The results of
solving dispersion relation (12) numerically for a fam-
ily of eigenmodes with the numbers n are presented in
Fig. 2 as the dependence of the normalized wave fre-
quency δω = (ω – ωc)/ωc on the y component of the
wave vector, Ny = kyc/ωc (Fig. 2a) and the dependence
of the instability growth rate normalized to the electron
gyrofrequency on the same wave vector component Ny

(Fig. 2b).

Numerical simulations show that the higher the
number n of the eigenmode, the narrower the range of
Ny values at which the waves can be amplified (γ > 0).
This stems from the facts that the higher the number n
of the eigenmode, the larger the transverse wavenum-
ber N1 corresponding to it, n ≈ 1 + N1L/π, and that the
refractive index for the X mode should be less than

unity,  +  < 1. Therefore, for each eigenmode
with the number n, there is a limiting value of Ny, or, in
other words, short-wavelength modes cannot propagate
at small angles to the y axis. For essentially all of the
eigenmodes, the growth rate is not a monotonically
decreasing function of the y component of the wave
vector, Ny, the only exception being short-wavelength
modes with large numbers n. Instead, the growth rate is
maximum at the limiting value of Ny for a given mode,
so the eigenmodes of the waveguide propagate at the
smallest possible angles to the y axis. In this case, the
maximum growth rate increases with decreasing the
mode number n. The calculations illustrated in Fig. 2
were carried out for l = 60. The results presented in
Fig. 3 in the form of the dependence of δω and γ on Ny

for the n = 12 mode were obtained for the same plasma
parameters as in Fig. 2, specifically, αi = 0.002, α0 =
0.01, and δΣ = 0.0075, but for different widths of the
source: l = 30 (dashed curves), 60 (dotted curves), and
120 (solid curves). As was expected, the smaller the
width of the source, the slower the maximum growth
rate and the narrower the range of Ny values in which
the waves can be amplified. The latter circumstance is
attributed to the fact that the transverse wavenumber N1
corresponding to a mode with a fixed number n (in the
case at hand, this is n = 12 mode) increases with
decreasing source width, N1 ≈ π((n – 1)/L).

N1
2

Ny
2
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It is of interest to compare the solutions to disper-
sion relation (12) with those to the dispersion relation
for a homogeneous plasma. Since, in a homogeneous
plasma, there is no preferred direction for waves in a
plane perpendicular to the magnetic field, in Fig. 4 we
show the dependence of the growth rate on N⊥ =

 for two different values of the electron
energy in the source region, the values of the remaining
plasma parameters being the same. The curves of group a
were calculated for δΣ = 0.0125, while the curves of
group b were calculated for δΣ = 0.0075. Each group
shows solutions to dispersion relation (12) for the n =
12 mode at different values of l, namely, l = 30, 60, and
120, which refer to the dashed, dotted, and solid curves
(like in Fig. 3). The plasma densities inside and outside
the source are the same as those in Figs. 2 and 3. Hence,
curves b in Fig. 4 are identical to the curves in Fig. 3b.
The dispersion relation for a homogeneous plasma was
solved under the assumption that the plasma density is
the same over the entire region under consideration and
is equal to that inside the source. The numerical results
show that the growth rates calculated for a homoge-
neous plasma coincide with those obtained for a finite-
size AKR source of width l = 120. In Fig. 4, the solid

N1
2

Ny
2

+

curves show the dependences γ(N⊥) for a source of
width l = 120 and for a homogeneous plasma. Hence,
for the above plasma parameters, we can see that, even
in a source with a width on the order of 60 km, the lin-
ear instability growth rate is the same as that in a homo-
geneous plasma. The main effect of the finite width of
the source is that there is a preferred propagation direc-
tion in which the waves grow at the fastest rate, specif-
ically, the propagation direction that makes almost the
smallest angle with the y axis.

It can be seen from Fig. 4 that the higher the energy
of the transverse electron motion, the faster the growth
rate and the wider the frequency range in which the
waves can be generated. Figure 5 shows the depen-
dence δω(γ) for the n = 12 eigenmode in a source with
the half-width l = 60, calculated for δΣ = 0.0125 (dashed
curve), 0.01 (dotted curve), and 0.0075 (solid curve),
the parameter values αi = 0.002 and α0 = 0.01 being the
same as in Fig. 4. It is easy to see that, as δΣ increases,
the instability range expands to lower frequencies and
the bulk of the waves excited during the development of
cyclotron maser instability have frequencies far below
the cutoff frequency in the background plasma. Conse-
quently, at large values of δΣ, the waves grow in ampli-
tude not only at the expense of the fast growth rates but
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Fig. 2. (a) Normalized wave frequency δω and (b) instabil-
ity growth rate γ as functions of Ny for several waveguide
eigenmodes with the numbers n.

(‡)

(b)

δω

–0.008

l = 120

l = 60

l = 30

–0.006

–0.004

–0.002

0

0.002

0.004

0.006

1.00.80.60.40.20

1.00.80.60.40.20

0

0.002

0.004

0.006

0.008

Ny

l = 30
l = 60

l = 120

γ

Fig. 3. (a) Normalized wave frequency δω and (b) instabil-
ity growth rate γ as functions of Ny for the n = 12 eigenmode
at different values of l.
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also because they can remain within the source
(waveguide) region for a longer time.

Figure 6 shows solutions calculated for δΣ = 0.0075
and for different densities of a homogeneous plasma.
We can see that, for ωp < 0.1ωc (αi < 0.01), the growth
rate is maximum at an N⊥ value close to unity. For
higher densities (αi > 0.01), the growth rate is a mono-
tonically decreasing function of the transverse wave-
number N⊥; however, the range of N⊥ values in which
extraordinary waves can be generated narrows sharply
as the density increases. For αi > 0.03, the waves in the
system cease to be generated.

For comparison, Fig. 7 shows solutions to disper-
sion relation (12) for the n = 12 eigenmode, calculated
for different plasma densities in the source. Curves a
were obtained for αi = 0.01, while curves b, for αi =
0.002. The background plasma density outside the
source is α0 = 0.01, and the electron energy is such that

δΣ = 0.0075. The dependence γ(N⊥) was calculated for
l = 30 (dashed curves), 60 (dotted curves), and 120
(solid curves), as in Fig. 3. The solutions obtained for
l = 120 coincide with those for a homogeneous plasma.
An interesting point to note is that, according to numer-
ical calculations, a quasi-waveguide solution (7)–(9)
can exist for the same plasma densities inside and out-
side the source, αi = α0, provided that there are suffi-
ciently many high-energy electrons in the source
region.

3.2. Structure and Polarization of the Eigenmodes

The ratio of the coefficients  in expression (7)

determines the shape of the profile of |Hz | along the
x axis in the source. This ratio is found from the set of
Eqs. (11) and has the form

(13)

Using relationship (13), we can graphically illus-
trate how the structure of the eigenmode changes with
varying Ny (at Nz = 0). Figure 8 displays the structure of
the function |Hz | in dimensionless units for the n = 12
eigenmode, calculated for the plasma parameters αi =
0.002, α0 = 0.01, δΣ = 0.0075, and l = 60, for which we
have N1 = 0.289. The symmetric solution (Fig. 8a) cor-
responds to the eigenmode with Ny = 0, while the asym-

metric solution (Fig. 8b), to the eigenmode with Ny =
0.5.

For Ny = 0, the polarization of the X mode is inde-
pendent of the x coordinate in the source and the ratio
|Ex|/|Ey| is constant, |Ex|/|Ey| = ε2/ε1 < 1. Hence, for Ny = 0,
the electromagnetic field is dominated by the Ey com-
ponent. However, as the y component of the wave vec-
tor increases, the polarization becomes coordinate-
dependent and the ratio |Ex |/ |Ey | can be much greater
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Fig. 4. Comparison of the calculated dependence γ(N⊥) for
a homogeneous plasma at δΣ = (a) 0.0125 and (b) 0.0075
with calculations for sources of finite sizes (see text for
details).
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than unity. Figure 9 depicts the ratio |Ex |/ |Ey | as a func-
tion of the x coordinate for the eigenmodes shown in
Fig. 8. We can clearly see that, for asymmetric solu-
tions, the structure of the polarization of the waves
within the source differs radically from that for sym-
metric solutions.

3.3. Eigenmodes of Electromagnetic Waves 
Propagating at an Arbitrary Angle

to the Magnetic Field

The dispersion relation for electromagnetic waves
propagating at an arbitrary angle to the external mag-
netic field is derived in the waveguide approximation

γ
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Fig. 6. Dependence γ(N⊥) for a homogeneous plasma at dif-

ferent values of αi = (ωp/ωc)
2.
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Fig. 7. Dependence γ(N⊥) for the n = 12 eigenmode at dif-
ferent values of the ratio ωp/ωc.
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from general solutions (7)–(9) and the boundary condi-

tions  = , and  =  at x = l and  = ,

and  =  at x = –l. Since this dispersion relation is
extremely involved, we do not write it out here in
explicit form and restrict ourselves to discussing some
results of its numerical solution.

Figure 10 shows how the normalized frequency δω
and growth rate γ depend on the wavenumber Nz =
kzc/ωc for several eigenmodes with the numbers n and
with Ny = 0. The calculations were carried out for the
same values of the plasma parameters as those in Fig. 2,
namely, αi = 0.002, α0 = 0.01, δΣ = 0.0075, and l = 60.
We clearly see that, as expected, the higher the num-
ber n of the eigenmode, the narrower the range of
wavenumbers Nz in which the waves can be generated
(γ > 0).

However, in contrast to Fig. 2, which shows an anal-
ogous dependence of the frequency and growth rate on
Ny for the case of strictly transverse propagation (Nz = 0),
the growth rate in Fig. 10b increases with the number n
of the eigenmode. The behavior of the normalized fre-
quencies and growth rates of the n = 12 eigenmode with
several different wavenumbers Ny (the same as that with

Hz
i

Hz
+

Ey
i

Ey
+

Hz
i

Hz
–

Ey
i

Ey
–

Ny = 0 in Fig. 10) is presented in Fig. 11, from which
we can see that the wider the range of values of the y
component of the wave vector, the narrower the range
of wavenumbers Nz where γ > 0 and the faster the insta-
bility growth rate.

An analysis of the general dispersion relation in the
case of a nonzero electron velocity along the external
magnetic field in the source region (–l < x < l) shows
that the dependence of the growth rate of the cyclotron
maser instability on Nz remains essentially unchanged
as u0 increases from 0 to 0.01. The results of relevant
calculations for the n = 12 eigenmode are illustrated in
Fig. 12 for the same plasma parameters as in Fig. 11.
From the frequency dependence shown in Fig. 12, we
can see that, for u0 ≠ 0, the real part of the frequency
waves behave in such a way that, in the Earth’s nonuni-
form magnetic field, the waves generated at Nz = 0 (or
even at Nz < 0, which corresponds to the direction oppo-
site to that of the magnetic field gradient, i.e., to the out-
ward direction from the Earth) first propagate down-
ward (because their group velocity is positive, Vgr > 0)
until they reach the reflection point (Vgr = 0) and then
they propagate upward to an altitude where their fre-
quency becomes equal to the external local cutoff fre-
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quency for an X mode. The external cutoff frequency in
the region where the waves are generated is higher than
the cutoff frequency in the source region because the
plasma density outside the source is higher than that
inside the source, but the cutoff frequency decreases
with altitude because of the weakening of the magnetic
field. Hence, even though the dependence of the growth
rate on Nz does not change with u0, the wave amplifica-
tion coefficient in a nonuniform magnetic field can
increase when u0 ≠ 0 because the waves remain in the
generation region for a longer time.

4. CONCLUSIONS

We have constructed a waveguide model of the gen-
eration of electromagnetic waves that describes the
development of electron maser instability in plasma
regions of depressed density and finite length in one of
the directions perpendicular to the magnetic field. Our
investigation shows that the instability growth rates
increase with increasing width of the generation region.
For a certain width of the source region, the growth
rates become as fast as those characteristic of a homo-
geneous plasma. For instance, for a source region with
a width on the order of 60 km and for plasma parame-
ters typical of the generation of AKR at a frequency on

the order of 200 kHz, the linear instability growth rate
is virtually the same as in a homogeneous plasma. The
main effect of the finite length of the source region is
that there is a preferential direction in which the fastest
growing waves propagate. The numerical solution of
the general dispersion relation derived in our model
shows that the instability growth rate increases with the
y component of the wave vector. We have constructed
the eigenmodes of the waveguide and have shown that
the electromagnetic field within the source region is
generally asymmetric in structure. Symmetric solutions
are possible only when the y component of the wave
vector is zero. The polarization of the electromagnetic
field of waves with a nonzero y component of the wave
vector, ky ≠ 0, depends on the coordinates. The ratio of
the absolute values of the electric field components,
|Ex |/ |Ey |, increases with ky to maximum values on the
order of several tens for waves with the maximum pos-
sible wave vector components ky. Remember that it is
the waves with the maximum values of ky that grow at
the fastest rates. Hence, it can be expected that the for-
mation of the AKR spectrum should be dominated by
waves propagating at the smallest angles to the y axis.

Our investigation of the dependence of the instabil-
ity growth rates on the electron energy in the source
region shows that, as the transverse electron energy
increases, the growth rates become faster and the fre-
quency range of the waves excited in the source broad-
ens. The electron velocity component along the mag-
netic field is 0–0.01 of the speed of light and has essen-
tially no effect on the instability growth rate. However,
in a nonuniform magnetic field analogous to that of the
Earth, the dependence of the real part of the frequency
of the excited waves on the their wave vectors changes,
with the result that the residence time of the waves
within the source region can increase and, accordingly,
their amplitudes can grow.

An analysis of the data from measurements done by
the Viking [6] and FAST [12] satellites shows that AKR
is emitted mainly along a tangent to the source bound-
ary extended in a latitude direction. In this case, the
wave polarization in a plane perpendicular to the mag-
netic field changes from nearly isotropic to highly
anisotropic, dominated by the electric field component
|Ex |, which is perpendicular to the AKR source bound-
ary. In some cases, the ratio of the electric field compo-
nents, |Ex |/ |Ey |, can be as large as 100. These experi-
mental data confirm that the waveguide model can ade-
quately describe the generation of AKR. For a more
detailed comparison of theoretical results with satellite
observational data, we plan to carry out simulations of
the amplification and propagation of electromagnetic
waves with allowance for the Earth’s nonuniform mag-
netic field.
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