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By considering the utilization of a classical channel without quantum entanglement, fﬁ@&igymaﬁé has
been established as setting the boundary between classical and quantum domains in the teleportation of
coherent states of the electromagnetic f{@dL. Braunstein, C. A. Fuchs, and H. J. Kimble, J. Mod. @t.
267 (2000]. We further examine the quantum-classical boundary by investigating questions of entanglement
and Bell-inequality violations for the Einstein-Podolsky-Rosen states relevant to continuous variable telepor-
tation. The threshold fidelity for employing entanglement as a quantum resource in teleportation of coherent
states is again found to b€, ssicar % Likewise, violations of local realism onset at this same threshold, with
the added requirement of overall efﬁcienmb% in the unconditional case. By contrast, recently proposed
criteria adapted from the literature on quantum-nondemolition detection are shown to be largely unrelated to
the questions of entanglement and Bell-inequality violations.
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[. INTRODUCTION unconditional experimental teleportation as defined by the
three criteria abovg6,8,9. Based upon the original analysis
As proposed by Bennett al.[1], the protocol for achiev- of Vaidman for teleportation of continuous quantum vari-
ing quantum teleportation is the following. Alice is to trans- ables[10], this experiment was carried out in the setting of
fer an unknown quantum stafg) to Bob, using, as the sole continuous quantum variables with input stat¢s) consist-
resources, some previously shargdantum entanglement ing of coherent states of the electromagnetic field, with an
and aclassical channetapable of communicating measure- gpserved fidelity Fe o= 0.58+0.02 having been attained.
ment results. Physical transport [af) from Alice to Bob is  This benchmark is significant because it can be demonstrated
excluded at the 0L_Jtset. Idea_l telepo_rtatlon occurs when thf\4,6] that quantum entanglement is the critical ingredient in
state|) enters Alice’s sendn_"ng_ statlorj and tsamestate achieving an average fidelity greater tHg.c<ica= 5 When
|¢) emerges from Bob's receving station. . . the input is an absolutely random coherent sfafg.
Of course, in actual experimer{i2—-9), the ideal case is Against this backdrop, several recent authors suggested

u_nattam_abl_eas a matter of prlnC|pI_e. The question of OPEI& 1ot the appropriate boundary between the classical and
tional criteria for gauging success in an experimental setting L ;
uantum domains in the teleportation of coherent states

therefore, cannot be avoided. We previously proposed that_s ould be consistent with a fideliy= 2 [12—15. Principal

minimal set of conditions for claiming success in the labora : RO
concerns expressed by these authors include the distinction

tory are the following6]. . . .
(1) An unknown quantum statesupplied by a third party between entanglement or nonseparability and possible viola-
tions of Bell's inequalities. In Ref. [14] the violation of a

Victor) is input physically into Alice’s station from an out- . - 4 - s
side source. certain Heisenberg-type inequalityll) is introduced to char-

(2) The “recreation” of this quantum state emerges from acterize shared entanglement, leading to the condfiors
Bob’s receiving terminal available for Victor’s independent being required for the declaration of successful teleportation.
examination. This criterion, based upon the Heisenberg-type inequality as

(3) There should be a quantitative measure for the qualityvell the bulk of the analyses in Refsl2-14, is related to
of the teleportation, and, based upon this measure, it shoulerevious work on inference at a distance first introduced in
be clear that shared entanglement enables the output statetf® guantum nondemolitiofQND) measurement literature.
be “closer” to the input state than could have been achievedn a similar spirit, it was also suggested that the threshold
if Alice and Bob had utilized a classical communication F>35 is required by a criterion having to do with a certain
channel alone. notion of reliable “information exchange"15].

In Ref.[6], it was shown that the fideliti between input The purpose of the present paper is to revisit the question
and output states is an appropriate measure of the degree @f the appropriate point of demarcation between classical
similarity in criterion (3). For an input statéy;,) and an

output state described by the density operépgrg, the fidel-
ity is given by[7] 1Since the terms “entanglement” and “nonseparability” are used
. interchangeably in the quantum information community, we will
F={tinlpoul ¥in)- (1) treat them as synonyms to eliminate further confusion. We will refer
to violations of Bell's inequalities explicitly whenever a distinction
To date only the experiment of Furusaegal. [4] achieved must be made between entanglement and local reglEnse

1050-2947/2001/62)/02232116)/$20.00 64 022321-1 ©2001 The American Physical Society



BRAUNSTEIN, FUCHS, KIMBLE, AND van LOOCK PHYSICAL REVIEW A64 022321

and quantum domains in the teleportation of coherent statesf a violation of a CHSH inequalitywith a fair sampling
of the electromagnetic field. Our approach will be to inves-assumptiojp again refutes the purported significance of the
tigate questions of nonseparability and violations of Bell in-thresholdF=3.
equalities for the particular entangled state employed in the Note that these results are in complete accord with the
teleportation protocol of Ref16]. Of significant interest will ~ prior treatment of Ref[6], that demonstrated that, in the
be the case with losses, so that the relevant quantum statéBsence of shared entanglement between Alice and Bob,
will be mixed states. Our analysis supports the fo||0Wingthel'e is an upper limit for the fidelity for the teleportation of
principal conclusions. randomly chosen coherent states given Bassica™ %_.

(1) By application of the work of Duagt al.[17], Simon Nothing in Refs[12—-15 called this analysis into question.

[18], and Tan[19], we investigate the question of entangle- BY contrast, we find no support for a special significance to
ment. We show that the states employed in the experiment dpg_ﬁhreshgl%fﬁe_lltyF:Ig_ n <_:o|nn_ect|on| to |s?jues of Sem?‘l;
Ref.[4] are nonseparable, as was operationally confirmed jfalility and Bell-inequality violations. Instead, as we wi

iti Co=1 -
the experiment. Moreover, we study the issue of nonsepar how, it is actually the valu€ gjassica=2 that heralds en

bility for mixed states over a broad range in the degree o rance into the quantum domain with respect to these very
. . . . . same issues.
squeezing for the initial Einstein-Podolsky-Rosen state, in All this is not to say that teleportation of coherent states

the overall system loss, and in the presence of thermal noisg\,i,[h increasing dearees of fidelity bevo —1lio

This analysis reveals that EPR mixed states that1 are nonsepas. 2 i not W?{hou? significance. )Iln fa);t’m;cs'a?z;ﬁ's éf over-
rable do indeed lead to a fidelity &> F¢|assica=z for the  jncreasing complexity are to be accomplished, there will be
telgportatlon of coherent states. Hen_ce, in keepmg. with Crizorresponding requirements to improve the fidelity of tele-
terion (3) above, the threshold fidelity for employing en- portation yet further. Moreover, there are clearly diverse
tanglement as a quantum resource is precisely the same ggantum states other than coherent states that one might de-
was deduced in the previous analysis of Réf. Within the sire to teleport, including squeezed states, quantum superpo-
setting of quantum optics, this threshold corresponds to theitions, entangled stat¢$9,28, and so on. The connection
standard benchmark for manifestly quantum or nonclassicdletween the “intricacy” of such states and the requisite re-
behavior, namely, that the Glauber-Sudarshan phase-spaseurces for achieving high-fidelity teleportation was dis-
function takes on negative values, here for any bipartite noneussed in Ref{16], including the example of the superposi-
separable statf20]. By contrast, a fidelity consistent with tion of two coherent states,

the valueF=% championed in Refd.12—15 is essentially

unrelated to the threshold for entangleméranseparability |a)+|—a), 2
as well as to the boundary for the nonclassical character of
the EPR state. which for |a|>1 requires an EPR state with an extreme

(2) By application of the work of Banaszek and Wod- degree of quantum correlation.
kiewicz [21,22, we explore the possibility of violations of Similarly, the conditional variances contained in the
Bell inequalities for the EPRmixed) states employed in the Heisenberg-type inequalities are in fact quite important for
teleportation of continuous quantum-variables states. We finthe inference of the properties of systemgiven the out-
direct violations of a Clauser-Horne-Shimong-Ht@HSH) ~ comes of measurements made aneterfollowing a system-
inequality[23] over large domains in fidelitf subject to the ~Meterinteraction. Such quantities are gainfully employed in
requirements thalE > F . assica= 5 and that the overall effi- qu_a_ntum optics in many settl_ngs, including realization of the
ciency 7> 2. Significant is a regime both of entanglement °"9inal EPR gedankenexperiment[29-31 and of back-
(nonseparability and violation of a CHSH inequality, for action evadmg measurement and quantum nondemolmon
which the teleportation fidelitfF <3 and for which the cri- (QND) detection[32]. I—!oweygr, even within th_e_ restricted
teria of Refs.[14,15 fail. Hence, teleportation witt <F context of QND detection, it is worth emphasizing that the

2 . ! . . .. usual inequalities imposed upon these inference variances,
<3 is possible with EPRmixed states which do not admit together with so-called information transfer coefficients, pro-

a local hidden variable dgscn_ptmﬁ>§ does not provide @  yjge necessary and not sufficient conditions for successful
relevant criterion for delineating the quantum and classica};ck-action evading measurem¢as.
domains with respect to violations of Bell's inequalities for Something that we would like to stress apart from the
the EPR states. details of any particular teleportation criterion is the apparent
(3) By adopting a protocol analogous to that employed ingrowing confusion in the community that equates quantum
all previous experimental demonstrations of violations ofteleportation experiments with fundamental tests of quantum
Bell's inequalities[24—26, scaled correlation functions can mechanics. The purpose of such tests is generally to compare
be introduced for continuous quantum variables. In terms ofjuantum mechanics to other potential theories, such as local
these scaled correlations, the EPR mixed state used for telesalistic hidden-variable theori¢$4,34,33. In our view, ex-
portation violates a generalized version of the CHSH in-periments in teleportation have nothing to do with this. They
equality, though nonideal detector efficiencies require a “fairinstead represent investigatiomsthin quantum mechanics,
sampling” assumption for this. These violations set in fordemonstrating only that a particular task can be accom-
F>F.assica= 3. and were recently observed in a setting of plished with the resource of quantum entanglement and can-
low detection efficiency27]. This experimental verification not be accomplished without it. This means that violations of
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Bell's inequalities are largely irrelevant as far as the originalwhereo .. are expressed in terms of the squeezing parameter
proposal of Bennetet al. [1] is concerned, as well as for by
experimental implementations of that protocol. In a theory

which allows states to be cloned, there would be no need to o’ =e"?,
discuss teleportation at all—unknown states could be cloned (5)
and transmitted, with a fidelity arbitrarily close to 1. e 2

These comments notwithstanding, there are nevertheless
attempts to link the idea of Bell-inequality violations with with o2 0% =1. Here the canonical variables; (p;) are re-

the fidelity of teleportation. It is to the details of this and . . g
other linkages that we now turn. The remainder of the papelralteci to the complex field amplitudg for modej =(1,2) by

is organized as follows. In Sec. Il, we extend the prior work
of Ref. [6] to a direct treatment of the consequences of
shared entanglement between Alice and Bob, beginning wit
an explicit model for the mixed EPR states used for telepor
tation of continuous quantum variables. In Sec. 11l we review

the criteria based upon Heisenberg-type inequalities and “in- C 8(x1=X2) 8(p1+P2), (@
formation content,” in preparation for showing their inappro-

priateness as tools for the questions at hand. In Sec. Iv, w&hich makes a connection to the original EPR state of Ein-

explicitly demonstrate the relationship between entanglemerﬁtein’ Podolsky, and Ro_sé9—3]]. . .
and fidelity, and find the same threshdid,,cq;ca= % as in Of course Wgpg, as given above, is for the ideal, lossless

our prior analysig6]. The valueF =2 is shown to have no case. Of particular interest with respect to experiments is the

particular distinction in this context. In Secs. V and VI, we |nclu5|0n_ of losses, Wh'Ch arise, fpr example, form f|n|tg
further explore the role of entanglement with regard to vio-Propagation and detection efficiencies. Rather than deal with

lations of a CHSH inequality, and provide a quantitative@Y detailed setuge.g., as treated in explicit detail in Ref.
boundary for such violations. AQaiff.(seeica=} provides [30]), here we adopt a generic model of the following form.

the point of entry into the quantum domain, wkh=% hav- C'onS|de;rtvyo |tdent|calfbeam spl:{tttirs &acgggh a éranslels—
ing no notoriety. Our conclusions are collected in Sec. yvj),Slon coetlicient,, one for each of the two modes. Ve

Of particular significance, we point out that the teleportation@k€ 0=#7=1, with =1 for the ideal, lossless case. The

experiment of Ref[4] did indeed cross from the classical to "Put modes to the beam splitter 1 are taken to b:ea(’]),
the quantum domain, just as advertised previously. while for beam splitter 2 the modes are labeled by, (2).
Here, the modes (12’) are assumed to be in the state speci-

fied by the ideaWgpg as given in Eq(4) above, while the
Il. EPR STATE modes &’,b’) are taken to be independent therrfraixed)
states, each with a Wigner distribution

aj=Xj+ipj. (6)

?n the limit of r—o0, Eq. (4) becomes

The teleportation protocol we consider is that of Braun-
stein and Kimblg16], for which the relevant entangled state

is the so-called two-mode squeezed state. This state is given W(x,p) = 1 exp{ — (x2+ p2)/(F+ 1/2)}, (8
explicitly in terms of a Fock-state expansion for two modes ’ — 1 ’
(1,2 by [36,37 mnts

©

1 wheren is the mean thermal photon number for each of the

[EPR1.= oy 2 (tanhn)fInyln);, (3 modes &',b").
n=0 The overall Wigner distribution for the initial set of input
modes (1,2'),(a’,b’) is then just the product
wherer measures the amount of squeezing required to pro-
duce the entangled state. Note that, for simplicity, we con- Wepr(X17,P17 ;X271 P2 )W(Xar ,Par )W(Xpr ,Ppr).  (9)
sider the case of two single modes for the electromagnetic
field; the extension to the multimode case for fields of finiteThe standard beam-splitter transformations lead in a straight-
bandwidth can be found in Reff38]. forward fashion to the Wigner distribution for the output set
The pure state of Eq3) can be equivalently described by of modes (1,2) 4,b), where, for example,

the corresponding Wigner distributioWgpg over the two

modes(1,2), X, =Xy — V1= 7Xar
(10)
WEepH(X1,P1:X2,P2) Xa= \/;Xa, +V1— 79Xy .

We requireWgpy, for the (1,2) modes alone, which is ob-
tained by integrating over thea(b) modes. A straightfor-
ward calculation results in the following distribution for the
—[(X1=%2)?+ (p1+p2)?Nl0?), (49 mixed output state,

0.0

4 1 5 '
=— 5 5 X~ [(X1+X) "+ (p1—p2) ) o
c
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WERH X1,P1:%2,P2) in|xj:<AXi2>_%'
4 1 §
:?;Z—?exp(—[(xl+xz)2+(p1—pz)zl/a (pip;)? =
+Y - Vpi\p-:<Api2>_;'
—[(X1=X2) 2+ (p1+Pp2) 2 0?), (12) | <Apj2>

with (i,j)=(1,2) andi+#j. Note that, for examplevxzb(l
_ ) gives the error in the knowledge of the canonical variagle
whereo .. are given by based upon an estimatexf from a measurement of;, and
likewise for the other conditional variances. These variances
o were introduced in Ref$30,31 in connection with an opti-
%= et ¥ +(1-n)(1+2n), cal realization of the originafjedankenexperiment of Ein-
(12) stein, Podolsky, and Ros¢R9]. An apparent violation of the
uncertainty principle arises if the product of inference errors
o I — is below the uncertainty product for one beam alone. For
o= =ne “+(1-n)(1+2n). exampleV, |x Vp,|p, < 75 represents such an apparent viola-
tion, sinceAx5Ap35= = is demanded by the canonical com-
mutation relation betweer, andp,, with AxZ ,=3=Ap?,
_ i _ for the vacuum statg30,31].
(4) via the simple replacements. —o ... Relevant to the This concept of inference at a distance has been elevated
discussion of Bell inequalities in Secs. V and Vl is the factg «a criteria for nonseparabilityi.e., violation of Bell's in-
that;i;z_>1 for anyr>0 and < 1. Although the simple equalitie§” [14], namely, that the domain of local realism
“beam-splitter” model is sufficient for our current discus- should be determined by the conditions
sion, a more detailed dynamical model was considered in

Note thatW2pi, as above, follows directly frorVepgin Eq.

Refs. [39,4Q for continuous variable teleportation in the - -
presence of dissipation. VighaVodle, = 7 3 Vi Voo™ 750 (19
As shown in Refs[30,3]] for the states under consideration,
IIl. ALTERNATE CRITERIA FOR TELEPORTATION the co_ndmonal variances of.EQLB) gre simply related to the
OF COHERENT STATES following (unconditional variances:
In Ref. [6] the boundary between classical and quantum Axiijz«xi_ﬂijxj)Z)y
domains in the teleportation of coherent states was deter- (15)
mined to beF . ,ssica 3, based upon an analysis of telepor- Apﬁ__ =((pi— v pj)2>-
ij

tation in the absence of shared entanglenteat, Alice and

Bob employ a classical channel aldnéSeveral recent au- |t e use a measurement gf to estimatex;, thenAx? s

thors instead argued in favor of alternate criteria for deter- . . . 1
o . the variance of the error when the estimator is chosen to be

mining successful teleportation of coherent stdtk-15. . : 2 : )

In this section, we recapitulate the critical elements of theséiXi and likewise forAp,, . For an optimal estimate, the

analyses, and state their criteria in the present notation, witRarameters &;; , v;;) are given by{30,3]

particular attention to the work of Refsl4,15. Critical dis-

cussions of the criteria of Refgl2,13 can be found in Refs. P (XiX;}) Vgpt:<pipi>

[6,38]. In subsequent sections we proceed further with our Doy (aph)

own analysis of entanglement and possible violations of

Bell's inequalities for the EPR state of E(L1), and to an and, in this case,

investigation of their relevance to the delineation of the ap- ) )

propriate quantum-classical boundary in teleportation. Viglx;=AX 00t Vo, = AP opt. (17)
Turning first to criteria arising from the QND literature N N

[12-14, we recall the following statement with reference to The condition in Eq(14) that attempts to define the domain

Eq. (21) of Ref.[14]: “As a criteria for non-separabilityby  of local realism can then be reexpressed as

which is meant violations of Bell's inequalitisve will use

(16)

the EPR argument: two different measurements prepare two 5 2 _ 1 5 2 _ 1
different states, in such a way that the product of conditional AX,, AP, =16 A% AP P TE (18)
varianceqwith different condition violates the Heisenberg

principle.” where we assume the optimized choice and drop the super-
This statement takes a quantitative form in terms of thescript “opt.”

following conditional variances expressed in the notation of To make apparent the critical elements of the discussion,

the preceding section for EPR beafis?), we next assume symmetric fluctuations as appropriate to the
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EPR state of Eq(ll), Mij = Mji =M and Vij= V=V, with

= —v. Note that within the context of our simple model of

the losses, the optimal value gfis given by

nsinh2r
(1—7n)+mycosha’

opt_

“ (19

where in the limitr>1, u—1 for »>0. For this case of
symmetric fluctuations, the HI of E18) becomes

1
2 2
Ax,Ap,= =

16’ (20
where
AX,ZL: (X1= uX2) %y ={((Xa— ux1)?),
(21

APZ=((p1+up2)?)=((pa+ up1)?).

In the limit r>1, u—1 for >0, so that the Heisenberg-

type inequality becomes

AX?Ap?= 1 (22
16

Here (Ax?,Ap?) are as defined in Eq21); now, with u
:17

AX2:<(X1_X2)2>,
(23
Ap?={(p1+p2)?),

where from Eq.(11), we have thatAx2+Ap2=;2, for the
EPR beamg1,2).
The claim of Grangier and Grosshdrs] is that the in-

PHYSICAL REVIEW /64 022321

A2A2>3 2
X+p/2! (7)

with (Ax?,Ap?) as defined in Eq(23).

Apart from the criteria of Eqs(26) and (27), an alterna-
tive requirement for the successful teleportation of coherent
states has been introduced in REE5], namely, that “the
information content of the teleported quantum state is higher
than the information content of aniglassical or quantujn
copy of the input state, that may be broadcasted classically.”

To quantify the concept of “information content” these
authors introduced a “generalized fidelity” describing not
the overlap of quantum states as is standard in the quantum
information community, but rather the conditional probabil-
ity P(a|l) that a particular coherent stafte) was actually
sent given “the available informatioh” In effect, Ref.[15]
considered the following protocol. Victor sends some un-
known coherent statfy,) to Alice, with Alice making her
best attempt to determine this std#l], and sending the
resulting measurement outcome to Bob as in the standard
protocol. Bob then does one of two things. In the first in-
stance, he forwards only this classical message with Alice’s
measurement outcome to Victor without reconstructing a
quantum state. In the second case, he actually generates a
quantum state conditioned upon Alice’s message and sends
this state to Victor, who must then make his own measure-
ment to deduce whether the teleported state corresponds to
the one that he initially sent. The requirement for successful
teleportation is that the information gained by Victor should
be greater in the latter case where quantum states are actually
generated by Bob than in the former case where only Alice’s
classical measurement outcome is distributed. It is straight-
forward to show that exceeding the bound set by @) is
sufficient to ensure that this second criteria is likewise satis-
fied for the teleportation of a coherent stig), albeit with

equality of Eq.(20) serves as “the condition for no useful the same caveat expressed in Héfl], namely that neither
entanglement between the two beams,” where by “useful’the setSof initial states{|#;,)} nor the distributiorP(| ;,))
they refer explicitly to “the existence of quantum nonsepa-over these states is specified. We now turn to an evaluation

rability (violation of Bell's inequalities.” The variances of

of the foregoing criteria placing special emphasis on the is-

Egs. (21) and (23) are also related to criteria developed syes of entanglement and violations of Bell's inequalities,

within the setting of quantum nondemolition detect[@2].

specifically because these are the concepts that were empha-

Relevant to the discussion in Sec. IV will be to note thatsjzed in the work of Ref{14].

in general the inequality

V.V o 24
1 Z/Z ( )
implies that
a2
Vi+Vo=V+ —=a, (25

4V,

so that the purported criterion EQRO) from Ref. [14] for
classicalteleportation leads to

AXZ+A 21 (26)
Iz pﬂ/z'

which forr>1 becomes

IV. ENTANGLEMENT AND FIDELITY
A. Nonseparability of the EPR beams

To address the question of the nonseparability of the EPR
beams, we refer to the papers of Duwgtral. [17] and Simon
[18], as well as related work by TdA9]. For the definitions
of (x;,p;) that we have chosen for the EPR beafh®), a
sufficient condition for nonseparabilityvithout an assump-
tion of Gaussian statisti¢ss that

AX2+Ap?<1, (29
whereAx? and Ap? are defined in Eq(23). This result fol-
lows from Eg.(3) of Duan et al. with a=1 (and from a
similar more general equation in Simof42]. Note that
Duan et al. had Ax?=}=Ap? for the vacuum state, while
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our definitions lead ta\x?=}=Ap? for the vacuum state, , L, (1+u?)
where for exampleAx3=(x,2), and that the EPR fields con- AX, AP, <, (33
sidered have zero mean.

~ Given the Wigner distributiotWgpg as in Eq.(11), we  which reproduces Eq28) for w=1. Although the experi-

find immediately that ment of Ref.[4] explicitly recorded variances only for the
caseu=1, the EPR experiment of Rdf30] choseu<1, in
correspondence to the degree of correlation between the EPR
beams. This original realization of the EPR experiment
achieved Ax%=[(0.835£0.008)< ;] and Ap’=[(0.837

For the cas@=0, the resulting state aslways entangled for +0.008)x ;] for x?=0.58[30], so that

any r>0 even forp<<1, in agreement with the discussion in

2
O_

5 =7ne P H(1-p)(1+2n). (29

AX?+Ap?=2

2 _ 2
;)Suanet al.[17]. For nonzera, the state is entangled so long AxfﬁApi: (0.42+0.0)<0.79— (l+2,u ) (34
— nl1—exp(—2r)] 30  With the hindsight provided by the nonseparability criteria of
2(1—-7n) (30 Refs.[17,18], we see that the experiment of RE30] repre-

sents the first demonstration of the unconditional generation

We emphasize that in the experiment of Furusawal. and detection of bipartite entangled stafies., so-calledde-
[4], for whichn=0 is the relevant case, the above inequalityterministicproduction of entanglementhere within the set-
guarantees that teleportation was carried out with entanglelnd Of continuous quantum variables.
(i.e., nonseparablestates for the EPR beams, independent of _More generally, it is straightforward to show that the EPR
any assumption about whether these beams were GaussianBed state of Eq(11) satisfies the entanglement criteria Eq.
pure states. Explicitly, the measured variances for the work32) for any r>0 with u™<u<1. Here u™ sets the
of Ref. [4] were Ax?~(0.8x 3)~Ap?, so thatAx?+Ap?  threshold for the onset of entanglement in E2g), where
~0.8<1.

In contrast to the condition for entanglement given in Eq. i 2 SInKE(r/2)
(28), the discussion of Sec. lll instead requires exceeding the o sinh(2r) (35
more stringent condition of Eq27) for successful teleporta-

tion. Although the EPR beams are indeed entangled Wherlndependent 0'67_ In contrast to the ChOiCﬂ:MOPt asin Eq

ever Eq.(28) is satisfied, entanglement in the domain (19) which minimizes the conditional varianceﬁn(i ’Api)'
1 the valueu=1 maximizes the degree of entanglement in
S <AXP+ApE<1 (31)  terms of the largest fractional deviation qixi+Api) be-
2 low (1+?)/2 [43]. This result is in satisfying correspon-

. ) ) dence with the actual teleportation protocol, namely, flat
is termed in Ref[14] as not “useful” and in Ref[13](b) as  —1 as appropriate there actually maximizes the degree of
not “Frue EPR entanglement."_ N _ _ entanglement for givenr (7).

With regard to the QND-like conditions introduced in T4 connect these results with the inequalities introduced

Refs.[12-14, we note that more general forms for the non-j, gec. |11, we note that Eq33) for nonseparability implies
separability condition of Eq(28) are given in Refs[17,18.  hat

Of particular relevance is a condition for the variances of Eq.

(15) for the case of symmetric fluctuations as for EPR state (14 u?)?

in Eq (11), Mij = Mji = M and Vij= Vji=v, with M=V, AXiApi<T, (36)
Consider, for example, the first set of variances in €4),

namely,

which is in the form of a violation of a Heisenberg-type
Axiz((xz—,uxl)2> and Api=<(p2+,upl))2, inequality. Note that fon=0, this inequality is satisfied for
(32 anyr>0 and 0< »=<1, now with u™"<u<1 as above. For
r>1 and»>0, u—1, and Eq.(36) becomes
as would be appropriate for an inference &f (p,) from a
measurementat a distanceof (x;,p;). Although u=1 is 1
certainly the case relevant to the actual teleportation protocol AXZA p2<Z. (37)
of Ref. [16], Alice and Bob are surely free to explore the
degree of correlation between their EPR beams and to test
for entanglement by any means at their disposal, includin%
simple measurements wifta# 1. €
In this case of genergk, a sufficient condition for en-
tanglement of the EPR bean(%,2) may be obtained using
Eqg. (11) of Ref.[18] yielding

By contrast, application of the alternate conditions from
c. lll leads to the requirement

AX2A 2<i (38)
LT
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Within the setting of our current model, this condition can be+Ap?=1 to Ax?>+ Ap?=1% without employing quantum re-

satisfied for anyr>0 only so long as the efficiency> 3 sources in the teleportation protodak is required when the

[44]. Again, for r>1 and >0, u—1, so that Eq.(38)  Glauber-SudarshaR function is not positive definije with

becomes their own work offering no suggestion of how this is to be
accomplished.

AX2A p2<i. (39
16 B. Fidelity

Although these conditional variances and related criterion 1Urning next to the question of the relationship of en-
are quite useful in the analysis of back-action evading meat@nglement of the EPR bearfss quantified in Eq(28)] to

surement for quantum nondemolition detection, they appart-he fidelity attainable for teleportatiomith these beamave
ently have no direct relevance to the question of entanglet€call from Eq.(2) of Ref.[4] that
ment, foru=1 or otherwise.

These various inequalities can be viewed in somewhat F= 1 (42)
more general terms by noting that E@) of Ref. [18] de- 1+02"
mands that the sum of variances &y bipartite state satisfy
the condition where this result applies to teleportation of coherent states
, [45] . When combined with Eq29), we find that
1-n |<Axi+Apr, (40) 1

F=—m—r— . (43
: 1+ (Ax*+Ap?

so that entangled states that satisfy B8) are further con- (Ax P9

strained by The criterion of Eq{(28) for nonseparability then guarantees

that nonseparable EPR states as in E4jsand(11) (be they

_,2 2
1 2’“ | $(Axi+Api)<(l+2'u ) _ (41) mixed or purg are sufficient to achieve
1
The sum of varianceAx? + Ap? for the EPR(mixed state F>Feiassica™ 5 » (44)

of Eq. (11) ranges continuously between these bounds. As

discussed in connection with E33) above, forn=0 the = Whereas separable states must h&eFassicar 7, al-

EPR (mixed) state drops below the upper bound to becomehough we emphasize that this bound applies for the average

entangled for any >0 so long asp#0 andu™"<u<1. It fidelity for coherent states distributed over the entire com-

approaches the lower bound for1 with =1. By con-  Plex plane[6]. More general cases for the distribution of

trast, the criteria of Ref§12—14 [e.g., the inequality of Eq. Ccoherent states are treated in the Appendix.

(26) from Ref.[14]] effectively split the difference between ~ We thereby demonstrate that the conditioh- Fjassical

these two limits by defining the quantum-classical boundary=z for quantum teleportation as established in Ref. [6] co-

to be set byAX;2L+Ap,i: 1 incides with that for nonseparability (i.e., entanglement) of
In this regard, it is worth emphasizing that REZ9] no-  Refs. [17,18] for the EPR state of Eq. (1Note that, forn

where contains the Heisenberg-type inequalities discussed O, we have

above and in Sec. lll, which were first introduced by Reid

and Drummond[31]. The states originally considered by 1

EPR[i.e., Eqs.(7), (8), (9), (11), and(15) of Ref. [29]] are P o (49)

. : ) 2—p(l—e™7"

insteads-correlated pure states, and have inference variances

equal to zero(e.g., Vy,x,=0=V, |, and Ax*=0=Ap?%). s that the entangled EPR beams considered (asreell as

For finite degrees of correlation, the quantitative boundary ain Refs.[12—15) provide a sufficient resource for beating

which the EPR argument fails is provided not by thethe limit set by a classical channel alone for anyO0, so

Heisenberg-type inequalities of E¢B8), but rather by the long as%>0. In fact, the quantitiesXx? Ap?) are readily

analysis of Refd.17,18 for mixed as well as for pure states, measured experimentally, so that the entanglement of the

which leads instead to E36). EPR beams can be operationally verified, as discussed in
Although the boundaries expressed by the nonseparabilitec. 11 A[4,30]. We stress that independently of any further

conditions of Eqgs( 28) and(33) are perhaps not so familiar assumption, the condition of E(8) is sufficient to ensure

in quantum optics, we stress that these criteria are associatetitanglement for pure or mixed sta{d$,47.

quite directly with the standard condition for nonclassical The dependence of fidelify on the degree of squeezing

behavior adopted by this community. Whenever E@S8) and efficiencyz, as expressed in E@45), is illustrated in

and (33) are satisfied, the Glauber-Sudarshan phase-spa¢ég. 1. Here, in correspondence to an experiment with fixed

function takes on negative valug20], which for almost 40 overall losses and variable parametric gain in the generation

years has heralded entrance into a manifestly quantum af the EPR entangled state, we show a family of curves, each

nonclassical domain. It is difficult to understand how theof which is drawn for constany as a function of. Clearly,

authors in Refs.[12-15 proposed to move fromAx? F>F_ assica— 3. and hence nonseparability results in each

022321-7



BRAUNSTEIN, FUCHS, KIMBLE, AND van LOOCK PHYSICAL REVIEW A64 022321

! T T T - T - T " y of correlation between the EPR beams is increased, there
oosk "o 1  comes a point for whickAx?+Ap2=1%, and for which each

of Alice and Bob’s excess noise has been reduced from 1
080 1 quduty each tg quduty each. At this point, the entire result-
ing noise of3+3=1 quduties is(arbitrarily) assigned to
Alice, with then the perspective that Bob’s state recreation
adds no noise. Of course one could equally well make the

070 - complementary assignment, namely, 1 quduty to Bob and

none to Alice(again in the case with® = ). The point that
seems to have been missed in Ra6] is that key to quan-
tum teleportation is the transport of quantum states. Clearly
it is true that “there isno extra noise associated to the recon-
struction: given a measure@l, one can exactly reconstruct
the coherent statgg), by using a deterministic translation of
e e m %5  the vacuum15].” However, while Bob can certainly make
Squeezing r such a state deterministically, it is an altogether different
matter for Victor to receive a classical number from Bob in
case(i) as opposed to the actual quantum state in Gasén
this latter case, apart from having a physical state instead of
a number, Victor must actually make his own measurement
with the attendant uncertainties inherent ) then entering.
Analogously, transferring measurement results about a qubit,
without recreating a state at the outgué., without sending
an actualquantum statdo Victor), is not what is normally
considered to constitute quantum teleportation relative to the
original protocol of Bennetét al. [1].

Turning next to the actual experiment of Ref], we note
case. Although Refd.12—15 would require fidelityF > 2 that a somewhat subtle issue is that the detection efficiency
(which results forAx?+ Ap?<3) for quantum teleportation for Alice of the unknown state was not 100%, but rather was
of coherent states, this purported criterion has no apparenjz=0.97. Because of this, the fidelity for classical telepor-
significance with respect to issues of entanglement, othettion (i.e., with vacuum states in place of the EPR beams
than as a bound fop=0.5. did not actually reach}, but was instead=,=0.48. This

In this regard it is worth noting that violations of the should not be a surprise, since there is nothing to ensure that
Heisenberg-type inequality as in E@8) can be attained for a given classical scheme will be optimal and actually reach
any r>0 so long as the efficiencyy>3. Since it is the the boundF,ssica= 5. Hence the starting point in the ex-
quantity (Ax?+Ap?) and not Ax’+Ap?) that determines  periment withr =0 hadF o< Fjassicai; the EPR beams with
the fidelity [Eq. (43)], the threshold for violations as in Eq. r>0 (which were in any event entangled by the above in-
(38) is thus fidelity Fassica=3 and not the valuek=3 equality then led to increases in fidelity frofR, upward,
championed in Refl14]. In effect, these authors employed exceeding the classical boumq,,ssica=3 for a small(but
F>%, only to warranty thaty> 3, so that it is then possible not infinitesimal degree of squeezing. Note that the whole
to achieve a violation of the specific Heisenberg-type in-effect of the offsef,=0.48<3 can be attributed to the lack
equality withu=1 as expressed in E(39). However, more  of perfect(homodyne¢ efficiency at Alice’s detector for the
generally, we have shown that the Heisenberg-type inequalunknown state. In the current discussion for determining the
ties with optimizedu can be violated for anfF>F .ssicai Classical bound in theptimal case, we instead set Alice’s
=1if p>3. detection efficiency;;2A=1; then, as shown above, classical

As for the criterion of “information content” described in  teleportation will achievé=13.

Sec. I [15], we note that it can be easily understood from  Independent of such considerations, we reiterate that the
the current analysis and the original discussion in RES].  nonseparability condition of Refgl7,18 applied to the EPR
Each of the interventions by Alice and Bob represent onestate of Eqs(4) and (11) leads to the same reswft,ssical

unit of added vacuum noise that will be convolved with the:% [Egs.(43) and(44)] as did our previous analysis, based
initial input state in the teleportation protocthe so-called upon teleportation with only a classical communication
qudutieg. The following two situations are compared in Ref. channel linking Alice and Bob6]. This convergence further
[15]: (i) Bob directly passes the classical information that hesupportsF ,ssica= = as the appropriate quantum-classical
receives to Victor, andii) Bob generates a quantum state in boundary for the teleportation of coherent states, the claims

the usual fashion that is then passed to Victor. The “infOI’-of Refs. [12_15 notwithstanding_ Relative to the 0rigina|
mation content” criterion demands that Victor should receivework of Bennettet al. [1], exceeding the boun& ¢ assical

the same information in these two cases, which reqUireS tha:t% for the te|eportation of coherent can be accompﬁshed
o2 =Ax?+Ap?<i, and hencd>2. That is, as the degree with a classical channel and entanglée., nonseparable

09

Fidelity F(r)
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FIG. 1. FidelityF as given by Eq( 45), vs the degree of squeez-
ing r for a fixed efficiencys. From top to bottom, the curves are
drawn with ={0.99,0.90,0.70,0.30 in correspondence to an in-
creasing loss (% 7). Note thathassicaF% provides a demarca-
tion between separable and nonseparable statésed or other-
wise), while F=§ is apparently of no particular significance, the
contrary claims of Refd.12—15 notwithstanding. Note that fop
=1, r=In2/2=0.3466 givesF=§, corresponding to-3 dB of
squeezing. In all casen=0.
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EPR states, be they mixed or pure, as is made clear by thehere 7 is a positive (rea) constant. As shown in Refs.
above analysis and as has been operationally confifiled [21,22, any local theory must satisfy
We should however emphasize that the above conclusions
concerning nonseparability and teleportation fidelity apply to —2<B=2. (49
the specific case of the EPR state as in &q), for which
inequality Eq.(28) represents both a necessary and sufficienAs emphasized by Banaszek and Wodkiewicz for the lossless

criterion for nonseparability according to Refkl7,18. case,I12pH0,0;0,0=1 “describes perfect correlations . ..

More generally, for arbitrary entangled states, nonseparabibs a manifestation of ... photons always generated in
ity does not necessarily lead E&>3 in coherent-state tele- pairs.”
portation[46,47]. There are several important points to be made about this

result. In the first place, in the ideal case with no logs (
=1), there is a violation of the Bell inequality of E@L9) for
anyr>0. Further, this threshold for the onset of violations of

The papers by Banaszek and Wodkiew[@4,22 pro- the CHSH inequality coincides with the threshold for en-
vides our point of reference for a discussion of Bell’s in-tanglement as given in Eg28), which likewise is the point
equalities. In these papers, the authors introduced an apprer surpassingcjassica= 3 as in Eqs(43) and(44), and as
priate set of measurements that lead to a Bell inequality o§hown in our prior analysis of Ref6] which is notably
the CHSH type. More explicitly, Eq4) of Ref.[21] gives  based upon a quite different approach.

the Operatorﬂ(a;ﬁ) whose expectation values are to be .Significantly, there islabsolutely .nothing special about the
measured. Banaszek and Wodkiewicz pointed out that theoint r =In2/2~0.3466(i.e., the point for which exXp-2r]

~ _ H 2 H
expectation value ofl («: 8) is closely related to the Wigner =0.5 and for whichF= 35 for the teleportation of coherent
function of the field being investigated, namely, state$. Instead, any >0 leads to a nonseparable EPR state,
to a violation of a Bell inequality, and 6> F |,ssica= 3 fOr

the teleportation of coherent states. There is certainly no sur-

V. BELL'S INEQUALITIES

W(a;B)= iZH(a;,B), (46) Fiiss]e here since we are dealing with pure statessferl
a .
We next examine the case with<1, which is clearly of
whereH(a;,B)=<ﬁ(a;ﬁ)>. interest for any experiment. Figure 2 illustrates the behavior

of B as a function of7 for various values of the squeezing
parameter and of the efficiency;. Note that throughout our
analysis in this section, we make no attempt to search for
optimal violations, but instead follow dutifully the protocol
of Banaszek and Wodkiewicz as expressed in(E8). for the

For the entangled state shared by Alice and Bob in th
teleportation protocol, we identifyW2pr, as the relevant
Wigner distribution for the model,2) of interest, so that

out .
ITgpr(X1,P1:X2,P2) case with losses as well.
1 From Fig. 2 we see that for any particular set of param-
= —ﬁexp{—[(xﬁxz)zﬂpl—pz)z]/;i eters ¢.7), there is an optimum vglug’m_ax that leads to a
olo maximum value foi3(Jmay, Which is a situation analogous

to that found in the discrete variable case. By determining
—[(Xg—X2)?+(p1+p2) 21/ 0% }. (47)  the corresponding valug. at each ¢, %), in Fig. 3 we
construct a plot that displays the dependence3adn the
Banaszek and Wodkiewicz showed th&EpH(X;,p1;X2,P2) squeezing parameter for various values of efficiency.
directly gives the correlation function that would otherwise Note that all cases shown in the figure lead to fidekty
be obtained from a particular set of observations over a> F¢jassical-
ensemble representing the field with density operator For $<7=1 there are regions in that produce direct
where the actual measurements to be made are as descripdglations of the Bell inequality considered here, namély,
in Refs.[21,22. In simple terms[12540,0;0,0) is the parity >2 [49]. In general, these domains wifi>2 contract to-
operator for separate measurements of photon number dlﬁard smallerr with increasing loss (% ») g In_fact asr in-
modes(1,2), with then nonzerox;,p;) corresponding to a C'€aS€S?7 must l_aecome very close to unity in order to pre-
“rotation” on the individual modei that precedes its parity serve the conditio8>2, where, for>1,
measurement.
The function constructed by Banaszek and Wodkiewicz to
test for local hidden variable theories is denoted3®wand is

2(1— n)cosh2r)<1. (50

This requirement is presumably associated with the EPR

defined by . p SRR .
state becoming more “nonclassical” with increasingand
out _ out _ hence more sensitive to dissipatipb0]. Stated somewhat
B(J)=11g20,0;0,0 + 12y 7,0;0,0 more quantitatively, recall that the original stdEPR); , of
out . __ryout . Eq.(3) is expressed as a sum over correlated photon numbers
+TIEH(0,0;= V7,00~ TTEs V7,0:= V7.0), for each of the two EPR beanis,2). The determination oB

(48 derives from(displaced parity measurements on the beams

022321-9



BRAUNSTEIN, FUCHS, KIMBLE, AND van LOOCK PHYSICAL REVIEW A64 022321

25 T T T T T T T T T 2

T T T T T T T
(b) (d)
18 r=01
16f
0.3466
14
A =12
=
@ @
I I ir E
%) [0} 1.0
I 1.0 I
O 1 Oosf g
o6}
05} i 0.4}
20 ozl 20
0 Il Il 1 1 1 1 1 Il 1 0 L ] L 1 1 1 1 1 Il
0 0.05 0.1 0.15 0.2 0.25 03 0.35 04 0.45 05 0 0.05 0.1 0.15 0.2 0.25 03 035 04 0.45 05
J J

FIG. 2. The function3(.7) from Eg.(48) as a function of7 for various values ofI(, 7). Recall that3>2 heralds a direct violation of
the CHSH inequality, with the dashed lifiz==2 shown. In each of plot&)—(d), a family of curves is drawn for fixed efficiency and four

values ofr={0.1,In 2/2,1.0,2.p (a8 »=0.99,(b) »=0.90,(c) »=0.70, and(d) »=0.50; and, in all cases,=0.

(1,2 (i.e., projections onto odd and even photon numl®r  mixed states are nonseparable and yet directly violate a Bell
that B should be sensitive to the loss of a single photon. Thénequality, but for whichF<%. Such mixed states do not
mean photon number; for either EPR beam goes as sﬁmh satisfy the criteria of Refd.12—15, yet these are states for
with then the probability of losing no photons after encoun-which 3 <F<% andB3>2. There remains the possibility that
tering the beam splitter with transmission scaling as F> 2 might be sufficient to warranty that mixed states in this
roughly po~[ 7]". We require that the total probability for domain would satisfy thaB>2, and hence to exclude a

the loss of one or more photons to be small, so that description of the EPR state in terms of a local hidden vari-
ables theory.
(1-po)<1, (51 To demonstrate that this is emphatically not the case, we

further examine the relationship between the quaritel-

and hence, for (+ 7)<1 andr>1, that evant to the CHSH inequality and the fideliy Figure 4

(1— W)RN(l— n)exp2r)<1 (52) shows a parametric plot & versusF for various values of
! ’ the efficiencyz. The curves in this figure are obtained from
in correspondence to E¢G0) [51]. plots as in Figs. 1 and 3, by eliminating the common depen-

On the other hand, note that small valuesrdh Fig. 3  dence onr. From Fig. 4, we are hard pressed to find any
lead to direct violations of the CHSH inequali§>2 with  indication that the valu& =5 is in any fashion noteworthy
much more modest efficienci¢S0]. In particular, note that with respect to violations of the CHSH inequality. In particu-
for r=1n2/2~0.3466 andyp=0.90, F<3 [from Eq. (45)]. lar, for efficiency »=0.90 most relevant to current experi-
This case and others like it provide examples for whichmental capabilities, the domal> 3 is one largely devoid
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FIG. 3. (a) The quantity3 from Eq. (48) as a function of for
various values of efficiencyy={0.99,0.90,0.70,0.30 as indicated.
At each point in ¢, %), the value of7 that maximizes3 has been
chosen. Recall thaB>2 heralds a direct violation of the CHSH
inequality, with the dashed linB=2 shown. Also note thd{f>%
for all r>0. (b) An expanded view of3 in the smallf regionr
=<0.1. Note that in the casg=0.70, B>2 for smallr. In all cases,

n=0.

of instances with3>2, in contradistinction to the claim that
this domain is somehow “safer['14] with respect to viola-
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FIG. 4. (a) A parametric plot of the CHSH quanti#§ [Eq. (48)]
vs fidelity F [Eq. (45)]. The curves are constructed from Figs. 1 and
3 by eliminating ther dependence, now over the range <5,
with r increasing from left to right for each trace. The efficiengy
takes on the value$={0.99,0.90,0.70,0.50as indicated; in all
cases,n=0. Recall that5>2 heralds a direct violation of the
CHSH inequality, with the dashed linB=2 shown.(b) An ex-
panded view around3=2. Note that5>2 is impossible forF
<F(assica™ % but thatB>2 for F>F | 4sica iN Various domains
(including for =0.70 at small). The purported boundarEI:%
championed in Refd.12-15 is seen to have no particular signifi-

tions of Bell's inequalities. Moreover, contrary to the dis- cance. Converselyr =3 provides absolutely no warranty th&t
missal of the domaig <F<$ as not being manifestly quan- >2 for F>%, nor does it preclud&>2 for F<3.

tum, we see from Fig. 4 that there are in fact regions with

B>2. Overall, the conclusions in Reff14] related to the (here via the behavior of the CHSH quantiy. However, in
issues of violation of a Bell inequality and of teleportation our view there is a conflict between these concepts, with an
fidelity are simply not supported by an actual quantitativeillustration of this point provided by the plot of the CHSH
analysis. guantity B [Eqg. (49)] versus fidelityF [Eq. (45)] in Fig. 4.

To conclude this section, we would like to inject a note of For example, forp=0.90, B>2 over the range 0.50F
caution concerning any discussion involving issues of testings 0.66, while <2 for larger values of-. Hence local hid-
Bell's inequalities and performing quantum teleportation. Weden variables theories are excluded for modest values of fi-
have placed them in juxtaposition here to refute the claims oflelity 0.50<F=<0.66, but not for larger valugs=0.66. This
Grangier and Grosshans related to a possible connection bieads to the strange conclusion that quantum resources are
tween the boundc=% and violation of Bell’s inequalities required for smaller values of fidelity but not for larger ones.
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The point is that the nonseparable states that can enable In terms of our current discussion, this experimental vio-
guantum teleportation, can a different contexélso be used lation of a CHSH inequality is only just within the nonsepa-
to demonstrate a violation of local realism. Again, the juxta-rability domain Ax?>+Ap?<1 (by an amount that goes as
position of these concepts in this section is in response to ther <1), yet it generates a large violation of a CHSH inequal-
work of Ref.[14], which in any event offers no quantitative ity. If this same EPR state were employed for the teleporta-

evidence in support of their association. tion of coherent states, the conditional fidelity obtained
would likewise be only slightly beyond the quantum-

VI. BELL'S INEQUALITIES classical boundaryF,ssica=3- It would be far from a

FOR SCALED CORRELATIONS boundary consistent with=3 proposed in Ref§12—15 as

the point for “useful entanglement” or “true entanglement,”

The conclusions reached in Sec. V about violations of thg e it would nonetheless provide an example of teleportation
CHSH inequality by the EPRmixed) state for modes$1,2)  ith fidelity F>3 and of a violation of a CHSH inequality.

follow directly from the analysis of Banaszek and Wod- ot course, the caveat would be the aforementioned “fair-
kiewicz [21,22 as extended to account for losses in Propa-sampling” loophole, but this same restriction accompanies

gation. Toward the end of making these results more amey| previous experimental demonstrations of violations of
nable to experimental investigation, recall that the more traggg inequalities.

ditional versions of the Bell inequalities formulated for spin-
% particles or photon polarizations are based upon an analy-

sis of the expectation value VII. CONCLUSIONS

. Beyond the initial analysis of Reff6], we have examined
E(a,b) (53)  further the question of the appropriate point of demarcation
. . . . between the classical and quantum domains for the telepor-
for detection evePt§ at locatioris,2) with analyzer settmgs. tation of coherent states. In support of our previous result
along directions §,b). As emphasized by Clauser aﬁndﬁ Shi- that fidelity Fjassica™ 5 represents the bound attainable by
mony, actual experiments do not measure dire&i(g,b) Alice and Bob if they make use only of a classical channel,
but rather record a reduced version due to “imperfections inve have shown that the nonseparability criteria introduced in
the analyzers, detectors, and state prepard@@h” Even Refs.[17,18 are sufficient to ensure fidelity beyond this
after more than 30 years of experiments,diect violation  bound for teleportation with the EPR state of Effl), which
of the CHSH inequality has been recorded, wheredlbgct  is in general a mixed state. Significantly, the threshold for
we mean without the need for post-selection to compensatentanglement for the EPR beams as quantified by these non-
for propagation and detection efficienci@dso calledstrong  separability criteria coincides with the standard boundary be-
violations [25,26. Rather, only subsets of events that givetween classical and quantum domains employed in quantum
rise to coincidences are included for various polarization seteptics, namely, that the Glauber-Sudarshan phase-space
tings. This “problem” is the so-called detector efficiency function takes on negative valug2Q].
loophole that several groups are actively working to close.  Furthermore, we have investigated possible violations of

Motivated by these considerations, we point out that arBell’s inequalities, and have shown that the threshold for the
observation of violation of a Bell-type inequality was re- onset of such violations again correspondsFt@,ssica= 3 -

cently reported27], based in large measure upon the e_arlier,:Or thermal photon number=0 as appropriate to current
proposal of Ref[52], as well as that of Ref§21,22. This  experiments, direct violations of a CHSH inequality are ob-
experiment was carried out in a pulsed mode, ant_zl utilized gqined over a large domain in the degree of squeeziand
source that generates an EPR state of the form given by Egyerall efficiencys. Significant, relative to the claims made
(11) in the limit r<1. Here the probability?(a;,a;) of iy Refs.[12—15, is that there is a regime for nonseparability
detecting a coincidence event between detecdisD,) for  and violation of the CHSH inequality for which<2 and
the EPR beams (1,2) is given by for which there criteria are not satisfied. Moreover, the ex-
periment of Ref[27] demonstrated a violation of the CHSH
P(ay, ) =M[1+V cos hy = b+ )], (54 inequality in this domain forr(, »)<1 (i.e., F would be only
slightly beyond %), albeit with the caveat of the “fair-
sampling” loophole. We conclude that fidelify>% offers
absolutely no warranty relative to the issue of violation of a
E(¢y, )=V coS ¢ — p,+ 0), (55) Bell inequality (as might be desirable, for example, in quan-
tum cryptography. Quite the contrary: larger (and hence
where the various quantities are as defined in associatiolarger F) leads to an exponentially decreasing domain in
with Egs.(2) and (3) in Ref.[27]. Note that the quantiti allowed loss (- ») for violation of the CHSH inequality, as
represents an overall scaling that incorporates losses iexpressed by Eq50) [51].
propagation and detection. Significantly, Kuzmig al. Moreover, beyond the analysis that we have presented
demonstrated a violation of a CHSH inequalit§.{;=2.46  here, there are several other results that supBeHssica
+0.06) in the limitr<1 and with inefficient propagation =3 as being the appropriate boundary between quantum and
and detectionp<<1, albeit with the so-called “detection” or classical domains. In particular, we note that any nonsepa-
“fair-sampling” loophole. rable state and hence also our mixed EPR state is always

with then the correlation functiok relevant to the construc-
tion of a CHSH inequality-2<S<2 given by
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capable of teleporting perfect entanglement, i.e., one-half ofny value currently accessible to experimént; 1 — e, with

a pure maximally entangled state. This also applies to those<10 * to be compatible with current work in fault tolerant
nonseparable states which lead to fidelitbssF<2 in  architecture. We have never claimed tRat ; endows spe-
coherent-state teleportation. According to Rgf®—15, this  cial powers for all tasks such as these, only that it provides
would force the conclusion that there is entanglement that i&n unambiguous point of entry into the quantum realm for
capable of teleporting truly nonclassical featufes., en- the teleportation of coherent states.

tanglement but which is not “useful”[14] for teleporting

rather more classical states such as coherent states. Further, ACKNOWLEDGMENTS
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bility implies distillability [53]. This result applies to the
EPR (mixed states considered here, and in particular to
those nonseparable states for whitkk F<% in coherent
state teleportation, which are otherwise dismissed as not ex- The expressions of Eq$42)-(45) are strictly applicable
hibiting “true EPR entanglement{13]. Conversely, en- only for the case gaig=1 for teleportation of coherent
tanglement distillation could be applied to the mixed EPRstates uniformly distributed over the entire complex plane.
states employed for teleportation in this domeind in gen-  Here g specifies the gain employed by Bob in generating a
eral for F>3) [54], leading to enhanced teleportation fideli- coherent state based upon the information received from Al-
ties and to expanded regions for violations of Bell's inequali-ice. More generally, when working with a restricted alphabet
ties for the distilled subensemble. of statee.g., coherent amplitudes selected from a Gaussian
However, having said this, we emphasize that there is n@jstribution, the optimal gain is not unity when referenced
criterion for quantum teleportation that is sufficient to all to the fidelity averaged over the input alphabet. In fact as
tasks. For the special case of teleportation of coherent stateshown in Ref.[6], the optimal gain isy=1/(1+\) for an
the boundary between classical and quantum teleportation jfput alphabet of coherent states distributed according to
fidelity Fcjassica= 7 @s should by now be firmly established. p(g) = (\/7)exp(—\|A]2). When incorporated into the cur-
Fidelity F> 5 will indeed enable certain tasks to be accom-rent analysis, we show in this appendix that nonseparable
plished that could not otherwise be done wighiF<3. EPR states are sufficient to achiewe>(1+\)/(2+\)
However,F =2 is clearly not the relevant point of demarca- (again with an optimal gaig+1), althoughF is now no
tion for entrance into the quantum domain. There is instead fnger a monotonic function afas in Fig. 1. This result is in
hierarchy of fidelity thresholds that enable ever more remarkcomplete correspondence with the prior result of R&fthat
able tasks to be accomplished via teleportation within thq:élassica|:(1+)\)/(2+)\) is the bound for teleportation
quantum domain, with no one value being sufficient for allyhen only a classical channel is employed. To simplify the
possible purposes. _ discussion in the text, we have set=0 throughout, with
For example, if we wish to teleport a nonclassical state otnen the optimal gaig=1 andF¢jassica= 5.
the electromagnetic field, therf =1 is sufficient to guaran- In the more general case, we begin by recalling from Egs.
tee that all nonclassical features will vanigdg]. This im- (1) and(2) in Ref.[4] that the fidelityF for teleportation of
plies that a necessary condition for nonclassical features ta coherent state;,) can be expressed in the current notation
be teleported isr> <1, which leads to the requiremeRt by
> 1 for the teleportation of coherent states. If the task is to
teleport a perfectly squeezed state with variagtg? )—0,

then the teleported state will also be squeezed so long as

o2 <1 [39], implying that teleportation of coherent states

could indeed attaifF > 2. If instead the demand is for tele- Here the variance$ of the Q function of the teleported field
portation in a domain where unconditional violation of a Bell iS given by

inequality as in Sec. V is required, then the efficiencynust
exceed?, leading to fidelity for teleportation of coherent
statesF > . Much more challenging would be if the state to
be teleported were some intermediate result from a large-
scale guantum computation as for Shor’s algorithm. Surel\Relative to Ref.[4], various efficiencies are here taken to
then, the relevant fidelity threshold would be well beyondunity for the sake of simplicity. With reference to the nota-

APPENDIX

2 2
F=—ex—2[vin|*(1-9)*/03]. (A1)
g
Q

o2 o>
08=1+g%+ 5 (g+ 1%+ 5 (g-1)%  (A2)
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FIG. 5. Optimized fidelityF, vs the degree of squeezingwith A =2 (upper curveéand\ =0.001(lower curve. In (a)—(d) the efficiency
7=0.99, 0.90, 0.70, and 0.50, respectively. The dashed lines give the limiting Fad&+\)/(2+\) for each case.

tion of Ref.[4], we assume that the EPR beams propagate d_—

and are detected with unit efficiency,=1=¢&,) and that d—ngO, (AS5)
Alice’s detection efficiencyz, is likewise unity (pa=1,

where 7= 7 in Ref.[4] is not to be confused witly herd.  remembering thatr, depends upow. There results a solu-
Hence our model here is that eddeal squeezed beam goes tion for the optimal gairg, given by

through a beam splitter of transmissignto then produce a

mixed (squeezedstate. These two squeezed states are then N — -

combined, to generate the EPR beams described bylfy. 1+ Z(U+ —oZ)

with the resulting variances parametrized Ibyz). In effect, Oo= X , (AB6)
we consider the case where the only imperfection is in the 1+ —(2+02 +02)

squeezing beams that are combined to generate the EPR 4

beams _i?_:l in the ideal case, buﬁ?_zl in the

presence of logs ) ) . o )
We next proceed to average the fidelity as given in Eqthis variance at the optimal gain. Finallygd,oq ) together

(A1) over a distribution of incident coherent stafgg)} of ~ with Eq. (A4), leads to an expression for the optimum fidel-

the form previously considered in R¢6], namely, ity Fo. Two limiting cases are worth checking straightaway.

(1) For vacuum inputs for the EPR beams2 =1 (no

which when substituted into E¢A2), gives the valuearéo of

A 5 squeezing so that
P(B)=—exp(—\|B[%). (A3)
m 1
9o= 1\
The calculation is a straightforward, and yields (A7)
— 1+\
Fo=5——,
— 2\ 2+N\
v rTTr— A
oot2(1-9) which are in complete accord with the prior treatment of Ref.
[6].
Next we optimize this average fideIi@ by choosing the 2 |:0r;i—>Oo (corresponding to very large parametric
best gaing, which is found from the relation gain,r>1), we have that
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go—1, has chosenand # (the losses that Alice and Bob have to live
(A8) with in generating and distributing their EPR beamsur-
Eo—>F, ther, if they nonetheless persist in increasingast this op-

timum, in some cases they will do worse witimonzero than

which is just the(unaveragedfidelity given by Eq.(Al).  with r=0.
The importance of this result is that it sets the limiting values While these results may at first sight seem strange, their
of (gq,Fg) for large r independent of\, as will become interpretation is as follows. The initial value,(r=0)=(1
apparent from the figures that follow. +\)/(2+\) is artificially boosted in the sense that far

Figure 5 show a series of plots, each of which contains>1, Alice and Bob have to be less and less concerned about
two curves for the fidelity versus the squeezing parameter losses and squeezing. They simply increasingly bias their
for two values of\. The upper trace is the optimized fidelity choice toward3=0 as specified in Eq(A3). Further, for

EO from Eq.(A4) with the optimized valuesyj ,aZQO) for the
particular choicex =2, while the lower trace is the fidelity

Fo from Eq. (A4) for A=0.001 (and hencegy~1). Also
shown are two dashed lines corresponding Fe=(1
+\)/(2+N\) for thE two values\ =2 and 0.001.

As is apparentfF, increases withr<1 in all cases from
its initial value (1+\)/(2+X\). However, if (1+\)/(2
+A\)>F(r>1) whereF is the result for gairg=1 from Eq.
(1), thenF will rise to a maximum and then decredséope

<0). Thus, although>0 helps Alice and Bob initiallyf- is

increasingr, the spread of the Wigner function for the EPR
beams at some point overtakes the spread associated with
P(B) so that the particular value of becomes irrelevant,

andF reverts to theg=1 case.

Although we emphasize that the foregoing analysis is suf-
ficient to demonstrate that nonseparable EPR states achieve
fidelity F>F2, qsica=(1+N)/(2+)\), we make no war-
ranty that it provides the optimal strategy for Alice and Bob.
The principal caveats are that we have assumed that Alice is
always performing an Arthurs-Kelly measuremé#t], and

that Bob always generates a coherent state based upon the

not monotonic irr. In many cases, there is an optimum valueinformation from Alice, where this coherent state is given by

for the degree of squeezimdor given (the alphabet Victor

aout=9gai,, With g real and optimized, as discussed above.
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