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Wannier functions analysis of the nonlinear Schro¨dinger equation with a periodic potential
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In the present paper we use the Wannier function basis to construct lattice approximations of the nonlinear
Schrödinger equation with a periodic potential. We show that the nonlinear Schro¨dinger equation with a
periodic potential is equivalent to a vector lattice with long-range interactions. For the case-example of the
cosine potential we study the validity of the so-called tight-binding approximation, i.e., the approximation
when nearest neighbor interactions are dominant. The results are relevant to the Bose-Einstein condensate
theory as well as to other physical systems, such as, for example, electromagnetic wave propagation in
nonlinear photonic crystals.
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Interplay between nonlinearity and periodicity is the foc
of numerous recent studies in different branches of mod
physics. The theory of Bose-Einstein condensates~BEC!
within the framework of the mean-field approximation@1# is
one of them. Recent interest in the effects of periodicity
BEC’s has been stimulated by a series of remarkable exp
ments realized with BEC’s placed in a potential created b
laser field@2# ~the so-calledoptical lattice!. Nonlinearity and
periodicity have been observed to introduce fundame
changes in the properties of the system. On the one h
periodicity modifies the spectrum of the underlying line
system resulting in the potential of existence of new cohe
structures, which could not exist in a homogeneous nonlin
system. On the other hand, nonlinearity renders accum
tion and transmission of energy possible in ‘‘linearly’’ fo
bidden frequency domains; this, in turn, results in field loc
ization. This situation is fairly general and can be found
other applications, such as the theory of electromagn
wave propagation in periodic media~so-called photonic crys
tals! @3#.

The study of nonlinear evolution equations with period
coefficients is a challenging and interdisciplinary proble
This problem cannot be solved exactly in the general c
and thus gives rise to various approximate approaches.
of them, borrowed from the theory of solid state@4#, is the
reduction of a continuous evolution problem to a latti
problem~i.e., reduction of a partial differential equation to
differential-difference one!. It turns out that the relation be
tween the properties of periodic and discrete problems
indeed rather deep~for a recent discussion of the releva
connections see, e.g., Ref.@5# and references therein!. Fol-
lowing the solid-state terminology here we will refer to
discrete approximation when only nearest neighbor inte
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tions are taken into account as atight-binding model. This
model has recently been employed in the description of B
in an optical lattice@6#. One of the advantages of the lattic
approach is that it allows one to obtain strongly localiz
configurations, the so-calledintrinsic localized modes
~ILM’s ! ~also calledbreathers! @6,7#, in a rather simple way.
These entities correspond togap solitonsof the original con-
tinuum model@8#. In the above mentioned works a form
analysis has been provided, using a basis of functi
strongly localized about the minima of the periodic potenti
This basis, however, has not been presented explicitly
even its existence has not been established. In this conte
should also be mentioned that the reduction of a nonlin
evolution equation with periodic coefficients to a lattic
model, and thus to the study of the corresponding map
known to be possible in the case of a special potential of
form of a sum of Dirac-delta functions@9#.

In this work we propose to use Wannier functions~WF!
@4,10# as a complete set of functions localized near
minima of the potential to reduce the evolution of a nonl
ear partial differential equation with periodic coefficients to
nonlinear lattice. WF have recently been used both in c
nection with BEC in optical lattices@11# and with gap soli-
tons in nonlinear photonic crystals@12#. In our case this ap-
proach leads toa vector setof lattice equations. These lattic
equationsexactlycorrespond to the original continuum prob
lem and the scalar tight-binding approximation can be
duced from them under some specific conditions. Check
these conditions one can analyze the applicability of
tight-binding model. In particular, we argue that although t
ILM’s reported in Ref.@6# do exist, their dynamics and sta
bility must be studied within the framework of a more ge
eral vector-lattice equation.

Being interested in BEC applications we base our analy
on the ubiquitous example of the nonlinear Schro¨dinger
~NLS! equation

i
]c

]t
52

]2c

]x2
1V~x!c1sucu2c, ~1!
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where s561 and V(x) is a periodic potentialV(x1L)
5V(x) @16#. Consider the eigenvalue problem associa
with Eq. ~1!,

2
d2wk,a

dx2
1V~x!wk,a5Ea~k!wk,a , ~2!

where wk,a has Bloch ~Floquet! functions ~BF’s! wk,a
5eikxuk,a(x), with uk,a(x) periodic with periodL, anda is
an index that labels energy bandsEa(k). As is well known
@4,10# Ea(k1@2p/L#)5Ea(k); thus one can represent th
energy as a Fourier series,

Ea~k!5(
n

v̂n,aeiknL, v̂n,a5v̂2n,a5v̂na* , ~3!

where an asterisk stands for complex conjugation and

v̂n,a5
L

2pE2p/L

p/L

Ea~k!e2 iknLdk. ~4!

The BF’s constitute an orthogonal basis. However, for
purposes it is more convenient to use the WF’s instead of
BF’s. We recall that the WF centered around the positionnL
(n is an integer! and corresponding to the banda is defined
as

wa~x2nL!5A L

2pE2p/L

p/L

wk,a~x!e2 inkLdk. ~5!

Conversely,

wk,a~x!5A L

2p (
n52`

`

wn,a~x!einkL. ~6!

Similarly to BF’s, they form a complete orthonormal~with
respect to bothn anda) set of functions, which, by properly
choosing the phase of the BF’s in Eq.~5!, can be made rea
and exponentially decaying at infinity@10#. In what follows
we assume that this choice is made:wn,a* (x)5wn,a(x). Due
to completeness of WF’s, any solution of Eq.~1! can be
expressed in the form

c~x,t !5(
na

cn,a~ t !wn,a~x!, ~7!

which after substitution in Eq.~1! gives

i
dcn,a

dt
5(

n1

cn1 ,av̂n2n1 ,a

1s (
a1 ,a2 ,a3

(
n1 ,n2 ,n3

cn1 ,a1
* cn2 ,a2

cn3 ,a3
Waa1a2a3

nn1n2n3 ,

~8!

where
04660
d
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Waa1a2a3

nn1n2n3 5E
2`

`

wn,awn1 ,a1
wn2 ,a2

wn3 ,a3
dx ~9!

are overlapping matrix elements. Since WF’s are re
Wa1a2a3a4

n1n2n3n4 is symmetric with respect to all permutation

within the groups of indices (a,a1 ,a2 ,a3) and
(n,n1 ,n2 ,n3). Equation~8! can be viewed as a vector dis
crete nonlinear Schro¨dinger ~DNLS! equation for cn
5col(cn1 ,cn2 , . . . ) with long-range interactions. In its gen
eral form, Eq.~8! is not solvable; however it allows reduc
tions to simpler lattices in a number of important spec
cases. Below we list some of them.

~i! If the coefficients of the Fourier series~3! decay rap-
idly and uv̂1,au@uv̂n,au, n.1, one can neglect long-rang
interaction terms in the linear part of Eq.~8! taking into
account nearest neighbors only.

~ii ! Since wn,a(x) is localized and centered aroundx
5nL, one can assume that in some cases among all
coefficientsWaa1a2a3

nn1n2n3 those withn5n15n25n3 are domi-

nant and other terms can be neglected.
Then, taking into account this and point~i! one arrives at

the equation

i
dcn,a

dt
5v̂0,acn,a1v̂1,a~cn21,a1cn11,a!

1s (
a1 ,a2 ,a3

Waa1a2a3

nnnn cn,a1
* cn,a2

cn,a3
, ~10!

which degenerates into the tight-binding model@6#

i
dcn,a

dt
5v̂0,acn,a1v̂1,a~cn21,a1cn11,a!

1sW1111
nnnnucn,au2cn,a , ~11!

if one restricts consideration to banda only. Note that within
the single-band approximation, Eq.~11! can be generalized
by including next nearest neighbor overlapping terms fr
Eq. ~8!, thus leading to the mixing of on-site and intersi
nonlinearities of the same type as in the model introduce
Ref. @13#. It should also be mentioned that the coefficien
Waa1a2a3

nnnn in Eq. ~10! are independentof n.

~iii ! In the general case, however, single-band descripti
can become inadequate~see below! due to resonant interban
interactions induced by nonlinearity~this is quite different
from linear solid state physics where interband transitio
are usually induced by external forces!. In this case Eq.~10!
can be further simplified by supposing that the periodic p
tential depends on some parametere: V(x)[Ve(x), such
that v̂1,a[v̂1,a(e)5O(e) whene→0. After the transforma-
tion cn,a(t)5exp$iv̂0,at%c̃n,a(t) one arrives at the equatio
for c̃n,a with explicit dependence ont in the nonlinear terms
in the form of oscillating exponents exp@i(v̂0,a1v̂0,a1

2v̂0,a2
2v̂0,a3

)t#. Let also c̃n,a(0) be small enough. Then

on the time scale 1/e these exponents are rapidly oscillatin
8-2
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unless a5a2 ,a15a3 or a5a3 ,a15a2. Then, denoting
Waa1aa1

nnnn [Waa1
~the coefficientsWaa1

do not depend onn

and describe interband interactions!, and using time averag
ing techniques@15#, one can reduce the lattice equation~10!
to the form

i
dc̃n,a

dt
5v̂1,a~ c̃n21,a1 c̃n11,a!1s(

a1

Waa1
uc̃n,a1

u2c̃n,a .

~12!

This is a vector DNLS equation with coupling betwe
bands of the cross phase modulation type@16,17#. To inves-
tigate ILM solutions in the Wannier representation we c
restrict to the scalar case described by Eq.~11! for which
construction of ILM’s is well established@7#. ILM’s with
multiple components ofc̃n,a populated can also be con
structed~see below!.

Several comments about the above assumptions are i
der. First, the latter imply that the procedure of reduction
the NLS with periodic coefficients to a lattice is a multist
process, and thus different lattices will appear for differe
regions of the parameters. Second, for the reduction to
consistent, the parameters of the problem must provide
with a small parameter. Thus the largest of the quanti
v̂n,a /v̂1,a (n.1) andWaa1a2a3

nn1n2n3 /Waa1a2a3

nnnn (njÞn) will de-

fine this small parameter of the problem. This, in particu
means that simplification of the lattice equation, and he
the reasoning for the reduction to a lattice model, are~poten-
tially! not always available for all parametric regimes, a
must be verified for each model.

In the present paper we study the validity of the abo
assumptions for Eq.~1! with the potentialV(x)5A cos(2x)
~which corresponds to the typical experimental setting
BEC in optical lattices@2#!. In this case Eq.~2! is the
Mathieu equation. The lowest band gaps of its spectrum
shown in Fig. 1 for three values of the potential amplitud
A521, A525, andA5215, taken as representative e
amples of low, moderate, and high potential barriers, resp
tively ~although not reported here, intermediate values oA
were also considered!. We remark that for very large poten
tial amplitudes, difficulties in numerical studies usually ar
because of the very small width of the allowed bands@c.f.
Figs. 1~a! and 1 ~c!#. This case, however, allows a rath
complete and satisfactory asymptotic analysis~see below!.

Next, Table I shows the coefficientsv̂n,a for the same
three lowest energy bands. Our numerical investigations
alized for various values ofA, show that the greateruAu is,
the better the linear part obeys the nearest neighbor app
mation, which is intuitively expected since the probability
tunneling between neighbor potential wells decreases w
the amplitude of the potential. At the same time, ifA is fixed,
the coefficientsv̂n,a , n50,61, . . . decay faster for lower
bandsa. The results illustrate, that the nearest neighbor
proximation works for all three potential amplitudes, wh
the averaging resulting in~12! is applicable forA5215 and
even forA525, but not forA521. The reason is that in
the latter case the frequencies of oscillating exponents in~iii !
are of the order ofv1,a .
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Moving to assumption~ii !, let us introduce the following
notation. We denote byNa,m

n (D), the number of coefficients
Waa1a2a3

0n1n2n3 , uni u<n, a j<m, i , j 51,2,3 ~the coefficients with

permuted indices are regarded as different! such that
uWaa1a2a3

0n1n2n3 u.D. As it is clear,D plays the role of the smal

parameter of the second condition, andNa,m
n (D) gives the

number of sites/zones necessary to take into account
maintaining the given accuracy. In the cases of the am
tudesA521 andA5215 we have obtained thatN1,1

n (0.1)
5N1,1

n (0.01)51 for n51, . . . ,5. For N1,m
n (0.1) and

N1,m
n (0.01), see Table II.
Table III presents the overlapping coefficientsWaa1

for
three values of the amplitude of the cosinelike potential.

FIG. 1. The energy band structure~given by the solid lines! of
the potentialV5A cos(2x) for three different values of the ampli
tude~a! A521, ~b! A525, and~c! A5215 ~in the last case the
first three allowed bands appear to be very narrow:@29.787,
29785#, @0.012,0.073#, and @8.123,8.846#). Dashed lines in each
picture show positions of the frequencies of the localized soluti
analyzed in Table IV and those represented in Fig. 2.
8-3
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TABLE I. The first five Fourier coefficientsv̂na of the lowest energy bands for three values of t
amplitude potential.

A521 A525 A5215

n a51 a52 a53 a51 a52 a53 a51 a52 a53

0 0.1305 2.4657 6.3604 22.1152 2.9389 7.0721 29.7862 0.0421 8.4659
1 20.1428 0.5426 21.0067 20.0192 0.2435 0.7939 20.0005 0.0151 20.1798
2 0.0204 0.0784 0.0529 0.0002 0.0263 0.1094 0.0000 0.0001 0.0
3 20.0048 0.0481 20.1107 20.0000 0.0052 0.0625 20.0000 0.0000 20.0008
4 0.0014 0.0225 0.0140 0.0000 0.0012 0.0290 0.0000 0.0000 0.0
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It follows from Tables II and III that, in general,one can-
not neglect the contribution of the WF of the highest zon.
However, one can show that the model~11! can be success
fully used to describe bright monochromatic ground st
solutions of~1! of the form c(t,x)5eivtu(x). To this end,
we present in Table IV the first coefficients of the expans
of the exact~numerical! solution of Eq.~1! for the cases of
potential amplitudes considered above, and for typical val
of soliton frequencies inside the forbidden bands.

It follows from the data shown in Table IV that the tigh
binding model is not applicable for the case of small amp
tudes of the potential: forA521 one has to take into ac
count at least five WF’s corresponding to the first Brillou
zone~from c0,1 till c3,1), while contribution of higher zones
described bycn,a with different indexa, can be neglected
Notice that by increasing the potential amplitude, there i
more significant contribution of the upper zones and a re
tively accurate description of the soliton in terms of t
WF’s. Indeed, already forA525 ~and the same forA
5215), the leading order coefficientc0,1 is ten times bigger
than any other coefficient of the expansion, the next o
~with respect to the magnitude! being c0,3, i.e., the coeffi-
cient of the WF belonging to the same site, but to the th
zone. In this case the solution can be identified as aWannier
soliton, i.e., a solitary wave solution which is described, w
high accuracy, by a single WF.

In Fig. 2 we provide comparison among exact, lattice, a
tight-binding solutions for the case ofA525. The two pan-
els show the cases ofv521.5 ~left panels! and v51.5

TABLE II. The valuesNa,m
n (D).

A n N1,2
n (0.1) N1,2

n (0.01) N1,3
n (0.1) N1,3

n (0.01)

21 0 4 4 7 13
1 4 48 7 219
2 4 54 7 249

3,4 4 60 7 303
5 4 60 7 339

25 0 4 4 10 14
1 4 10 10 62
2 4 10 10 74

325 4 10 10 86
215 0 4 4 13 14

125 4 4 13 26
04660
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~right panels! for s51. The top panels show the compariso
of the exact solution~shown by solid line! of Eq. ~1! with the
reconstructed profile obtained from solving Eq.~12! and us-
ing Eq. ~7!. The relevant profiles in the tight-binding ap
proximation are shown by a dashed line, while in the rig
panel ~where the one-band approximation is less accura!,
the three-band approximation is also shown by dash-do
line. The bottom panels show in a semilog plot the squ
modulus of the configurations of the top panels as well
additionally, by the dotted line, the result of time evolutio
~for t'50) of Eq. ~1! with the tight-binding approximation
as the initial condition of the simulation. One can straig
forwardly observe that the approximate solution ‘‘reshape
itself into the exact solution~possibly shedding some ver
small amplitude radiation wakes in the process!. This dem-
onstrates that the method can be used very efficiently to c
struct~approximate! solutions of the original partial differen
tial equation, by using the lattice reduction in the W
representation.

Let us return now to the requirement~iii ! and argue that
choosing the small parameter ase5uAu21 one can provide
the averaging of Eq.~1! in the limit A→2`. Namely, we
claim the following.

~a! If a is fixed andA→2`, then

v̂0,a;A1~2a21!A2A1@~2a21!211#/8.

If A is fixed thenv̂0,a tends to infinity asa grows.
~b! If a is fixed then the valuev̂1,a tends to zero faste

than any power of 1/uAu; at the same time ifA is fixed then
v̂1,a tends to infinity asa grows.

~c! If a is fixed andA→2` the Wannier functions can b
approximated by the formula

w0,a~x!'
~2uAu!1/8

p1/4A2a21~a21!!
e2AuAu/2x2

Ha21@~2uAu!1/4x#,

TABLE III. Overlapping coefficientsWaa1
.

A W11 W22 W33 W12 W13 W23

21 0.375 0.240 0.173 0.182 0.152 0.14
25 0.648 0.398 0.279 0.270 0.162 0.21
215 0.892 0.623 0.473 0.417 0.262 0.32
8-4
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TABLE IV. The expansion coefficientscn,a of exact ~numerical! solutions of the NLS~1! with the
potentialV5A cos(2x).

a n50 n51 n52 n53 n54 n55 n56

A521 1 0.809 20.526 0.289 20.158 0.088 20.049 0.027
v50.6 2 0.000 0.023 20.014 0.009 20.003 0.002 0.000

3 20.013 0.000 0.000 20.001 0.000 0.000 0.000
A525 1 1.895 20.023 20.001 0.000 0.000 0.000 0.000
v50 2 0.000 0.056 0.004 0.001 0.000 0.000 0.00

3 20.149 20.023 20.003 0.000 0.001 0.001 20.001
A5215 1 2.948 0.000 0.001 0.000 0.000 0.000 0.00
v523 2 0.000 0.008 0.001 0.000 0.000 0.000 0.00

3 20.385 0.002 20.001 0.000 0.000 0.000 0.000
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whereHk(y) are Hermite polynomials. This is a natural co
sequence of the fact that for sufficiently low levels the p
tential can be well approximated by the parabolic one.

~d! The coefficientsWaa1a2a3

nn1n2n3 with different n, n1 , n2,

and n3 tend to zero asA→2` and at the same time
Waa1a2a3

nnnn 'Kaa1a2a3
uAu1/4, whereKa,a1 ,a2 ,a3

do not depend

on A and can be expressed explicitly through the integrals
products of Hermite polynomials@14#.

Taking into account~a!–~d!, making the substitution
cn,a(t)5eiv0,atuAu21/8c̃n,a(t), and averaging over rapid os
cillations, one arrives at Eq.~12! with Waa1

5Kaa1aa1
.

FIG. 2. Comparison of the lattice reconstructed solution in
tight-binding ~dashed line! and the three-band~dash-dotted line!
approximation with the exact solution~solid line!. The comparison
is performed forA525 andv521.5 ~left panels! and A525,
v51.5 ~right panels!. The positions of both frequencies with re
spect to gap edges are shown in Fig. 1~b!. In the bottom~semilog!
panels additionally the result of dynamical time evolution of t
tight-binding approximation is shown by the dotted line. The lat
can be seen to approach, as time evolves~the shown snapshots ar
for t'50), the shape of the exact solution~in the left panel it can
actually not be distinguished from it! and to match its asymptotics
possibly shedding small wakes of low amplitude wave radiation
the process~see, e.g., the bottom right panel!.
04660
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To conclude, we have shown how to derive lattice mod
which approximate efficiently nonlinear partial differenti
equations with periodic coefficients. This analysis gives
possibility to control the validity of the tight-binding ap
proximation. In particular, we have shown that in a lar
region of parameter space, for the cosinelike potential,
cannot restrict consideration to the lowest band. This is
to interband transitions originating from the nonlinearity@a
situation very different from that known in~linear! solid-
state physics, where the interband transitions occur du
the effect of perturbations#. However, there exist paramete
ranges where with reasonably high accuracy the atomic w
function ~that is a bright gap soliton of the one-dimension
NLS equation! is approximated by a single WF. Such a sta
will form a ‘‘Wannier soliton’’ that should also be experi
mentally observable. It should be highlighted that the use
the WF basis allows one to test, extend, and improve
tight-binding approximation, in acontrollableandsystematic
fashion by accounting for higher-order terms in the Wann
expansion. Moreover, there is a computational gain wh
computing with a discrete system with respect to the co
sponding cost for a much finer mesh~needed to resolve the
original continuous system!. While this gain may not be
overly significant in one dimension, it may prove quite us
ful in tackling higher-dimensional problems.

It should be stressed that even though developed fo
specific, physically relevant~to optical lattices in BEC! set-
ting, the approach presented here isvery generalanddirectly
applicable to numerous other physical problems includin
the description of solitary wave propagation through on
dimensional photonic crystals@18#, chemical reactions on
periodic catalytic substrates@19#, or even population dynam
ics on appropriately heterogeneous substrates@20#.
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