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Wannier functions analysis of the nonlinear Schralinger equation with a periodic potential
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In the present paper we use the Wannier function basis to construct lattice approximations of the nonlinear
Schralinger equation with a periodic potential. We show that the nonlinear 8itlyer equation with a
periodic potential is equivalent to a vector lattice with long-range interactions. For the case-example of the
cosine potential we study the validity of the so-called tight-binding approximation, i.e., the approximation
when nearest neighbor interactions are dominant. The results are relevant to the Bose-Einstein condensate
theory as well as to other physical systems, such as, for example, electromagnetic wave propagation in
nonlinear photonic crystals.
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Interplay between nonlinearity and periodicity is the focustions are taken into account astight-binding model This
of numerous recent studies in different branches of modermodel has recently been employed in the description of BEC
physics. The theory of Bose-Einstein condensg®@EC) in an optical latticg6]. One of the advantages of the lattice
within the framework of the mean-field approximatigi is ~ approach is that it allows one to obtain strongly localized
one of them. Recent interest in the effects of periodicity inconfigurations, the so-calledntrinsic localized modes
BEC's has been stimulated by a series of remarkable exper{!LM's) (also callecbreathers [6,7], in a rather simple way.
ments realized with BEC’s placed in a potential created by a hese entities correspondgap solitonsof the original con-
laser field[2] (the so-calledptical lattice. Nonlinearity and ~ tinuum model[8]. In the above mentioned works a formal
periodicity have been observed to introduce fundamenta®nalysis has been provided, using a basis of functions
changes in the properties of the system. On the one hangtrongly localized about the minima of the periodic potential.
periodicity modifies the spectrum of the underlying linear This basis, however, has not been presented explicitly and
system resulting in the potential of existence of new coherergVen its existence has not been established. In this context it
structures, which could not exist in a homogeneous nonlinea¥hould also be mentioned that the reduction of a nonlinear
system. On the other hand, nonlinearity renders accumulgvolution equation with periodic coefficients to a lattice
tion and transmission of energy possible in “linearly” for- model, and thus to the study of the corresponding map, is
bidden frequency domains; this, in turn, results in field local-known to be possible in the case of a special potential of the
ization. This situation is fairly general and can be found inform of a sum of Dirac-delta functior{S].
other applications, such as the theory of electromagnetic In this work we propose to use Wannier functiotvsF)
wave propagation in periodic mediso-called photonic crys- [4,10] as a complete set of functions localized near the
tals) [3]. minima of the potential to reduce the evolution of a nonlin-

The study of nonlinear evolution equations with periodicear partial differential equation with periodic coefficients to a
coefficients is a challenging and interdisciplinary problem.nonlinear lattice. WF have recently been used both in con-
This problem cannot be solved exactly in the general casBection with BEC in optical latticefl1] and with gap soli-
and thus gives rise to various approximate approaches. Or{@ns in nonlinear photonic crystal$2]. In our case this ap-
of them, borrowed from the theory of solid std#, is the proach leads ta vector sebf lattice equations. These lattice
reduction of a continuous evolution problem to a lattice€duationgxactlycorrespond to the original continuum prob-
problem(i.e., reduction of a partial differential equation to a lem and the scalar tight-binding approximation can be de-
differential-difference onke It turns out that the relation be- duced from them under some specific conditions. Checking
tween the properties of periodic and discrete problems ihese conditions one can analyze the applicability of the
indeed rather deeffor a recent discussion of the relevant tight-binding model. In particular, we argue that although the
connections see, e.g., R¢E] and references therginFol-  ILM'’s reported in Ref.[6] do exist, their dynamics and sta-
lowing the solid-state terminology here we will refer to a bility must be studied within the framework of a more gen-

discrete approximation when only nearest neighbor interaceral vector-lattice equation. _
Being interested in BEC applications we base our analysis

on the ubiquitous example of the nonlinear Sclimger
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where o==*+1 and V(x) is a periodic potentiaV(x+L) AR )
=V(x) [16]. Consider the eigenvalue problem associated aallazzsf f_ Wn,aWn, a;Wn, a,Wn, a,dX 9
with Eq. (1),

I are overlapping matrix elements. Since WF's are real,
(Pk, NinoNngng . - -
_ 2a+v(x)(Pk,a:Ea(k)‘Pk,ai 2) Wa1a2a3a4 is symmetric with respect to all permutations

within the groups of indices d,a;,a5,a3) and
(n,ny,n,,n3). Equation(8) can be viewed as a vector dis-
crete nonlinear Schdinger (DNLS) equation for c,
=col(c,1,Cn2, - - . ) With long-range interactions. In its gen-
eral form, Eq.(8) is not solvable; however it allows reduc-
tions to simpler lattices in a number of important special

where ¢, , has Bloch (Floque} functions (BF's) ¢y ,
=e'®uy ,(x), with u ,(x) periodic with period., and« is
an index that labels energy bandg(k). As is well known
[4,10] E (k+[27/L])=E_(k); thus one can represent the

energy as a Fourier series, cases. Below we list some of them.
(i) If the coefficients of the Fourier seri¢8) decay rap-
Ea(K)=2 @ o€ ™ @po=o_n =0k, (3) idly and | ,/>|®n ./, N>1, one can neglect long-range
n interaction terms in the linear part of E¢B) taking into

account nearest neighbors only.

where an asterisk stands for complex conjugation and (i) Since w, 4(x) is localized and centered around
. N =nL, one can assume that in some cases among all the
. o . . nniny,n : e P
wW:EJ /LEa(k)e—lknLdk. (4) coefﬂmentswwlljzjg those withn=n,;=n,=n; are domi-
— T

nant and other terms can be neglected.
Then, taking into account this and poiit one arrives at

The BF's constitute an orthogonal basis. However, for Oulpa equation

purposes it is more convenient to use the WF'’s instead of the

BF’s. We recall that the WF centered around the position dc,, - R
(n is an integerand corresponding to the bamdis defined i dt’ = w0 aCnat ®W1a(Cnot1at Cntia)
as
L /L . +o z Wg(r:l/ngz [e% C*,a Cn,a Cr‘l,a ’ (10)
Wa(X_nL): - [_f ok a(X)e_kadk. (5) ay,ap,ag 1@pa37 N, ay 2 3
2w —amll
which degenerates into the tight-binding mof&]
Conversely,
ey - -
L o l dt :wO,aCn,a+wl,a(cnfl,a+cn+l,a)
o) =\ 5= 2 W a(x)em™ (6) N
e +oWIL11ICn el “Chya s (13)

Similarly to BF's, they form a complete orthonorm@tith it one restricts consideration to baadonly. Note that within
respect to botim and«) set of functions, which, by properly  the single-band approximation, E€L1) can be generalized
choosing the phase of the BF's in E§), can be made real py including next nearest neighbor overlapping terms from
and exponentially decaying at infiniffL0]. In what follows Eq. (8), thus leading to the mixing of on-site and intersite
we assume that this choice is madg; ,(x) =w, ,(x). Due  ponlinearities of the same type as in the model introduced in
to completeness of WF's, any solution of EQ) can be Ref.[13]. It should also be mentioned that the coefficients
expressed in the form Weara,a, IN EQ. (10) areindependenof n.
(iii) In the general case, however, single-band descriptions
P(x,t) = E Cn.a(DWy o(X), 7) can become inadequaigee belowdue to resonant interband
na interactions induced by nonlineariihis is quite different
from linear solid state physics where interband transitions
which after substitution in Eq(1) gives are usually induced by external forgem this case Eq(10)
can be further simplified by supposing that the periodic po-
dcp o 2 o tential depends on some parameterV(x)=V(x), such
Ny

that(l)l,aE &)m(e) =0(€) whene— 0. After the transforma-

tion cn,a(t)=exp{i&)0,at}?:n,a(t) one arrives at the equation

+o X > C’Sl,alcnz,a20n3,a3W2211nj:§3, for ¢, ., with explicit dependence onin the nonlinear terms
“fzs iz e in the form of oscillating exponents eifwy,+ wo,,

® ~ 04, Woa,)t]. Let alsoc, ,(0) be small enough. Then

where on the time scale &/these exponents are rapidly oscillating

046608-2



WANNIER FUNCTIONS ANALYSIS OF THE NONLINEAR . .. PHYSICAL REVIEW E56, 046608 (2002

unlessae=a,,a1=a3 Or a=ajz,a1=a,. Then, denoting
wg’;qgalzwwl (the coefficientsV,,, do not depend om T @
and describe interband interactipnand using time averag-

ing technique$15], one can reduce the lattice equatidi®) w

to the form

4
dena ~ -~ ~ - i
. W .
I dt _wl,a(cnfl,a+cn+l,a)+0-2 Waa1|cn,a1| Cn,a' 2T
ag

1=+ ®=0.6

(12 N ———
This is a vector DNLS equation with coupling between ° 2
bands of the cross phase modulation tjp&,17]. To inves- k
tigate ILM solutions in the Wannier representation we can 164
restrict to the scalar case described by Erf) for which wl ®
construction of ILM’s is well establishefi7]. ILM’s with 124
multiple components o'f:M populated can also be con- 10+

structed(see below. /
Several comments about the above assumptions are in or- +

8

8

der. First, the latter imply that the procedure of reduction of 4
the NLS with periodic coefficients to a lattice is a multistep T i

0

2

process, and thus different lattices will appear for different
regions of the parameters. Second, for the reduction to be
consistent, the parameters of the problem must provide us 0 2
with a small parameter. Thus the largest of the quantities k

Wn ol @1, (N>1) andW™"2"s jyynnnn , (nj#n) will de-

aajayag aajaya

8 ©
fine this small parameter of the problem. This, in particular, 6
means that simplification of the lattice equation, and hence o
the reasoning for the reduction to a lattice model, (paen- w2t
tially) not always available for all parametric regimes, and 0
2
4
6
8

must be verified for each model.

In the present paper we study the validity of the above
assumptions for Eq1) with the potentialV(x)=A cos(X)
(which corresponds to the typical experimental setting for
BEC in optical lattices[2]). In this case Eq.2) is the 0
Mathieu equation. The lowest band gaps of its spectrum are 0 i
shown in Fig. 1 for three values of the potential amplitude:
A=-1, A=—-5, andA=—15, taken as representative eXx-  FIG. 1. The energy band structufgiven by the solid linesof
amples of low, moderate, and high potential barriers, respeghe potentialvV=A cos(X) for three different values of the ampli-
tively (although not reported here, intermediate value#\of tude(a) A=—1, (b) A=—5, and(c) A= —15 (in the last case the
were also consideredWe remark that for very large poten- first three allowed bands appear to be very narr¢w:9.787,
tial amplitudes, difficulties in numerical studies usually arise—9785], [0.012,0.073, and[8.123,8.84§). Dashed lines in each
because of the very small width of the allowed banhcl$. picture show positions of the frequencies of the localized solutions
Figs. 1@ and 1(c)]. This case, however, allows a rather analyzed in Table IV and those represented in Fig. 2.
complete and satisfactory asymptotic analysise below. . o _ _

Next, Table | shows the coefficients, , for the same Moving to assumptiorii), let us introduce the following

three lowest energy bands. Our numerical investigations, rélogftrion”- We denote bMZ,m_(_A)' the number of_c_oefficie_nts
alized for various values o, show that the greatdA| is, W, 23, [nl<n, aj=m, i,j=1,23 the coefficients with
the better the linear part obeys the nearest neighbor approxermuted indices are regarded as differestich that

mation, which is intuitively expected since the probability of |W0n1nzns |>A. As it is clear,A plays the role of the small
tunneling between neighbor potential wells decreases with *“1%2%s ’

the amplitude of the potential. At the same timeAifs fixed, ~ Parameter of the second condition, aN{l ,(A) gives the
the coefficientse n=0+1 decay faster for lower number of sites/zones necessary to take into account for
na? - y— y oo

bands«. The results illustrate, that the nearest neighbor ap[nalntalnmg the given accuracy. In the cases of the ampli-

H n
proximation works for all three potential amplitudes, while tUdenSAZ —1 andA=—15 we have obtame;j thaiy ,(0.1)
the averaging resulting ifL2) is applicable forA= — 15 and :an,l(O'Ol):]- for n=1,...,5. For Nj,(0.1) and
even forA=—5, but not forA= —1. The reason is that in Nim(0.01), see Table II. . N
the latter case the frequencies of oscillating exponen(s in Table Ill presents the overlapping coefficieM,,  for
are of the order ooy, . three values of the amplitude of the cosinelike potential.

w=-3

k
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TABLE |. The first five Fourier coefficientsAona of the lowest energy bands for three values of the
amplitude potential.

A=-1 A=-5 A=-15

a=1 a=2 a=3 a=1 a=2 a=3 a=1 a=2 a=3

>

0.1305 2.4657 6.3604 —2.1152 29389 7.0721 —9.7862 0.0421 8.4659
—0.1428 0.5426 —1.0067 —0.0192 0.2435 0.7939 —0.0005 0.0151 -0.1798

0.0204 0.0784 0.0529 0.0002 0.0263 0.1094 0.0000 0.0001 0.0091
—0.0048 0.0481 —0.1107 -—0.0000 0.0052 0.0625 —0.0000 0.0000 —0.0008

0.0014 0.0225 0.0140 0.0000 0.0012 0.0290 0.0000 0.0000 0.0001

A W NPFO

It follows from Tables Il and Il that, in generabne can-  (right panelg for c=1. The top panels show the comparison
not neglect the contribution of the WF of the highest zonesof the exact solutioiishown by solid ling of Eq. (1) with the
However, one can show that the mod&l) can be success- reconstructed profile obtained from solving E#j2) and us-
fully used to describe bright monochromatic ground stateng Eq. (7). The relevant profiles in the tight-binding ap-
solutions of(1) of the form y(t,x)=e'“'u(x). To this end, proximation are shown by a dashed line, while in the right
we present in Table IV the first coefficients of the expansiorpanel (where the one-band approximation is less acclrate
of the exact(numerica) solution of Eq.(1) for the cases of the three-band approximation is also shown by dash-dotted
potential amplitudes considered above, and for typical valuene. The bottom panels show in a semilog plot the square
of soliton frequencies inside the forbidden bands. modulus of the configurations of the top panels as well as,

It follows from the data shown in Table IV that the tight- additionally, by the dotted line, the result of time evolution
binding model is not applicable for the case of small ampli-(for t~50) of Eq. (1) with the tight-binding approximation
tudes of the potential: foA= —1 one has to take into ac- as the initial condition of the simulation. One can straight-
count at least five WF’'s corresponding to the first Brillouin forwardly observe that the approximate solution “reshapes”
zone(from cq 4 till c34), while contribution of higher zones, itself into the exact solutioripossibly shedding some very
described by, , with different indexa, can be neglected. small amplitude radiation wakes in the progesghis dem-
Notice that by increasing the potential amplitude, there is anstrates that the method can be used very efficiently to con-
more significant contribution of the upper zones and a relastruct(approximatg solutions of the original partial differen-
tively accurate description of the soliton in terms of thetial equation, by using the lattice reduction in the WF
WF’s. Indeed, already foA=-5 (and the same foA representation.
= —15), the leading order coefficien} , is ten times bigger Let us return now to the requiremefiii) and argue that
than any other coefficient of the expansion, the next on€hoosing the small parameter as|A| ! one can provide
(with respect to the magnitugideing cg 3, i.e., the coeffi- the averaging of Eq(l) in the limit A——c. Namely, we
cient of the WF belonging to the same site, but to the thirdclaim the following.

zone. In this case the solution can be identified &¢aanier (@) If a is fixed andA— —«, then
soliton i.e., a solitary wave solution which is described, with
high accuracy, by a single WF. @o,a~A+(2a— V—A+[(2a—1)%2+1]/8.

In Fig. 2 we provide comparison among exact, lattice, and
tight-binding solutions for the case 8f= —5. The two pan-

els show the cases ab=— 1.5 (left panel$ and w=1.5 If Ais fixed thenwg , tends to infinity asx grows.

(b) If « is fixed then the valué)lya tends to zero faster
than any power of 1A|; at the same time iA is fixed then
Z')l,a tends to infinity ase grows.

A n N7 0.1) NJ0.01) N740.1) NJ40.01) (0) If « is fixed andA— — o the Wannier functions can be
' ' : : approximated by the formula

TABLE II. The valuesNy, (A).

-1 0 4 4 7 13
1 4 48 7 219 18
2 4 54 7 249 Woo(X)~ —7z (Zlﬂ) e A [(2]A)Y4X],
3.4 4 60 7 303 720 (= 1)t
5 4 60 7 339 _ o
_5 0 4 4 10 14 TABLE lll. Overlapping coefﬂmentswwl.
: y ~ " > A Wy Wy Wi W, Wy W
3-5 4 10 10 86 -1 0.375 0240 0173 0182 0.152 0.142
-15 0 4 4 13 14 -5 0.648 0398 0.279 0270 0.162 0.210
1-5 4 4 13 26 -15 0.892 0.623 0473 0.417 0262 0.326
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TABLE IV. The expansion coefficients,, , of exact(numerical solutions of the NLS(1) with the
potential V= A cos(X).

@ n=0 n=1 n=2 n=3 n=4 n=>5 n=6
A=-1 1 0.809 —0.526 0.289 —0.158 0.088 —0.049 0.027
0w=0.6 2 0.000 0.023 -0.014 0.009 -—0.003 0.002 0.000

3 —0.013 0.000 0.000 -—0.001 0.000 0.000 0.000
A=-5 1 1.895 —-0.023 —0.001 0.000 0.000 0.000 0.000
w=0 2 0.000 0.056 0.004 0.001 0.000 0.000 0.000

3 —0.149 —0.023 —0.003 0.000 0.001 0.001 -0.001
A=-15 1 2.948 0.000 0.001 0.000 0.000 0.000 0.000
w=—3 2 0.000 0.008 0.001 0.000 0.000 0.000 0.000

3 —0.385 0.002 —0.001 0.000 0.000 0.000 0.000

whereH,(y) are Hermite polynomials. This is a natural con-  To conclude, we have shown how to derive lattice models
sequence of the fact that for sufficiently low levels the po-which approximate efficiently nonlinear partial differential
tential can be well approximated by the parabolic one. equations with periodic coefficients. This analysis gives the

(d) The coefficientsw"™"2" with different n, ny, n,, poss_ibility to contro! the validity of the tight—binging ap-

a3 ) proximation. In particular, we have shown that in a large
a”n?mrr‘]s tend to zero l%SA—”‘” and at the same time ggion of parameter space, for the cosinelike potential, one
Woaapay~ Kaayayag Al WhereK, o o, o, do notdepend  cannot restrict consideration to the lowest band. This is due
on A and can be expressed explicitly through the integrals ofo interband transitions originating from the nonlineatfisy
products of Hermite polynomiald.4]. situation very different from that known idinear solid-

Taking into account(a)—(d), making the substitution State physics, where the interband transitions occur due to
¢, (1) =€“0al|A|"Y%, (1), and averaging over rapid os- the effect of perturbatiojsHowever, there exist parameter
ciliations, one arrives at Eq12) with W, =K . ranges where_wnh rgasonably h|_gh accuracy the atomic wave

aa;” Taaiea, function (that is a bright gap soliton of the one-dimensional
NLS equation is approximated by a single WF. Such a state
will form a “Wannier soliton” that should also be experi-
mentally observable. It should be highlighted that the use of
the WF basis allows one to test, extend, and improve the
tight-binding approximation, in aontrollableandsystematic
fashion by accounting for higher-order terms in the Wannier
expansion. Moreover, there is a computational gain when
computing with a discrete system with respect to the corre-
X X sponding cost for a much finer me&meeded to resolve the
original continuous system While this gain may not be
overly significant in one dimension, it may prove quite use-
ful in tackling higher-dimensional problems.

It should be stressed that even though developed for a
specific, physically relevar(to optical lattices in BETC set-
ting, the approach presented hereésy generabnddirectly
applicableto numerous other physical problems including
the description of solitary wave propagation through one-
dimensional photonic crystalgl8], chemical reactions on

FIG. 2. Comparison of the lattice reconstructed solution in thePeriodic catalytic substrat¢49], or even population dynam-
tight-binding (dashed ling and the three-banéddash-dotted line  ICS On appropriately heterogeneous substrg28s

i i ith th luti lid line). Th i . . .
approximation with the exact solutidsolid line). The comparison G.L.A thanks CFMC of the University of Lisbon and the

is performed forA= -5 andw= —1.5 (left panel$ and A= -5, ) ) f | f hospitall h K of
w=1.5 (right panel$. The positions of both frequencies with re- University of Salerno for warm hospitality. The work o

spect to gap edges are shown in Fih)1In the bottom(semilog G.L.A. was partially supported by NATO. V.V.K. acknowl-
panels additionally the result of dynamical time evolution of the €dges support from the European grant, COSYC No. HPRN-
tight-binding approximation is shown by the dotted line. The latter CT-2000-00158. P.G.K. gratefully acknowledges support
can be seen to approach, as time evoligee shown snapshots are from a UMass Faculty Research Grant, from the Clay Foun-
for t~50), the shape of the exact solutitin the left panel it can  dation, and from NSF-DMS-0204585. M.S. acknowledges
actually not be distinguished from) iand to match its asymptotics, the MURST-PRIN-2000 Initiative and the European grant,
possibly shedding small wakes of low amplitude wave radiation inLOCNET No. HPRN-CT-1999-00163 for partial financial
the procesgsee, e.g., the bottom right papel support.
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