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By considering the utilization of a classical channel without quantum entanglement, fidelityFclassical5
1
2 has

been established as setting the boundary between classical and quantum domains in the teleportation of
coherent states of the electromagnetic field@S. L. Braunstein, C. A. Fuchs, and H. J. Kimble, J. Mod. Opt.47,
267 ~2000!#. We further examine the quantum-classical boundary by investigating questions of entanglement
and Bell-inequality violations for the Einstein-Podolsky-Rosen states relevant to continuous variable telepor-
tation. The threshold fidelity for employing entanglement as a quantum resource in teleportation of coherent
states is again found to beFclassical5

1
2 . Likewise, violations of local realism onset at this same threshold, with

the added requirement of overall efficiencyh.
2
3 in the unconditional case. By contrast, recently proposed

criteria adapted from the literature on quantum-nondemolition detection are shown to be largely unrelated to
the questions of entanglement and Bell-inequality violations.

DOI: 10.1103/PhysRevA.64.022321 PACS number~s!: 03.67.2a, 42.50.Dv, 03.65.Ta
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I. INTRODUCTION

As proposed by Bennettet al. @1#, the protocol for achiev-
ing quantum teleportation is the following. Alice is to tran
fer an unknown quantum stateuc& to Bob, using, as the sol
resources, some previously sharedquantum entanglemen
and aclassical channelcapable of communicating measur
ment results. Physical transport ofuc& from Alice to Bob is
excluded at the outset. Ideal teleportation occurs when
state uc& enters Alice’s sending station and thesamestate
uc& emerges from Bob’s receiving station.

Of course, in actual experiments@2–5#, the ideal case is
unattainableas a matter of principle. The question of oper
tional criteria for gauging success in an experimental sett
therefore, cannot be avoided. We previously proposed th
minimal set of conditions for claiming success in the labo
tory are the following@6#.

~1! An unknown quantum state~supplied by a third party
Victor! is input physically into Alice’s station from an out
side source.

~2! The ‘‘recreation’’ of this quantum state emerges fro
Bob’s receiving terminal available for Victor’s independe
examination.

~3! There should be a quantitative measure for the qua
of the teleportation, and, based upon this measure, it sh
be clear that shared entanglement enables the output sta
be ‘‘closer’’ to the input state than could have been achie
if Alice and Bob had utilized a classical communicatio
channel alone.

In Ref. @6#, it was shown that the fidelityF between input
and output states is an appropriate measure of the degr
similarity in criterion ~3!. For an input stateuc in& and an
output state described by the density operatorr̂out , the fidel-
ity is given by @7#

F5^c inur̂outuc in&. ~1!

To date only the experiment of Furusawaet al. @4# achieved
1050-2947/2001/64~2!/022321~16!/$20.00 64 0223
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unconditional experimental teleportation as defined by
three criteria above@6,8,9#. Based upon the original analys
of Vaidman for teleportation of continuous quantum va
ables@10#, this experiment was carried out in the setting
continuous quantum variables with input statesuc in& consist-
ing of coherent states of the electromagnetic field, with
observed fidelityFexpt50.5860.02 having been attained
This benchmark is significant because it can be demonstr
@4,6# that quantum entanglement is the critical ingredient
achieving an average fidelity greater thanFclassical5

1
2 when

the input is an absolutely random coherent state@11#.
Against this backdrop, several recent authors sugge

that the appropriate boundary between the classical
quantum domains in the teleportation of coherent sta
should be consistent with a fidelityF5 2

3 @12–15#. Principal
concerns expressed by these authors include the distinc
between entanglement or nonseparability and possible vi
tions of Bell’s inequalities.1 In Ref. @14# the violation of a
certain Heisenberg-type inequality~HI! is introduced to char-
acterize shared entanglement, leading to the conditionF. 2

3

being required for the declaration of successful teleportat
This criterion, based upon the Heisenberg-type inequality
well the bulk of the analyses in Refs.@12–14#, is related to
previous work on inference at a distance first introduced
the quantum nondemolition~QND! measurement literature
In a similar spirit, it was also suggested that the thresh
F. 2

3 is required by a criterion having to do with a certa
notion of reliable ‘‘information exchange’’@15#.

The purpose of the present paper is to revisit the ques
of the appropriate point of demarcation between class

1Since the terms ‘‘entanglement’’ and ‘‘nonseparability’’ are us
interchangeably in the quantum information community, we w
treat them as synonyms to eliminate further confusion. We will re
to violations of Bell’s inequalities explicitly whenever a distinctio
must be made between entanglement and local realismper se.
©2001 The American Physical Society21-1
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and quantum domains in the teleportation of coherent st
of the electromagnetic field. Our approach will be to inve
tigate questions of nonseparability and violations of Bell
equalities for the particular entangled state employed in
teleportation protocol of Ref.@16#. Of significant interest will
be the case with losses, so that the relevant quantum s
will be mixed states. Our analysis supports the followi
principal conclusions.

~1! By application of the work of Duanet al. @17#, Simon
@18#, and Tan@19#, we investigate the question of entangl
ment. We show that the states employed in the experimen
Ref. @4# are nonseparable, as was operationally confirme
the experiment. Moreover, we study the issue of nonsep
bility for mixed states over a broad range in the degree
squeezing for the initial Einstein-Podolsky-Rosen state
the overall system loss, and in the presence of thermal no
This analysis reveals that EPR mixed states that are nons
rable do indeed lead to a fidelity ofF.Fclassical5

1
2 for the

teleportation of coherent states. Hence, in keeping with
terion ~3! above, the threshold fidelity for employing en
tanglement as a quantum resource is precisely the sam
was deduced in the previous analysis of Ref.@6#. Within the
setting of quantum optics, this threshold corresponds to
standard benchmark for manifestly quantum or nonclass
behavior, namely, that the Glauber-Sudarshan phase-s
function takes on negative values, here for any bipartite n
separable state@20#. By contrast, a fidelity consistent wit
the valueF5 2

3 championed in Refs.@12–15# is essentially
unrelated to the threshold for entanglement~nonseparability!
as well as to the boundary for the nonclassical characte
the EPR state.

~2! By application of the work of Banaszek and Wo
kiewicz @21,22#, we explore the possibility of violations o
Bell inequalities for the EPR~mixed! states employed in the
teleportation of continuous quantum-variables states. We
direct violations of a Clauser-Horne-Shimong-Holt~CHSH!
inequality@23# over large domains in fidelityF subject to the
requirements thatF.Fclassical5

1
2 and that the overall effi-

ciency h. 2
3 . Significant is a regime both of entangleme

~nonseparability! and violation of a CHSH inequality, fo
which the teleportation fidelityF, 2

3 and for which the cri-
teria of Refs.@14,15# fail. Hence, teleportation with1

2 ,F
, 2

3 is possible with EPR~mixed! states which do not admi
a local hidden variable description.F. 2

3 does not provide a
relevant criterion for delineating the quantum and class
domains with respect to violations of Bell’s inequalities f
the EPR states.

~3! By adopting a protocol analogous to that employed
all previous experimental demonstrations of violations
Bell’s inequalities@24–26#, scaled correlation functions ca
be introduced for continuous quantum variables. In terms
these scaled correlations, the EPR mixed state used for
portation violates a generalized version of the CHSH
equality, though nonideal detector efficiencies require a ‘‘f
sampling’’ assumption for this. These violations set in f
F.Fclassical5

1
2 , and were recently observed in a setting

low detection efficiency@27#. This experimental verification
02232
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of a violation of a CHSH inequality~with a fair sampling
assumption! again refutes the purported significance of t
thresholdF5 2

3 .
Note that these results are in complete accord with

prior treatment of Ref.@6#, that demonstrated that, in th
absence of shared entanglement between Alice and B
there is an upper limit for the fidelity for the teleportation
randomly chosen coherent states given byFclassical5

1
2 .

Nothing in Refs.@12–15# called this analysis into question
By contrast, we find no support for a special significance
the threshold fidelityF5 2

3 in connection to issues of sepa
rability and Bell-inequality violations. Instead, as we w
show, it is actually the valueFclassical5

1
2 that heralds en-

trance into the quantum domain with respect to these v
same issues.

All this is not to say that teleportation of coherent sta
with increasing degrees of fidelity beyondFclassical5

1
2 to

F. 2
3 is not without significance. In fact, as tasks of eve

increasing complexity are to be accomplished, there will
corresponding requirements to improve the fidelity of te
portation yet further. Moreover, there are clearly diver
quantum states other than coherent states that one migh
sire to teleport, including squeezed states, quantum supe
sitions, entangled states@19,28#, and so on. The connectio
between the ‘‘intricacy’’ of such states and the requisite
sources for achieving high-fidelity teleportation was d
cussed in Ref.@16#, including the example of the superpos
tion of two coherent states,

ua&1u2a&, ~2!

which for uau@1 requires an EPR state with an extrem
degree of quantum correlation.

Similarly, the conditional variances contained in th
Heisenberg-type inequalities are in fact quite important
the inference of the properties of asystemgiven the out-
comes of measurements made on ameterfollowing asystem-
meterinteraction. Such quantities are gainfully employed
quantum optics in many settings, including realization of t
original EPR gedankenexperiment@29–31# and of back-
action evading measurement and quantum nondemoli
~QND! detection@32#. However, even within the restricte
context of QND detection, it is worth emphasizing that t
usual inequalities imposed upon these inference varian
together with so-called information transfer coefficients, p
vide necessary and not sufficient conditions for succes
back-action evading measurement@33#.

Something that we would like to stress apart from t
details of any particular teleportation criterion is the appar
growing confusion in the community that equates quant
teleportation experiments with fundamental tests of quan
mechanics. The purpose of such tests is generally to com
quantum mechanics to other potential theories, such as l
realistic hidden-variable theories@14,34,35#. In our view, ex-
periments in teleportation have nothing to do with this. Th
instead represent investigationswithin quantum mechanics
demonstrating only that a particular task can be acco
plished with the resource of quantum entanglement and c
not be accomplished without it. This means that violations
1-2
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QUANTUM VERSUS CLASSICAL DOMAINS FOR . . . PHYSICAL REVIEW A64 022321
Bell’s inequalities are largely irrelevant as far as the origi
proposal of Bennettet al. @1# is concerned, as well as fo
experimental implementations of that protocol. In a theo
which allows states to be cloned, there would be no nee
discuss teleportation at all—unknown states could be clo
and transmitted, with a fidelity arbitrarily close to 1.

These comments notwithstanding, there are neverthe
attempts to link the idea of Bell-inequality violations wit
the fidelity of teleportation. It is to the details of this an
other linkages that we now turn. The remainder of the pa
is organized as follows. In Sec. II, we extend the prior wo
of Ref. @6# to a direct treatment of the consequences
shared entanglement between Alice and Bob, beginning w
an explicit model for the mixed EPR states used for telep
tation of continuous quantum variables. In Sec. III we revi
the criteria based upon Heisenberg-type inequalities and
formation content,’’ in preparation for showing their inappr
priateness as tools for the questions at hand. In Sec. IV
explicitly demonstrate the relationship between entanglem
and fidelity, and find the same thresholdFclassical5

1
2 as in

our prior analysis@6#. The valueF5 2
3 is shown to have no

particular distinction in this context. In Secs. V and VI, w
further explore the role of entanglement with regard to v
lations of a CHSH inequality, and provide a quantitati
boundary for such violations. Again,Fclassical5

1
2 provides

the point of entry into the quantum domain, withF5 2
3 hav-

ing no notoriety. Our conclusions are collected in Sec. V
Of particular significance, we point out that the teleportat
experiment of Ref.@4# did indeed cross from the classical
the quantum domain, just as advertised previously.

II. EPR STATE

The teleportation protocol we consider is that of Brau
stein and Kimble@16#, for which the relevant entangled sta
is the so-called two-mode squeezed state. This state is g
explicitly in terms of a Fock-state expansion for two mod
~1,2! by @36,37#

uEPR&1,25
1

coshr (
n50

`

~ tanhr !nun&1un&2 , ~3!

wherer measures the amount of squeezing required to p
duce the entangled state. Note that, for simplicity, we c
sider the case of two single modes for the electromagn
field; the extension to the multimode case for fields of fin
bandwidth can be found in Ref.@38#.

The pure state of Eq.~3! can be equivalently described b
the corresponding Wigner distributionWEPR over the two
modes~1,2!,

WEPR~x1 ,p1 ;x2 ,p2!

5
4

p2

1

s1
2 s2

2
exp~2@~x11x2!21~p12p2!2#/s1

2

2@~x12x2!21~p11p2!2#/s2
2 !, ~4!
02232
l

y
to
d

ss

er

f
th
r-

-

e
nt

-

.
n

-

en
s

o-
-
ic

wheres6 are expressed in terms of the squeezing param
by

s1
2 5e12r ,

~5!
s2

2 5e22r ,

with s1
2 s2

2 51. Here the canonical variables (xj ,pj ) are re-
lated to the complex field amplitudea j for modej 5(1,2) by

a j5xj1 ip j . ~6!

In the limit of r→`, Eq. ~4! becomes

C d~x12x2!d~p11p2!, ~7!

which makes a connection to the original EPR state of E
stein, Podolsky, and Rosen@29–31#.

Of course,WEPR, as given above, is for the ideal, lossle
case. Of particular interest with respect to experiments is
inclusion of losses, which arise, for example, form fin
propagation and detection efficiencies. Rather than deal w
any detailed setup~e.g., as treated in explicit detail in Re
@30#!, here we adopt a generic model of the following form
Consider two identical beam splitters each with a transm
sion coefficienth, one for each of the two EPR modes. W
take 0<h<1, with h51 for the ideal, lossless case. Th
input modes to the beam splitter 1 are taken to be (18,a8),
while for beam splitter 2 the modes are labeled by (28,b8).
Here, the modes (18,28) are assumed to be in the state spe
fied by the idealWEPR as given in Eq.~4! above, while the
modes (a8,b8) are taken to be independent thermal~mixed!
states, each with a Wigner distribution

W~x,p!5
1

pS n̄1
1

2D exp$2~x21p2!/~ n̄11/2!%, ~8!

wheren̄ is the mean thermal photon number for each of
modes (a8,b8).

The overall Wigner distribution for the initial set of inpu
modes (18,28),(a8,b8) is then just the product

WEPR~x18 ,p18 ;x28 ,p28!W~xa8 ,pa8!W~xb8 ,pb8!. ~9!

The standard beam-splitter transformations lead in a strai
forward fashion to the Wigner distribution for the output s
of modes (1,2),(a,b), where, for example,

x15Ahx182A12hxa8 ,
~10!

xa5Ahxa81A12hx18 .

We requireWEPR
out for the ~1,2! modes alone, which is ob

tained by integrating over the (a,b) modes. A straightfor-
ward calculation results in the following distribution for th
mixed output state,
1-3
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WEPR
out ~x1 ,p1 ;x2 ,p2!

5
4

p2

1

s̄1
2 s̄2

2
exp~2@~x11x2!21~p12p2!2#/s̄1

2

2@~x12x2!21~p11p2!2#/s̄2
2 !, ~11!

wheres̄6 are given by

s̄1
2 5he12r1~12h!~112n̄!,

~12!

s̄2
2 5he22r1~12h!~112n̄!.

Note thatWEPR
out , as above, follows directly fromWEPR in Eq.

~4! via the simple replacementss6→s̄6 . Relevant to the
discussion of Bell inequalities in Secs. V and VI is the fa

that s̄1
2 s̄2

2 .1 for anyr .0 andh,1. Although the simple
‘‘beam-splitter’’ model is sufficient for our current discus
sion, a more detailed dynamical model was considered
Refs. @39,40# for continuous variable teleportation in th
presence of dissipation.

III. ALTERNATE CRITERIA FOR TELEPORTATION
OF COHERENT STATES

In Ref. @6# the boundary between classical and quant
domains in the teleportation of coherent states was de
mined to beFclassical5

1
2 , based upon an analysis of telepo

tation in the absence of shared entanglement~i.e., Alice and
Bob employ a classical channel alone!. Several recent au
thors instead argued in favor of alternate criteria for de
mining successful teleportation of coherent states@12–15#.
In this section, we recapitulate the critical elements of th
analyses, and state their criteria in the present notation,
particular attention to the work of Refs.@14,15#. Critical dis-
cussions of the criteria of Refs.@12,13# can be found in Refs
@6,38#. In subsequent sections we proceed further with
own analysis of entanglement and possible violations
Bell’s inequalities for the EPR state of Eq.~11!, and to an
investigation of their relevance to the delineation of the
propriate quantum-classical boundary in teleportation.

Turning first to criteria arising from the QND literatur
@12–14#, we recall the following statement with reference
Eq. ~21! of Ref. @14#: ‘‘As a criteria for non-separability@by
which is meant violations of Bell’s inequalities#, we will use
the EPR argument: two different measurements prepare
different states, in such a way that the product of conditio
variances~with different conditions! violates the Heisenberg
principle.’’

This statement takes a quantitative form in terms of
following conditional variances expressed in the notation
the preceding section for EPR beams~1,2!,
02232
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Vxi uxj
5^Dxi

2&2
^xixj&

2

^Dxj
2&

,

~13!

Vpi upj
5^Dpi

2&2
^pipj&

2

^Dpj
2&

.

with ( i , j )5(1,2) and iÞ j . Note that, for example,Vx2ux1

gives the error in the knowledge of the canonical variablex2
based upon an estimate ofx2 from a measurement ofx1, and
likewise for the other conditional variances. These varian
were introduced in Refs.@30,31# in connection with an opti-
cal realization of the originalgedankenexperiment of Ein-
stein, Podolsky, and Rosen@29#. An apparent violation of the
uncertainty principle arises if the product of inference err
is below the uncertainty product for one beam alone. F
example,Vx2ux1

Vp2up1
, 1

16 represents such an apparent vio

tion, sinceDx2
2Dp2

2> 1
16 is demanded by the canonical com

mutation relation betweenx2 and p2, with Dx1,2
2 5 1

4 5Dp1,2
2

for the vacuum state@30,31#.
This concept of inference at a distance has been elev

to ‘‘a criteria for nonseparability@i.e., violation of Bell’s in-
equalities#’’ @14#, namely, that the domain of local realism
should be determined by the conditions

Vx2ux1
Vp2up1

>
1

16
and Vx1ux2

Vp1up2
>

1

16
. ~14!

As shown in Refs.@30,31# for the states under consideratio
the conditional variances of Eq.~13! are simply related to the
following ~unconditional! variances:

Dxm i j

2 5^~xi2m i j xj !
2&,

~15!
Dpn i j

2 5^~pi2n i j pj !
2&.

If we use a measurement ofxj to estimatexi , thenDxm i j

2 is

the variance of the error when the estimator is chosen to
m i j xj , and likewise forDpn i j

2 . For an optimal estimate, th

parameters (m i j ,n i j ) are given by@30,31#

m i j
opt5

^xixj&

^Dxj
2&

, n i j
opt5

^pipj&

^Dpj
2&

, ~16!

and, in this case,

Vxi uxj
5Dxm

i j
opt

2
, Vpi upj

5Dpn
i j
opt

2
. ~17!

The condition in Eq.~14! that attempts to define the doma
of local realism can then be reexpressed as

Dxm21

2 Dpn21

2 >
1

16
, Dxm12

2 Dpn12

2 >
1

16
, ~18!

where we assume the optimized choice and drop the su
script ‘‘opt.’’

To make apparent the critical elements of the discuss
we next assume symmetric fluctuations as appropriate to
1-4
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EPR state of Eq.~11!, m i j 5m j i [m and n i j 5n j i [n, with
m52n. Note that within the context of our simple model
the losses, the optimal value ofm is given by

mopt5
h sinh 2r

~12h!1h cosh 2r
, ~19!

where in the limitr @1, m→1 for h.0. For this case of
symmetric fluctuations, the HI of Eq.~18! becomes

Dxm
2 Dpm

2 >
1

16
, ~20!

where

Dxm
2 5^~x12mx2!2&5^~x22mx1!2&,

~21!
Dpm

2 5^~p11mp2!2&5^~p21mp1!2&.

In the limit r @1, m→1 for h.0, so that the Heisenberg
type inequality becomes

Dx2Dp2>
1

16
. ~22!

Here (Dx2,Dp2) are as defined in Eq.~21!; now, with m
51,

Dx25^~x12x2!2&,
~23!

Dp25^~p11p2!2&,

where from Eq.~11!, we have thatDx21Dp25s̄2
2 for the

EPR beams~1,2!.
The claim of Grangier and Grosshans@14# is that the in-

equality of Eq.~20! serves as ‘‘the condition for no usefu
entanglement between the two beams,’’ where by ‘‘usef
they refer explicitly to ‘‘the existence of quantum nonsep
rability ~violation of Bell’s inequalities!.’’ The variances of
Eqs. ~21! and ~23! are also related to criteria develope
within the setting of quantum nondemolition detection@32#.

Relevant to the discussion in Sec. IV will be to note th
in general the inequality

V1V2>
a2

4
~24!

implies that

V11V2>V11
a2

4V1
>a, ~25!

so that the purported criterion Eq.~20! from Ref. @14# for
classicalteleportation leads to

Dxm
2 1Dpm

2 >
1

2
, ~26!

which for r @1 becomes
02232
’’
-

t

Dx21Dp2>
1

2
, ~27!

with (Dx2,Dp2) as defined in Eq.~23!.
Apart from the criteria of Eqs.~26! and ~27!, an alterna-

tive requirement for the successful teleportation of coher
states has been introduced in Ref.@15#, namely, that ‘‘the
information content of the teleported quantum state is hig
than the information content of any~classical or quantum!
copy of the input state, that may be broadcasted classica

To quantify the concept of ‘‘information content’’ thes
authors introduced a ‘‘generalized fidelity’’ describing n
the overlap of quantum states as is standard in the quan
information community, but rather the conditional probab
ity P(auI ) that a particular coherent stateua& was actually
sent given ‘‘the available informationI.’’ In effect, Ref. @15#
considered the following protocol. Victor sends some u
known coherent stateua0& to Alice, with Alice making her
best attempt to determine this state@41#, and sending the
resulting measurement outcome to Bob as in the stand
protocol. Bob then does one of two things. In the first
stance, he forwards only this classical message with Alic
measurement outcome to Victor without reconstructing
quantum state. In the second case, he actually genera
quantum state conditioned upon Alice’s message and se
this state to Victor, who must then make his own measu
ment to deduce whether the teleported state correspond
the one that he initially sent. The requirement for succes
teleportation is that the information gained by Victor shou
be greater in the latter case where quantum states are act
generated by Bob than in the former case where only Alic
classical measurement outcome is distributed. It is straig
forward to show that exceeding the bound set by Eq.~27! is
sufficient to ensure that this second criteria is likewise sa
fied for the teleportation of a coherent stateua&, albeit with
the same caveat expressed in Ref.@11#, namely that neither
the setSof initial states$uc in&% nor the distributionP(uc in&)
over these states is specified. We now turn to an evalua
of the foregoing criteria placing special emphasis on the
sues of entanglement and violations of Bell’s inequaliti
specifically because these are the concepts that were em
sized in the work of Ref.@14#.

IV. ENTANGLEMENT AND FIDELITY

A. Nonseparability of the EPR beams

To address the question of the nonseparability of the E
beams, we refer to the papers of Duanet al. @17# and Simon
@18#, as well as related work by Tan@19#. For the definitions
of (xi ,pi) that we have chosen for the EPR beams~1,2!, a
sufficient condition for nonseparability~without an assump-
tion of Gaussian statistics! is that

Dx21Dp2,1, ~28!

whereDx2 andDp2 are defined in Eq.~23!. This result fol-
lows from Eq. ~3! of Duan et al. with a51 ~and from a
similar more general equation in Simon! @42#. Note that
Duan et al. had Dxi

25 1
2 5Dpi

2 for the vacuum state, while
1-5
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our definitions lead toDxi
25 1

4 5Dpi
2 for the vacuum state

where for example,Dx1
25^x1

2&, and that the EPR fields con
sidered have zero mean.

Given the Wigner distributionWEPR
out as in Eq.~11!, we

find immediately that

Dx21Dp252
s̄2

2

2
5he22r1~12h!~112n̄!. ~29!

For the casen̄50, the resulting state isalways entangled for
any r.0 even forh!1, in agreement with the discussion
Duanet al. @17#. For nonzeron̄, the state is entangled so lon
as

n̄,
h@12exp~22r !#

2~12h!
. ~30!

We emphasize that in the experiment of Furusawaet al.

@4#, for which n̄50 is the relevant case, the above inequa
guarantees that teleportation was carried out with entan
~i.e., nonseparable! states for the EPR beams, independen
any assumption about whether these beams were Gauss
pure states. Explicitly, the measured variances for the w
of Ref. @4# were Dx2'(0.83 1

2 )'Dp2, so thatDx21Dp2

'0.8,1.
In contrast to the condition for entanglement given in E

~28!, the discussion of Sec. III instead requires exceeding
more stringent condition of Eq.~27! for successful teleporta
tion. Although the EPR beams are indeed entangled wh
ever Eq.~28! is satisfied, entanglement in the domain

1

2
<Dx21Dp2,1 ~31!

is termed in Ref.@14# as not ‘‘useful’’ and in Ref.@13#~b! as
not ‘‘true EPR entanglement.’’

With regard to the QND-like conditions introduced
Refs.@12–14#, we note that more general forms for the no
separability condition of Eq.~28! are given in Refs.@17,18#.
Of particular relevance is a condition for the variances of E
~15! for the case of symmetric fluctuations as for EPR st
in Eq. ~11!, m i j 5m j i [m and n i j 5n j i [n, with m52n.
Consider, for example, the first set of variances in Eq.~21!,
namely,

Dxm
2 5^~x22mx1!2& and Dpm

2 5^~p21mp1!&2,
~32!

as would be appropriate for an inference of (x2 ,p2) from a
measurement~at a distance! of (x1 ,p1). Although m51 is
certainly the case relevant to the actual teleportation proto
of Ref. @16#, Alice and Bob are surely free to explore th
degree of correlation between their EPR beams and to
for entanglement by any means at their disposal, includ
simple measurements withmÞ1.

In this case of generalm, a sufficient condition for en-
tanglement of the EPR beams~1,2! may be obtained using
Eq. ~11! of Ref. @18# yielding
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Dxm
2 1Dpm

2 ,
~11m2!

2
, ~33!

which reproduces Eq.~28! for m51. Although the experi-
ment of Ref.@4# explicitly recorded variances only for th
casem51, the EPR experiment of Ref.@30# chosem,1, in
correspondence to the degree of correlation between the
beams. This original realization of the EPR experime
achieved Dxm

2 5@(0.83560.008)3 1
4 # and Dpm

2 5@(0.837
60.008)3 1

4 # for m250.58 @30#, so that

Dxm
2 1Dpm

2 5~0.4260.01!,0.795
~11m2!

2
. ~34!

With the hindsight provided by the nonseparability criteria
Refs.@17,18#, we see that the experiment of Ref.@30# repre-
sents the first demonstration of the unconditional genera
and detection of bipartite entangled states~i.e., so-calledde-
terministicproduction of entanglement!, there within the set-
ting of continuous quantum variables.

More generally, it is straightforward to show that the EP
mixed state of Eq.~11! satisfies the entanglement criteria E
~32! for any r .0 with mmin,m<1. Here mmin sets the
threshold for the onset of entanglement in Eq.~32!, where

mmin5
2 sinh2~r /2!

sinh~2r !
~35!

independent ofh. In contrast to the choicem5mopt as in Eq.
~19! which minimizes the conditional variances (Dxm

2 ,Dpm
2 ),

the valuem51 maximizes the degree of entanglement
terms of the largest fractional deviation of (Dxm

2 1Dpm
2 ) be-

low (11m2)/2 @43#. This result is in satisfying correspon
dence with the actual teleportation protocol, namely, tham
51 as appropriate there actually maximizes the degree
entanglement for given (r ,h).

To connect these results with the inequalities introduc
in Sec. III, we note that Eq.~33! for nonseparability implies
that

Dxm
2 Dpm

2 ,
~11m2!2

16
, ~36!

which is in the form of a violation of a Heisenberg-typ
inequality. Note that forn̄50, this inequality is satisfied for
any r .0 and 0,h<1, now withmmin,m<1 as above. For
r @1 andh.0, m→1, and Eq.~36! becomes

Dx2Dp2,
1

4
. ~37!

By contrast, application of the alternate conditions fro
Sec. III leads to the requirement

Dxm
2 Dpm

2 ,
1

16
. ~38!
1-6



be

io
e
a

gl

h

A

m

.
n
ar

s
id
y

c

y
he

s,

il
r
ia
a

pa

he

-

e

n-

tes

s

rage
m-
of

o-
of

g

the
d in
er

ed
tion
ach

ch

QUANTUM VERSUS CLASSICAL DOMAINS FOR . . . PHYSICAL REVIEW A64 022321
Within the setting of our current model, this condition can
satisfied for anyr .0 only so long as the efficiencyh. 1

2

@44#. Again, for r @1 and h.0, m→1, so that Eq.~38!
becomes

Dx2Dp2,
1

16
. ~39!

Although these conditional variances and related criter
are quite useful in the analysis of back-action evading m
surement for quantum nondemolition detection, they app
ently have no direct relevance to the question of entan
ment, form51 or otherwise.

These various inequalities can be viewed in somew
more general terms by noting that Eq.~8! of Ref. @18# de-
mands that the sum of variances foranybipartite state satisfy
the condition

u12m2u
2

<Dxm
2 1Dpm

2 , ~40!

so that entangled states that satisfy Eq.~33! are further con-
strained by

u12m2u
2

<~Dxm
2 1Dpm

2 !,
~11m2!

2
. ~41!

The sum of variancesDxm
2 1Dpm

2 for the EPR~mixed! state
of Eq. ~11! ranges continuously between these bounds.
discussed in connection with Eq.~33! above, forn̄50 the
EPR ~mixed! state drops below the upper bound to beco
entangled for anyr .0 so long ashÞ0 andmmin,m<1. It
approaches the lower bound forr @1 with h51. By con-
trast, the criteria of Refs.@12–14# @e.g., the inequality of Eq
~26! from Ref. @14## effectively split the difference betwee
these two limits by defining the quantum-classical bound
to be set byDxm

2 1Dpm
2 5 1

2 .
In this regard, it is worth emphasizing that Ref.@29# no-

where contains the Heisenberg-type inequalities discus
above and in Sec. III, which were first introduced by Re
and Drummond@31#. The states originally considered b
EPR @i.e., Eqs.~7!, ~8!, ~9!, ~11!, and ~15! of Ref. @29## are
insteadd-correlated pure states, and have inference varian
equal to zero~e.g., Vx2ux1

505Vp2up1
and Dx2505Dp2).

For finite degrees of correlation, the quantitative boundar
which the EPR argument fails is provided not by t
Heisenberg-type inequalities of Eq.~38!, but rather by the
analysis of Refs.@17,18# for mixed as well as for pure state
which leads instead to Eq.~36!.

Although the boundaries expressed by the nonseparab
conditions of Eqs.~ 28! and~33! are perhaps not so familia
in quantum optics, we stress that these criteria are assoc
quite directly with the standard condition for nonclassic
behavior adopted by this community. Whenever Eqs.~28!
and ~33! are satisfied, the Glauber-Sudarshan phase-s
function takes on negative values@20#, which for almost 40
years has heralded entrance into a manifestly quantum
nonclassical domain. It is difficult to understand how t
authors in Refs.@12–15# proposed to move fromDx2
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1Dp251 to Dx21Dp25 1
2 without employing quantum re

sources in the teleportation protocol~as is required when the
Glauber-SudarshanP function is not positive definite!, with
their own work offering no suggestion of how this is to b
accomplished.

B. Fidelity

Turning next to the question of the relationship of e
tanglement of the EPR beams@as quantified in Eq.~28!# to
the fidelity attainable for teleportationwith these beams, we
recall from Eq.~2! of Ref. @4# that

F5
1

11s̄2
2

, ~42!

where this result applies to teleportation of coherent sta
@45# . When combined with Eq.~29!, we find that

F5
1

11~Dx21Dp2!
. ~43!

The criterion of Eq.~28! for nonseparability then guarantee
that nonseparable EPR states as in Eqs.~4! and~11! ~be they
mixed or pure! are sufficient to achieve

F.Fclassical5
1

2
, ~44!

whereas separable states must haveF<Fclassical5
1
2 , al-

though we emphasize that this bound applies for the ave
fidelity for coherent states distributed over the entire co
plex plane@6#. More general cases for the distribution
coherent states are treated in the Appendix.

We thereby demonstrate that the condition F.Fclassical
5 1

2 for quantum teleportation as established in Ref. [6] c
incides with that for nonseparability (i.e., entanglement)

Refs. [17,18] for the EPR state of Eq. (11).Note that, forn̄
50, we have

F5
1

22h~12e22r !
, ~45!

so that the entangled EPR beams considered here~as well as
in Refs. @12–15#! provide a sufficient resource for beatin
the limit set by a classical channel alone for anyr .0, so
long ash.0. In fact, the quantities (Dx2,Dp2) are readily
measured experimentally, so that the entanglement of
EPR beams can be operationally verified, as discusse
Sec. II A @4,30#. We stress that independently of any furth
assumption, the condition of Eq.~28! is sufficient to ensure
entanglement for pure or mixed states@46,47#.

The dependence of fidelityF on the degree of squeezingr
and efficiencyh, as expressed in Eq.~45!, is illustrated in
Fig. 1. Here, in correspondence to an experiment with fix
overall losses and variable parametric gain in the genera
of the EPR entangled state, we show a family of curves, e
of which is drawn for constanth as a function ofr. Clearly,
F.Fclassical5

1
2 , and hence nonseparability results in ea
1-7
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case. Although Refs.@12–15# would require fidelityF. 2
3

~which results forDx21Dp2, 1
2 ) for quantum teleportation

of coherent states, this purported criterion has no appa
significance with respect to issues of entanglement, o
than as a bound forh50.5.

In this regard it is worth noting that violations of th
Heisenberg-type inequality as in Eq.~38! can be attained for
any r .0 so long as the efficiencyh. 1

2 . Since it is the
quantity (Dx21Dp2) and not (Dxm

2 1Dpm
2 ) that determines

the fidelity @Eq. ~43!#, the threshold for violations as in Eq
~38! is thus fidelity Fclassical5

1
2 and not the valueF5 2

3

championed in Ref.@14#. In effect, these authors employe
F. 2

3 , only to warranty thath. 1
2 , so that it is then possible

to achieve a violation of the specific Heisenberg-type
equality withm51 as expressed in Eq.~39!. However, more
generally, we have shown that the Heisenberg-type inequ
ties with optimizedm can be violated for anyF.Fclassical
5 1

2 if h. 1
2 .

As for the criterion of ‘‘information content’’ described in
Sec. III @15#, we note that it can be easily understood fro
the current analysis and the original discussion in Ref.@16#.
Each of the interventions by Alice and Bob represent o
unit of added vacuum noise that will be convolved with t
initial input state in the teleportation protocol~the so-called
quduties!. The following two situations are compared in Re
@15#: ~i! Bob directly passes the classical information that
receives to Victor, and~ii ! Bob generates a quantum state
the usual fashion that is then passed to Victor. The ‘‘inf
mation content’’ criterion demands that Victor should rece
the same information in these two cases, which requires
s̄2

2 5Dx21Dp2, 1
2 , and henceF. 2

3 . That is, as the degre

FIG. 1. FidelityF as given by Eq.~ 45!, vs the degree of squeez
ing r for a fixed efficiencyh. From top to bottom, the curves ar
drawn with h5$0.99,0.90,0.70,0.50%, in correspondence to an in
creasing loss (12h). Note thatFclassical5

1
2 provides a demarca

tion between separable and nonseparable states~mixed or other-
wise!, while F5

2
3 is apparently of no particular significance, th

contrary claims of Refs.@12–15# notwithstanding. Note that forh
51, r 5 ln 2/250.3466 givesF5

2
3 , corresponding to23 dB of

squeezing. In all cases,n̄50.
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of correlation between the EPR beams is increased, th
comes a point for whichDx21Dp25 1

2 , and for which each
of Alice and Bob’s excess noise has been reduced from
quduty each to1

2 quduty each. At this point, the entire resu
ing noise of 1

2 1 1
2 51 quduties is~arbitrarily! assigned to

Alice, with then the perspective that Bob’s state recreat
adds no noise. Of course one could equally well make
complementary assignment, namely, 1 quduty to Bob

none to Alice~again in the case withs̄2
2 5 1

2 ). The point that
seems to have been missed in Ref.@15# is that key to quan-
tum teleportation is the transport of quantum states. Cle
it is true that ‘‘there isno extra noise associated to the reco
struction: given a measuredb, one can exactly reconstruc
the coherent stateub&, by using a deterministic translation o
the vacuum@15#.’’ However, while Bob can certainly make
such a state deterministically, it is an altogether differe
matter for Victor to receive a classical number from Bob
case~i! as opposed to the actual quantum state in case~ii !. In
this latter case, apart from having a physical state instea
a number, Victor must actually make his own measurem
with the attendant uncertainties inherent inub& then entering.
Analogously, transferring measurement results about a qu
without recreating a state at the output~i.e., without sending
an actualquantum stateto Victor!, is not what is normally
considered to constitute quantum teleportation relative to
original protocol of Bennettet al. @1#.

Turning next to the actual experiment of Ref.@4#, we note
that a somewhat subtle issue is that the detection efficie
for Alice of the unknown state was not 100%, but rather w
hA

250.97. Because of this, the fidelity for classical telep
tation ~i.e., with vacuum states in place of the EPR beam!
did not actually reach1

2 , but was insteadF050.48. This
should not be a surprise, since there is nothing to ensure
a given classical scheme will be optimal and actually rea
the boundFclassical5

1
2 . Hence the starting point in the ex

periment withr 50 hadF0,Fclassical; the EPR beams with
r .0 ~which were in any event entangled by the above
equality! then led to increases in fidelity fromF0 upward,
exceeding the classical boundFclassical5

1
2 for a small~but

not infinitesimal! degree of squeezing. Note that the who
effect of the offsetF050.48, 1

2 can be attributed to the lac
of perfect~homodyne! efficiency at Alice’s detector for the
unknown state. In the current discussion for determining
classical bound in theoptimal case, we instead set Alice’
detection efficiencyhA

251; then, as shown above, classic
teleportation will achieveF5 1

2 .
Independent of such considerations, we reiterate that

nonseparability condition of Refs.@17,18# applied to the EPR
state of Eqs.~4! and ~11! leads to the same resultFclassical
5 1

2 @Eqs.~43! and ~44!# as did our previous analysis, base
upon teleportation with only a classical communicati
channel linking Alice and Bob@6#. This convergence furthe
supportsFclassical5

1
2 as the appropriate quantum-classic

boundary for the teleportation of coherent states, the cla
of Refs. @12–15# notwithstanding. Relative to the origina
work of Bennettet al. @1#, exceeding the boundFclassical
5 1

2 for the teleportation of coherent can be accomplish
with a classical channel and entangled~i.e., nonseparable!
1-8
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EPR states, be they mixed or pure, as is made clear by
above analysis and as has been operationally confirmed@4#.

We should however emphasize that the above conclus
concerning nonseparability and teleportation fidelity apply
the specific case of the EPR state as in Eq.~11!, for which
inequality Eq.~28! represents both a necessary and suffici
criterion for nonseparability according to Refs.@17,18#.
More generally, for arbitrary entangled states, nonsepara
ity does not necessarily lead toF. 1

2 in coherent-state tele
portation@46,47#.

V. BELL’S INEQUALITIES

The papers by Banaszek and Wodkiewicz@21,22# pro-
vides our point of reference for a discussion of Bell’s i
equalities. In these papers, the authors introduced an ap
priate set of measurements that lead to a Bell inequality
the CHSH type. More explicitly, Eq.~4! of Ref. @21# gives
the operatorP̂(a;b) whose expectation values are to
measured. Banaszek and Wodkiewicz pointed out that
expectation value ofP̂(a;b) is closely related to the Wigne
function of the field being investigated, namely,

W~a;b!5
4

p2
P~a;b!, ~46!

whereP(a;b)5^P̂(a;b)&.
For the entangled state shared by Alice and Bob in

teleportation protocol, we identifyWEPR
out as the relevant

Wigner distribution for the modes~1,2! of interest, so that

PEPR
out ~x1 ,p1 ;x2 ,p2!

5
1

s̄1
2 s̄2

2
exp$2@~x11x2!21~p12p2!2#/s̄1

2

2@~x12x2!21~p11p2!2#/s̄2
2 %. ~47!

Banaszek and Wodkiewicz showed thatPEPR
out (x1 ,p1 ;x2 ,p2)

directly gives the correlation function that would otherwi
be obtained from a particular set of observations over
ensemble representing the field with density operatorr̂,
where the actual measurements to be made are as desc
in Refs.@21,22#. In simple terms,P̂EPR

out (0,0;0,0) is the parity
operator for separate measurements of photon numbe
modes~1,2!, with then nonzero (xi ,pi) corresponding to a
‘‘rotation’’ on the individual modei that precedes its parity
measurement.

The function constructed by Banaszek and Wodkiewicz
test for local hidden variable theories is denoted byB, and is
defined by

B~J!5PEPR
out ~0,0;0,0!1PEPR

out ~AJ,0;0,0!

1PEPR
out ~0,0;2AJ,0!2PEPR

out ~AJ,0;2AJ,0!,

~48!
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where J is a positive ~real! constant. As shown in Refs
@21,22#, any local theory must satisfy

22<B<2. ~49!

As emphasized by Banaszek and Wodkiewicz for the loss
case,PEPR

out (0,0;0,0)51 ‘‘describes perfect correlations . .
as a manifestation of . . . photons always generated
pairs.’’

There are several important points to be made about
result. In the first place, in the ideal case with no lossh
51), there is a violation of the Bell inequality of Eq.~49! for
anyr .0. Further, this threshold for the onset of violations
the CHSH inequality coincides with the threshold for e
tanglement as given in Eq.~28!, which likewise is the point
for surpassingFclassical5

1
2 as in Eqs.~43! and ~44!, and as

shown in our prior analysis of Ref.@6# which is notably
based upon a quite different approach.

Significantly, there is absolutely nothing special about
point r 5 ln 2/2'0.3466~i.e., the point for which exp@22r#
50.5 and for whichF5 2

3 for the teleportation of coheren
states!. Instead, anyr .0 leads to a nonseparable EPR sta
to a violation of a Bell inequality, and toF.Fclassical5

1
2 for

the teleportation of coherent states. There is certainly no
prise here since we are dealing with pure states forh51
@48#.

We next examine the case withh,1, which is clearly of
interest for any experiment. Figure 2 illustrates the behav
of B as a function ofJ for various values of the squeezin
parameterr and of the efficiencyh. Note that throughout our
analysis in this section, we make no attempt to search
optimal violations, but instead follow dutifully the protoco
of Banaszek and Wodkiewicz as expressed in Eq.~48! for the
case with losses as well.

From Fig. 2 we see that for any particular set of para
eters (r ,h), there is an optimum valueJmax that leads to a
maximum value forB(Jmax), which is a situation analogou
to that found in the discrete variable case. By determin
the corresponding valueJmax at each (r ,h), in Fig. 3 we
construct a plot that displays the dependence ofB on the
squeezing parameterr for various values of efficiencyh.
Note that all cases shown in the figure lead to fidelityF
.Fclassical.

For 2
3 ,h<1 there are regions inr that produce direct

violations of the Bell inequality considered here, namely,B
.2 @49#. In general, these domains withB.2 contract to-
ward smallerr with increasing loss (12h). In fact asr in-
creases,h must become very close to unity in order to pr
serve the conditionB.2, where, forr @1,

2~12h!cosh~2r !!1. ~50!

This requirement is presumably associated with the E
state becoming more ‘‘nonclassical’’ with increasingr, and
hence more sensitive to dissipation@50#. Stated somewha
more quantitatively, recall that the original stateuEPR&1,2 of
Eq. ~3! is expressed as a sum over correlated photon num
for each of the two EPR beams~1,2!. The determination ofB
derives from~displaced! parity measurements on the beam
1-9
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FIG. 2. The functionB(J) from Eq. ~48! as a function ofJ for various values of (r ,h). Recall thatB.2 heralds a direct violation of
the CHSH inequality, with the dashed lineB52 shown. In each of plots~a!–~d!, a family of curves is drawn for fixed efficiencyh and four

values ofr 5$0.1,ln 2/2,1.0,2.0%. ~a! h50.99, ~b! h50.90, ~c! h50.70, and~d! h50.50; and, in all cases,n̄50.
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~1,2! ~i.e., projections onto odd and even photon number!, so
thatB should be sensitive to the loss of a single photon. T
mean photon numbern̄i for either EPR beam goes as sinh2 r,
with then the probability of losing no photons after encou
tering the beam splitter with transmissionh scaling as
roughly p0;@h# n̄i. We require that the total probability fo
the loss of one or more photons to be small, so that

~12p0!!1, ~51!

and hence, for (12h)!1 andr @1, that

~12h!n̄i;~12h!exp~2r !!1, ~52!

in correspondence to Eq.~50! @51#.
On the other hand, note that small values ofr in Fig. 3

lead to direct violations of the CHSH inequalityB.2 with
much more modest efficiencies@50#. In particular, note that
for r 5 ln 2/2'0.3466 andh50.90, F, 2

3 @from Eq. ~45!#.
This case and others like it provide examples for wh
02232
e

-

mixed states are nonseparable and yet directly violate a
inequality, but for whichF< 2

3 . Such mixed states do no
satisfy the criteria of Refs.@12–15#, yet these are states fo
which 1

2 ,F< 2
3 andB.2. There remains the possibility tha

F. 2
3 might be sufficient to warranty that mixed states in th

domain would satisfy thatB.2, and hence to exclude
description of the EPR state in terms of a local hidden va
ables theory.

To demonstrate that this is emphatically not the case,
further examine the relationship between the quantityB rel-
evant to the CHSH inequality and the fidelityF. Figure 4
shows a parametric plot ofB versusF for various values of
the efficiencyh. The curves in this figure are obtained fro
plots as in Figs. 1 and 3, by eliminating the common dep
dence onr. From Fig. 4, we are hard pressed to find a
indication that the valueF5 2

3 is in any fashion noteworthy
with respect to violations of the CHSH inequality. In partic
lar, for efficiencyh.0.90 most relevant to current exper
mental capabilities, the domainF. 2

3 is one largely devoid
1-10
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of instances withB.2, in contradistinction to the claim tha
this domain is somehow ‘‘safer’’@14# with respect to viola-
tions of Bell’s inequalities. Moreover, contrary to the di
missal of the domain12 ,F< 2

3 as not being manifestly quan
tum, we see from Fig. 4 that there are in fact regions w
B.2. Overall, the conclusions in Ref.@14# related to the
issues of violation of a Bell inequality and of teleportatio
fidelity are simply not supported by an actual quantitat
analysis.

To conclude this section, we would like to inject a note
caution concerning any discussion involving issues of tes
Bell’s inequalities and performing quantum teleportation. W
have placed them in juxtaposition here to refute the claim
Grangier and Grosshans related to a possible connection
tween the boundF5 2

3 and violation of Bell’s inequalities

FIG. 3. ~a! The quantityB from Eq. ~48! as a function ofr for
various values of efficiencyh5$0.99,0.90,0.70,0.50%, as indicated.
At each point in (r ,h), the value ofJ that maximizesB has been
chosen. Recall thatB.2 heralds a direct violation of the CHSH
inequality, with the dashed lineB52 shown. Also note thatF.

1
2

for all r .0. ~b! An expanded view ofB in the small-r region r
<0.1. Note that in the caseh50.70,B.2 for smallr. In all cases,

n̄50.
02232
h

f
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f
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~here via the behavior of the CHSH quantityB). However, in
our view there is a conflict between these concepts, with
illustration of this point provided by the plot of the CHS
quantity B @Eq. ~49!# versus fidelityF @Eq. ~45!# in Fig. 4.
For example, forh50.90, B.2 over the range 0.50,F
&0.66, whileB,2 for larger values ofF. Hence local hid-
den variables theories are excluded for modest values o
delity 0.50,F&0.66, but not for larger valuesF*0.66. This
leads to the strange conclusion that quantum resources
required for smaller values of fidelity but not for larger one

FIG. 4. ~a! A parametric plot of the CHSH quantityB @Eq. ~48!#
vs fidelity F @Eq. ~45!#. The curves are constructed from Figs. 1 a
3 by eliminating ther dependence, now over the range 0<r<5,
with r increasing from left to right for each trace. The efficiencyh
takes on the valuesh5$0.99,0.90,0.70,0.50% as indicated; in all

cases,n̄50. Recall thatB.2 heralds a direct violation of the
CHSH inequality, with the dashed lineB52 shown.~b! An ex-
panded view aroundB52. Note thatB.2 is impossible forF
<Fclassical5

1
2 , but thatB.2 for F.Fclassical in various domains

~including for h50.70 at smallr ). The purported boundaryF5
2
3

championed in Refs.@12–15# is seen to have no particular signifi
cance. Conversely,F5

2
3 provides absolutely no warranty thatB

.2 for F.
2
3 , nor does it precludeB.2 for F,

2
3 .
1-11
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The point is that the nonseparable states that can en
quantum teleportation, canin a different contextalso be used
to demonstrate a violation of local realism. Again, the jux
position of these concepts in this section is in response to
work of Ref. @14#, which in any event offers no quantitativ
evidence in support of their association.

VI. BELL’S INEQUALITIES
FOR SCALED CORRELATIONS

The conclusions reached in Sec. V about violations of
CHSH inequality by the EPR~mixed! state for modes~1,2!
follow directly from the analysis of Banaszek and Wo
kiewicz @21,22# as extended to account for losses in prop
gation. Toward the end of making these results more a
nable to experimental investigation, recall that the more
ditional versions of the Bell inequalities formulated for spi
1
2 particles or photon polarizations are based upon an an
sis of the expectation value

E~aW ,bW ! ~53!

for detection events at locations~1,2! with analyzer settings
along directions (aW ,bW ). As emphasized by Clauser and Sh
mony, actual experiments do not measure directlyE(aW ,bW )
but rather record a reduced version due to ‘‘imperfections
the analyzers, detectors, and state preparation@23#.’’ Even
after more than 30 years of experiments, nodirect violation
of the CHSH inequality has been recorded, where bydirect
we mean without the need for post-selection to compen
for propagation and detection efficiencies~also calledstrong
violations! @25,26#. Rather, only subsets of events that gi
rise to coincidences are included for various polarization
tings. This ‘‘problem’’ is the so-called detector efficienc
loophole that several groups are actively working to clos

Motivated by these considerations, we point out that
observation of violation of a Bell-type inequality was r
cently reported@27#, based in large measure upon the ear
proposal of Ref.@52#, as well as that of Refs.@21,22#. This
experiment was carried out in a pulsed mode, and utilize
source that generates an EPR state of the form given by
~11! in the limit r !1. Here the probabilityP(a1 ,a2) of
detecting a coincidence event between detectors (D1 ,D2) for
the EPR beams (1,2) is given by

P~a1 ,a2!5M @11V cos~f12f21u!#, ~54!

with then the correlation functionE relevant to the construc
tion of a CHSH inequality22<S<2 given by

E~f1 ,f2!5V cos~f12f21u!, ~55!

where the various quantities are as defined in associa
with Eqs.~2! and ~3! in Ref. @27#. Note that the quantityM
represents an overall scaling that incorporates losse
propagation and detection. Significantly, Kuzmichet al.
demonstrated a violation of a CHSH inequality (Sexp52.46
60.06) in the limit r !1 and with inefficient propagation
and detectionh!1, albeit with the so-called ‘‘detection’’ or
‘‘fair-sampling’’ loophole.
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In terms of our current discussion, this experimental v
lation of a CHSH inequality is only just within the nonsep
rability domain Dx21Dp2,1 ~by an amount that goes a
hr !1), yet it generates a large violation of a CHSH inequ
ity. If this same EPR state were employed for the telepo
tion of coherent states, the conditional fidelity obtain
would likewise be only slightly beyond the quantum
classical boundaryFclassical5

1
2 . It would be far from a

boundary consistent withF5 2
3 proposed in Refs.@12–15# as

the point for ‘‘useful entanglement’’ or ‘‘true entanglement
yet it would nonetheless provide an example of teleportat
with fidelity F. 1

2 and of a violation of a CHSH inequality
Of course, the caveat would be the aforementioned ‘‘fa
sampling’’ loophole, but this same restriction accompan
all previous experimental demonstrations of violations
Bell’s inequalities.

VII. CONCLUSIONS

Beyond the initial analysis of Ref.@6#, we have examined
further the question of the appropriate point of demarcat
between the classical and quantum domains for the tele
tation of coherent states. In support of our previous res
that fidelity Fclassical5

1
2 represents the bound attainable

Alice and Bob if they make use only of a classical chann
we have shown that the nonseparability criteria introduced
Refs. @17,18# are sufficient to ensure fidelity beyond th
bound for teleportation with the EPR state of Eq.~11!, which
is in general a mixed state. Significantly, the threshold
entanglement for the EPR beams as quantified by these
separability criteria coincides with the standard boundary
tween classical and quantum domains employed in quan
optics, namely, that the Glauber-Sudarshan phase-s
function takes on negative values@20#.

Furthermore, we have investigated possible violations
Bell’s inequalities, and have shown that the threshold for
onset of such violations again corresponds toFclassical5

1
2 .

For thermal photon numbern̄50 as appropriate to curren
experiments, direct violations of a CHSH inequality are o
tained over a large domain in the degree of squeezingr and
overall efficiencyh. Significant, relative to the claims mad
in Refs.@12–15#, is that there is a regime for nonseparabili
and violation of the CHSH inequality for whichF, 2

3 and
for which there criteria are not satisfied. Moreover, the e
periment of Ref.@27# demonstrated a violation of the CHS
inequality in this domain for (r ,h)!1 ~i.e.,F would be only
slightly beyond 1

2 ), albeit with the caveat of the ‘‘fair-
sampling’’ loophole. We conclude that fidelityF. 2

3 offers
absolutely no warranty relative to the issue of violation o
Bell inequality~as might be desirable, for example, in qua
tum cryptography!. Quite the contrary: largerr ~and hence
larger F) leads to an exponentially decreasing domain
allowed loss (12h) for violation of the CHSH inequality, as
expressed by Eq.~50! @51#.

Moreover, beyond the analysis that we have presen
here, there are several other results that supportFclassical
5 1

2 as being the appropriate boundary between quantum
classical domains. In particular, we note that any nonse
rable state and hence also our mixed EPR state is alw
1-12
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capable of teleporting perfect entanglement, i.e., one-ha
a pure maximally entangled state. This also applies to th
nonseparable states which lead to fidelities1

2 ,F< 2
3 in

coherent-state teleportation. According to Refs.@12–15#, this
would force the conclusion that there is entanglement tha
capable of teleporting truly nonclassical features~i.e., en-
tanglement!, but which is not ‘‘useful’’ @14# for teleporting
rather more classical states such as coherent states. Fu
in Ref. @28# it was shown that entanglement swapping can
achieved with two pure EPR states forany nonzero squeez
ing in both initial states. Neither of the initial states has
exceed a certain amount of squeezing in order to enable
cessful entanglement swapping. This is another indica
that F5 2

3 , which is exceedable in coherent-state telepo
tion only with more than 3-dB squeezing, is inappropriate
delineating the quantum-classical boundary.

We also point out that Giedkeet al. showed that for all
bipartite Gaussian states for a pair of oscillators, nonsep
bility implies distillability @53#. This result applies to the
EPR ~mixed! states considered here, and in particular
those nonseparable states for which1

2 ,F< 2
3 in coherent

state teleportation, which are otherwise dismissed as no
hibiting ‘‘true EPR entanglement’’@13#. Conversely, en-
tanglement distillation could be applied to the mixed EP
states employed for teleportation in this domain~and in gen-
eral for F. 1

2 ) @54#, leading to enhanced teleportation fide
ties and to expanded regions for violations of Bell’s inequa
ties for the distilled subensemble.

However, having said this, we emphasize that there is
criterion for quantum teleportation that is sufficient to
tasks. For the special case of teleportation of coherent st
the boundary between classical and quantum teleportatio
fidelity Fclassical5

1
2 , as should by now be firmly establishe

Fidelity F. 2
3 will indeed enable certain tasks to be acco

plished that could not otherwise be done with1
2 ,F< 2

3 .
However,F5 2

3 is clearly not the relevant point of demarc
tion for entrance into the quantum domain. There is instea
hierarchy of fidelity thresholds that enable ever more rema
able tasks to be accomplished via teleportation within
quantum domain, with no one value being sufficient for
possible purposes.

For example, if we wish to teleport a nonclassical state
the electromagnetic field, thens̄2

2 >1 is sufficient to guaran-
tee that all nonclassical features will vanish@39#. This im-
plies that a necessary condition for nonclassical feature
be teleported iss̄2

2 ,1, which leads to the requirementF
. 1

2 for the teleportation of coherent states. If the task is
teleport a perfectly squeezed state with variance^Dxin

2 &→0,
then the teleported state will also be squeezed so lon
s̄2

2 , 1
2 @39#, implying that teleportation of coherent stat

could indeed attainF. 2
3 . If instead the demand is for tele

portation in a domain where unconditional violation of a B
inequality as in Sec. V is required, then the efficiencyh must
exceed 2

3 , leading to fidelity for teleportation of coheren
statesF. 3

4 . Much more challenging would be if the state
be teleported were some intermediate result from a la
scale quantum computation as for Shor’s algorithm. Sur
then, the relevant fidelity threshold would be well beyo
02232
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any value currently accessible to experiment,F;12e, with
e&1024 to be compatible with current work in fault toleran
architecture. We have never claimed thatF. 1

2 endows spe-
cial powers for all tasks such as these, only that it provid
an unambiguous point of entry into the quantum realm
the teleportation of coherent states.
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APPENDIX

The expressions of Eqs.~42!-~45! are strictly applicable
only for the case gaing51 for teleportation of coheren
states uniformly distributed over the entire complex pla
Here g specifies the gain employed by Bob in generating
coherent state based upon the information received from
ice. More generally, when working with a restricted alphab
of states~e.g., coherent amplitudes selected from a Gauss
distribution!, the optimal gain is not unity when reference
to the fidelity averaged over the input alphabet. In fact
shown in Ref.@6#, the optimal gain isg51/(11l) for an
input alphabet of coherent states distributed according
p(b)5(l/p)exp(2lubu2). When incorporated into the cur
rent analysis, we show in this appendix that nonsepara
EPR states are sufficient to achieveF.(11l)/(21l)
~again with an optimal gaingÞ1), althoughF is now no
longer a monotonic function ofr as in Fig. 1. This result is in
complete correspondence with the prior result of Ref.@6# that
Fclassical

l 5(11l)/(21l) is the bound for teleportation
when only a classical channel is employed. To simplify t
discussion in the text, we have setl50 throughout, with
then the optimal gaing51 andFclassical5

1
2 .

In the more general case, we begin by recalling from E
~1! and ~2! in Ref. @4# that the fidelityF for teleportation of
a coherent stateuv in& can be expressed in the current notati
by

F5
2

sQ
2

exp@22uv inu2~12g!2/sQ
2 #. ~A1!

Here the variancesQ
2 of theQ function of the teleported field

is given by

sQ
2 511g21

s̄2
2

2
~g11!21

s̄1
2

2
~g21!2. ~A2!

Relative to Ref.@4#, various efficiencies are here taken
unity for the sake of simplicity. With reference to the not
1-13
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FIG. 5. Optimized fidelityF̄0 vs the degree of squeezingr, with l52 ~upper curve! andl50.001~lower curve!. In ~a!–~d! the efficiency
h50.99, 0.90, 0.70, and 0.50, respectively. The dashed lines give the limiting valueF5(11l)/(21l) for each case.
a

s

he

th
E

q

-

l-
y.

ef.

ic
tion of Ref. @4#, we assume that the EPR beams propag
and are detected with unit efficiency (j1515j2) and that
Alice’s detection efficiencyhA is likewise unity (hA51,
wherehA[h in Ref. @4# is not to be confused withh here!.
Hence our model here is that eachideal squeezed beam goe
through a beam splitter of transmissionh to then produce a
mixed ~squeezed! state. These two squeezed states are t
combined, to generate the EPR beams described by Eq.~11!,
with the resulting variances parametrized by (r ,h). In effect,
we consider the case where the only imperfection is in
squeezing beams that are combined to generate the
beams (s̄1

2 s̄2
2 51 in the ideal case, buts̄1

2 s̄2
2 >1 in the

presence of loss!.
We next proceed to average the fidelity as given in E

~A1! over a distribution of incident coherent states$ub&% of
the form previously considered in Ref.@6#, namely,

P~b!5
l

p
exp~2lubu2!. ~A3!

The calculation is a straightforward, and yields

F̄5
2l

lsQ
2 12~12g!2

. ~A4!

Next we optimize this average fidelityF̄ by choosing the
best gaing, which is found from the relation
02232
te

n

e
PR

.

d

dg
F̄50, ~A5!

remembering thatsQ depends upong. There results a solu
tion for the optimal gaing0 given by

g05

11
l

4
~ s̄1

2 2s̄2
2 !

11
l

4
~21s̄1

2 1s̄2
2 !

, ~A6!

which when substituted into Eq.~A2!, gives the valuesQ0

2 of

this variance at the optimal gain. Finally, (g0 ,sQ0

2 ) together

with Eq. ~A4!, leads to an expression for the optimum fide
ity F̄0. Two limiting cases are worth checking straightawa

~1! For vacuum inputs for the EPR beams,s̄6
2 51 ~no

squeezing!, so that

g05
1

11l
,

~A7!

F̄05
11l

21l
,

which are in complete accord with the prior treatment of R
@6#.

~2! For s̄1
2 →` ~corresponding to very large parametr

gain, r @1), we have that
1-14
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g0→1,
~A8!

F̄0→F,

which is just the~unaveraged! fidelity given by Eq.~A1!.
The importance of this result is that it sets the limiting valu
of (g0 ,F̄0) for large r independent ofl, as will become
apparent from the figures that follow.

Figure 5 show a series of plots, each of which conta
two curves for the fidelity versus the squeezing parametr
for two values ofl. The upper trace is the optimized fidelit
F̄0 from Eq.~A4! with the optimized values (g0 ,sQ0

2 ) for the

particular choicel52, while the lower trace is the fidelity
F̄0 from Eq. ~A4! for l50.001 ~and henceg0'1). Also
shown are two dashed lines corresponding toF5(1
1l)/(21l) for the two valuesl52 and 0.001.

As is apparent,F̄0 increases withr !1 in all cases from
its initial value (11l)/(21l). However, if (11l)/(2
1l).F(r @1) whereF is the result for gaing51 from Eq.
~ 1!, thenF̄0 will rise to a maximum and then decrease~slope
,0). Thus, althoughr .0 helps Alice and Bob initially,F̄ is
not monotonic inr. In many cases, there is an optimum val
for the degree of squeezingr for givenl ~the alphabet Victor
d

r,

cu

.

pt

e

in
n-
e

ria

te
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s

s

has chosen! andh ~the losses that Alice and Bob have to liv
with in generating and distributing their EPR beams!. Fur-
ther, if they nonetheless persist in increasingr past this op-
timum, in some cases they will do worse withr nonzero than
with r 50.

While these results may at first sight seem strange, t
interpretation is as follows. The initial valueF̄0(r 50)5(1
1l)/(21l) is artificially boosted in the sense that forl
@1, Alice and Bob have to be less and less concerned a
losses and squeezing. They simply increasingly bias t
choice towardb50 as specified in Eq.~A3!. Further, for
increasingr, the spread of the Wigner function for the EP
beams at some point overtakes the spread associated
P(b) so that the particular value ofl becomes irrelevant
and F̄ reverts to theg51 case.

Although we emphasize that the foregoing analysis is s
ficient to demonstrate that nonseparable EPR states ach
fidelity F.Fclassical

l 5(11l)/(21l), we make no war-
ranty that it provides the optimal strategy for Alice and Bo
The principal caveats are that we have assumed that Alic
always performing an Arthurs-Kelly measurement@41#, and
that Bob always generates a coherent state based upo
information from Alice, where this coherent state is given
aout5ga in , with g real and optimized, as discussed abov
pt.
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