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Prediction of Hybridization and Melting for Double-Stranded Nucleic Acids

Roumen A. Dimitrov and Michael Zuker
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180

ABSTRACT This article presents a general statistical mechanical approach to describe self-folding together with the hybrid-
ization between a pair of finite length DNA or RNA molecules. The model takes into account the entire ensemble of single- and
double-stranded species in solution and their mole fractions at different temperatures. The folding and hybridization models deal
with matched pairs, mismatches, symmetric and asymmetric interior loops, bulges, and single-base stacking that might exist at
duplex ends or at the ends of helices. All possible conformations of the single- and double-stranded species are explored. Only
intermolecular basepairs are considered in duplexes at this stage. In particular we focus on the role of stacking between
neighboring nucleotide residues of single unfolded strands as an important source of enthalpy change on helix formation which
has not been modeled computationally thus far. Changes in the states of the single strands with temperature are shown to lead
to a larger heat effect at higher temperature. An important consequence of this is that predictions of enthalpies, which are based
on databases of nearest-neighbor energy parameters determined for molecules or duplexes with lower melting temperatures
compared with the melting temperatures of the oligos for which they are used as a predictive tool, will be underestimated.

INTRODUCTION

Now that the Human Genome Project has provided us with

a catalog of tens of thousands of genes in a variety of or-

ganisms, an important problem is to develop appropriate

tools to understand and use this information. In particular,

biological processes such as DNA replication, transcription,

translation, mutation, and repair are of great importance.

These processes form the basis of recently developed bio-

logical techniques, such as DNA and RNA chip technologies

(Seetharaman et al., 2001; Shoemaker et al., 2001), PCR,

sequencing by hybridization, and gene diagnostics, includ-

ing SNP detection. These technologies require accurate pre-

diction of hybridization thermodynamics to matched versus

mismatched sites. The statistical thermodynamic theory of

DNA/RNA hybridization has been well understood for

a number of years (Zimm, 1960; Poland, 1974). However,

despite the fact that a half century has passed since the

discovery of the structure of the DNA double helix, major

questions still remain regarding its thermodynamic behavior

and stability. Thus, the parameters that determine the co-

operativity of melting have been difficult to measure and

also, it has been difficult to test some basic theoretical as-

sumptions such as the justification of the Jacobson-Stock-

mayer loop-weighting function, the nearest-neighbor model

for the interaction between nucleotides, and the role of heat

capacity changes, DCp, volume changes, DV, and compress-

ibility changes, DKs that accompany nucleic acid conforma-

tional transitions.

We have observed that in current theoretical treatments of

DNA or RNA melting, little attention has been paid to the

effects of concentrations of different conformational species

in the solution to the overall equilibrium (Applequist and

Damle, 1963). It is well known that melting of oligomeric

DNA or RNA molecules is typically complicated by coupled

equilibria between the different conformational species.

Thus, the melting transitions of mono-molecular hairpins

would be expected to be concentration independent, whereas

double- or multiple-stranded complexes should melt at

higher temperatures when strand concentration is increased.

Over the past two decades, the structure and the conforma-

tional flexibility of several specially designed and synthe-

sized oligonucleotides have been characterized (Breslauer

et al., 1975; Albergo et al., 1981; Gralla and Crothers, 1973;

Early et al., 1981). The goal of such studies has been to

develop an understanding of the molecular forces that

control the various sequence and solvent specific conforma-

tional forms found within DNA and RNA polymers.

Melting experiments have been the most useful way to

measure the stabilities of RNA and DNA structures under

different conditions. Thermodynamic parameters are easy to

extract from UV absorbance versus temperature curves of

simple RNA or DNA secondary structures, duplexes or hair-

pins, that melt in a single, two-state transition. Comparisons

of RNAs and DNAs with different basepairs, loop se-

quences, bulges, etc. have yielded an extremely useful

database from which the stabilities of larger structures can be

estimated (Freier et al., 1983; Sugimoto et al., 1987; Hickey

and Turner, 1985; Puglisi and Tinoco, 1989; Blake, 1972).

The idea behind the experiments on such short model

oligomers is that small but specific structural changes, such

as loops, bulges, dangling ends, etc., can be detected by

changes in the chemical potential.

The estimation of these parameters is based on nearest-

neighbor approximations for inter-residue interactions

(Borer et al., 1974). The major assumption is that the

stability of a basepair is dependent only on the identity of

Submitted December 4, 2002, and accepted for publication June 5, 2003.

Address reprint requests to Michael Zuker, Dept. of Mathematical Sciences,

Rensselaer Polytechnic Institute, Troy, NY 12180. Tel.: 518-276-6902;

Fax: 518-276-4824; E-mail: zukerm@rpi.edu.

� 2004 by the Biophysical Society

0006-3495/04/07/215/12 $2.00 doi: 10.1529/biophysj.103.020743



adjacent basepairs because the major interactions involved

in transformation between different conformations of the

polynucleotide sequence are stacking and hydrogen bonding.

Both are short-range interactions. SantaLucia has published

a detailed article comparing the nearest-neighbor parameters

from seven different laboratories based on data from natural

polymers, synthetic polymers, oligonucleotide dumbbells,

and oligonucleotide duplexes (SantaLucia, 1998). The an-

alysis shows that the data are in very good agreement.

There have been several major improvements in the

calculation of the partition function for a single-stranded

species based on the McCaskill algorithm (McCaskill, 1990;

Hofacker et al., 1994; Matzura and Wennborg, 1996) or

estimation of the free energy based on free energy min-

imization and the corresponding sub-ensemble around the

minimum free energy conformation (Sankoff et al., 1983;

Zuker and Sankoff, 1984; Zuker and Stiegler, 1981; Zuker,

1989a; Williams and Tinoco, 1986; Waterman, 1983;

Waterman and Byers, 1985; Zuker, 1989b). For more details

about current energy rules and free energy minimization, see

the article by Zuker et al. (1999). In this work, our primary

applications are to relatively small oligonucleotide se-

quences, which makes appropriate the use of certain sim-

plifications. For dimer formations, we have ignored the

possibility of intramolecular basepairs. For single-stranded

species, we have used the minimum free energy computed

using the ‘‘nafold’’ program in the ‘‘mfold’’ package by

Zuker et al. (1999). A new and more robust software package

is being prepared to replace the initial development programs

used for calculations in this work. This new software uses

our own version of partition function calculations for single-

stranded species (McCaskill, 1990; Hofacker et al., 1994).

Our primary aim in this article is to develop the statistical

mechanical formalism appropriate to hybridization processes

between finite length DNA and RNA sequences that takes

into account the whole ensemble of single- and double-

strand species in solution and the exchange of material

between them. In particular, we focus also on the role of

stacking between neighboring nucleotide residues of single

strands as an important source of enthalpy change on helix

formation (Poerschke et al., 1973). Thus, each oligomer has

a stacked-unstacked transition that is superimposed upon the

helix-coil transition. Therefore we should expect that the

measured enthalpy for the helix-single strand transition will

be less at low temperatures where the nearest-neighbor

nucleotide residues in the single strands are partially stacked

than at very high temperatures where the nearest-neighbor

nucleotide residues are totally unstacked. Currently, the

thermodynamic analysis of hybridization processes is based

on Poland’s method and its modifications (Poland, 1974;

Fixman and Freire, 1977; Poland, 1981). This method can

deal only with nearest-neighbor stacking between two

strands of RNA or DNA. It can also handle symmetric

internal loops caused by strand separation. However,

Poland’s method does not take into account the terminal

mismatch stacking and no intrastrand basepairs are allowed.

On the other hand, the folding model that we will develop

here deals with matches, mismatches, symmetric and

asymmetric interior loops, bulges, and single-base stacking

that might exist at the ends. In addition, our model takes into

account the whole ensemble of single- and double-stranded

species in solution and the exchange of material between

them. This leads to a statistical thermodynamic description

of both self-folding and hybridization of RNA or DNA

sequences. The only drawback is that whereas the time

complexity of the Poland algorithm is Oðn2Þ and its im-

provement based on the Fixman and Freire approximation

is O(n), ours is Oðn3Þ. However, when a limitation for loop

length is applied, we go from Oðn3Þ to Oðn2Þ. We also have

developed a set of computer programs that aid in the analysis

of RNA or DNA melting with multiple unfolding transitions.

The programs can simulate both UV hyperchromicity and

scanning calorimetry melting curves by summing computed

pairing probabilities multiplied by measured extinction

coefficients and by numerical differentiation of the computed

Gibbs free energy, respectively.

METHODS

Statistical ensemble of species

An initial mass of N0
A and N0

B molecules of polynucleotide sequences A and

B are added to a physiological solution at a given volume V and temperature

T. It is assumed that the solution is sufficiently dilute so that the average

distance between the molecules, ðV=N0
A1N0

BÞ1=3, is greater than the

intermolecular distance necessary for each molecule to explore all possible

conformations without overlapping with other molecules and bigger than the

range of forces acting between the molecules. The molecules N0
A and N0

B are

allowed to form chemical species in terms of hybridizations between all

possible pairs; two homo-dimers, AA and BB, and the single hetero-dimer,

AB. Based on the above assumptions, the solution can be described as an

ensemble of ideally mixed species such as single-folded strands NAF and

NBF, single-unfolded strands NAU and NBU as well as the double-stranded

hybridized forms of all possible pair combinations between the poly-

nucleotide sequences NAA, NBB, and NAB. The species are characterized by

their corresponding ensembles of possible conformational states. Letting

NA ¼ NAF1NAU and NB ¼ NBF1NBU, the partition function for such

a system at a given temperature T, volume V, and all possible distributions of

the initial material N0
A and N0

B between the corresponding species

NA;NB;NAA;NBB;NAB is computed as (Kubo, 1965):

Z ¼ +
NA ;NB;NAA ;NBB ;NAB

N
0

A!N
0

B!

NA!NB!NAA!NBB!NAB!

ðZAÞNAðZBÞNBðZAAÞNAAðZBBÞNBBðZABÞNAB ; (1)

where the ZA, ZB, ZAA, ZAB, and ZBB are the partition functions for the

corresponding species. The partition functions of the single-stranded species

have the forms:

ZA ¼ 11 exp �FAF

RT

� �
(2)

ZB ¼ 11 exp �FBF

RT

� �
; (3)
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where FAF ¼ �RT ln½ZAF� and FBF ¼ �RT ln½ZBF�, and ZAF and ZBF are the
partition functions of the corresponding self-folded species AF and BF. The

‘‘1’’ in Eqs. 2 and 3 pertains to the fact that by definition, a folded state must

contain at least one basepair, whereas ZA and ZB include the unfolded states.

The free energies FAU and FBU of the unfolded species AU and BU have

been set to 0.

Taking into account that the free energy of a closed system at constant

temperature, volume and pressure tends toward a minimum (Landau and

Lifshitz, 1969) the equilibrium distributions of NA;NB;NAA;NBB, and NAB

are determined by the minimization of the free energy under the constraints

that

NAB ¼ N0

A � 2NAA � NA ¼ N0

B � 2NBB � NB: (4)

The minimum of the free energy can be easily determined if we take into

account that the sum in Eq. 1 is dominated by its largest term, determined by

setting to zero the first variation with respect to the concentrations of the

species. As a result we obtain:

2dNAA 1 dNA 1 dNAB ¼ 0 (5)

2dNBB 1 dNB 1 dNAB ¼ 0 (6)

d ln ZðNA;NB;NAA;NBB;NABÞ ¼ 0; (7)

where

ZðNA;NB;NAA;NBB;NABÞ ¼ N
0

A!N
0

B!

NA!NB!NAA!NBB!NAB!

3 ðZAÞNAðZBÞNBðZAAÞNAAðZBBÞNBBðZABÞNAB : (8)

The above variational equations lead to the following relations that control

the exchange of material between the different species:

ZAA

Z
2

A

¼ NAA

N
2

A

¼ KA

ZBB

Z
2

B

¼ NBB

N
2

B

¼ KB

ZAB

ZAZB

¼ NAB

NANB

¼ KAB; (9)

where KA, KB, and KAB denote the corresponding chemical equilibrium

constants.

These relations lead to the following system of nonlinear equations for

the species concentrations:

2KAðNAÞ21NAð11NBKABÞ � N0

A ¼ 0

2KBðNBÞ2 1NBð11NAKABÞ � N
0

B ¼ 0

NAA ¼ KAðNAÞ2;
NBB ¼ KBðNBÞ2

NAB ¼ N
0

A � 2NAA � NA

NAB ¼ N
0

B � 2NBB � NB:

(10)

Given the KA, KB, KAB, N
0
A, and N

0
B the first two equations can be solved

with respect to NA and NB using, for example, Newton’s method for solving

two nonlinear functions. Replacing NA and NB in the rest of the equations,

NAA, NBB and NAB are determined straightforwardly. Finally, taking into

account that NA ¼ NAF 1NAU and NB ¼ NBF 1NBU we have:

NAF ¼NA

exp �FAF

RT

� �

11exp �FAF

RT

� � ; NAU ¼NA

1

11exp �FAF

RT

� � ;

NBF ¼NB

exp �FBF

RT

� �

11exp �FBF

RT

� � and

NBU ¼NB

1

11exp �FBF

RT

� � : ð11Þ

The chemical potentials of the species can be obtained by differentiating

the free energy �RT ln½ZðNA;NB;NAA;NBB;NABÞ� with respect to the

concentrations of their corresponding molecules. Thus we have:

mA ¼�RT
@ ln½ZðNA;NB;NAA;NBB;NABÞ�

@NA

¼�RT ln½ZðNAÞ�1RT ln
NA

N
0

A

� �
(12)

mB ¼�RT
@ ln½ZðNA;NB;NAA;NBB;NABÞ�

@NB

¼�RT ln½ZðNBÞ�1RT ln
NB

N0

B

� �
(13)

mAA ¼�RT
@ ln½ZðNA;NB;NAA;NBB;NABÞ�

@NAA

¼�RT ln½ZðNAAÞ�1RT ln
NAA

ðN0

AÞ2
" #

(14)

mBB ¼�RT
@ ln½ZðNA;NB;NAA;NBB;NABÞ�

@NBB

¼�RT ln½ZðNBBÞ�1RT ln
NBB

ðN0

BÞ2
" #

(15)

mAB ¼�RT
@ ln½ZðNA;NB;NAA;NBB;NABÞ�

@NAB

¼�RT ln½ZðNABÞ�1RT ln
NAB

N
0

AN
0

B

� �
: (16)

Finally, the free energy of the whole ensemble of species can be

represented in the form (Landau and Lifshitz, 1969):

F¼mANA1mBNB1mAANAA1mBBNBB1mABNAB: (17)

Extinction coefficients and melting curves

The transition between folded and unfolded structures, as well as the partial

forms of their conformational intermediates, can be monitored as a function
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of the temperature by any physical property that is dependent on the

number and type of basepairs formed. Fortunately, the absorption spectra

as well as thermodynamics are physical properties that are consistent with

the nearest-neighbor models (Puglisi and Tinoco, 1989; Blake, 1972;

Petersheim and Turner, 1983). In other words, given nearest neighbors

must have identical values of their absorptions or melting free energies

regardless of their position in the interior or at the ends of the sequence.

Thus, the property being monitored as a function of the temperature is

proportional to the fraction of basepairs that are stacked as a nucleic acid

molecule or duplex is melted. In this article we do not restrict ourselves to

the case of two-state transitions where there are only two types of

conformational species as the temperature changes: fully folded and fully

unfolded. Rather, we consider the ensemble of all possible intermediate

states, thus yielding the most detailed possible picture of the melting

process between the folded and unfolded states of the single and double-

stranded forms. The task we are going to solve can be formulated as

follows in the next paragraph.

As a result of interconversions between the single and double-

stranded forms at each temperature, there is an equilibrium between the

different conformational species; single-stranded A, single-stranded B,

double-stranded AA, double-stranded BB, and double-stranded AB. Each

of these forms is characterized with an ensemble of conformational states

where each conformation is characterized by the fraction of its basepairs

and their location along the sequences that are melted at any given

temperature. Thus, along the sequence(s) we have alternating loops,

single-stranded regions, and double-stranded regions. The locations and

the lengths of these portions depend on their relative Boltzmann

statistical weights. We set the double-stranded forms as our zero level

from which the contribution of the melted single-stranded forms should

be counted. This assumption is rather convenient; experiments have

shown that the contribution from the double-stranded forms is ;75%

from that of the melted single forms (Bloomfield et al., 2000). With this

approximation, the absorption of the ensemble of all possible

conformational species, taking into account their interconversions and

their own ensemble of conformational changes, can be represented in the

following form:

eðTÞ ¼ ½AU�ðTÞeAUðTÞ1 ½AF�ðTÞeAFðTÞ1 ½BU�ðTÞeBUðTÞ
1 ½BF�ðTÞeBFðTÞ1 ½AA�ðTÞeAAðTÞ1 ½BB�ðTÞeBBðTÞ
1 ½AB�ðTÞeABðTÞ; (18)

where e(T ) is the extinction of the ensemble of all possible species as

a function of temperature, T; eiðTÞ for i running among all the different

species represent the species extinctions as a function of temperature; and

[AU](T ), [AF](T ), [BU](T ), [BF](T ), [AA](T ), [BB](T ), and [AB](T )

represent the mole fractions of the corresponding species as a function of the

temperature which are calculated as described above. We will focus now on

the extinctions of the species eiðTÞ: First we should take into account that the
extinction is determined by the contribution of the melted or mismatch loop

regions along the constituent sequences of the double-stranded species

(Bloomfield et al., 2000). At each given temperature there is an ensemble of

conformations with a narrow or broad distribution of such loops. The

contribution of each of them is proportional to its relative Boltzmann

statistical weight. It follows from here that the extinction for the AB species,

for example, can be represented in the form eABðTÞ ¼ eAðTÞ1eBðTÞ, where
the contributions from sequences A and B are as follows

eAðT; iÞ ¼ +
LA�1

i¼1

2ð1�PAðiÞ�PAði11Þ

1PAði; i11ÞÞjAði; i11Þ� +
LA�1

i¼1

ð1�PAðiÞÞjAðiÞ;

(19)

eBðT; iÞ ¼ +
LB�1

i¼1

2ð1�PBðiÞ�PBði11Þ

1PBði; i11ÞÞjBði; i11Þ� +
LB�1

i¼1

ð1�PBðiÞÞjBðiÞ:

(20)

Here LA and LB stand for the lengths of the nucleic acid A and B, and j is

for extinction coefficients of single bases (one argument) or (by a slight

abuse of notation) for dinucleotides (two arguments). P1ðiÞ and P1ði; i1 1Þ
are the probabilities that an arbitrary single fig, fi1 1g or double fi, i1 1g
nearest-neighbor positions along the sequence 1 forms basepairs with the

sequence 2 and vice versa. Using these probabilities we can express the

probabilities that two closest along the sequence A or B nucleotides with

positions i and i1 1 are melted (giving a contribution j(i, i1 1) to the total

absorbance) as 1� PAðiÞ � PAði1 1Þ1PAði; i1 1Þ and 1� PBðiÞ�
PBði1 1Þ1PBði; i1 1Þ, respectively.

Heat capacity and melting

With increasing temperature, the overwhelming majority of the single and

double-stranded species conformations tend toward their corresponding

unfolded states, as reflected by the large enthalpy and entropy gain

associated with base pairing disruption and loop formation. The relative

changes of the species concentration, which reflect the structural changes of

the melting process, have a nonlinear character as shown by the mass

equations derived above. This makes the analysis of the melting process

rather complicated. Differential scanning calorimetry (DSC) is a widely used

tool for investigating the conformational changes in the melting process

(Breslauer et al., 1992; Sturtevant, 1987). It measures the difference in heat

or the heat capacity required to raise the temperature of the solution. The

advantage of this method is that thermodynamic parameters such as

enthalpy, H, entropy, S and free energy, F ¼ E � TS 1 PV, which can be

obtained in this way, do not depend on a theoretical model for the underlying

conformational changes occurring in the melting material. Usually in the

melting experiments the change in V is negligible, so the term PV is constant

and the free energy is estimated from F ¼ E � TS, and the enthalpy H is

equivalent to the internal energy E. From statistical thermodynamics it is

well known that the heat capacity, Cp, is derived from the second derivative

of the free energy, F, with respect to the temperature T.

F¼+
i

miNi (21)

H¼ E¼F�T
@F

@T

� �
p

(22)

Cp ¼ @H

@T

� �
p

¼ @E

@T

� �
p

¼�T
@
2
F

@T
2

� �
p

: (23)

The summation over i includes all possible different species in the

solution. One still has to make the above calculations for varying

temperatures over the desired range. To compute H and Cp for a particular

temperature Tk an approach based on the derivation made by the ‘‘Vienna

group’’ is used (Hofacker et al., 1994). A least-squares parabola is fitted to F

at 2m 1 1 points: Tk�m; . . . ; Tk; . . . ;Tk1m. The second derivative of this

polynomial is the estimate used for the second derivative of Fwith respect to

a temperature Tk.

Recursive calculation

Partition function

In any statistical thermodynamic model, all the thermodynamic information

is contained in the partition function under consideration
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Z¼+
i

exp � Fi

RT

� �
; (24)

where Fi is the free energy of the ith state of the system. In our model, we

wish to calculate the species partition functions, ZA, ZB, ZAA, ZBB, ZAB, ZAF,
and ZBF that determine the thermodynamic properties of the single-stranded

species NA, NB, and the double-stranded species NAA, NBB, and NAB of the

polynucleotide molecules A and B.

The polynucleotide sequences of the double-stranded forms are described

as follows. The sequence for A is represented by S1 ¼ r11; r12; r13; . . . ;

r1i; . . . r1N1
and sequence B is represented by S2 ¼ r21; r22; r23; . . . r2j; . . .

r2N2
, where N1 and N2 stand for their corresponding lengths and r1i and r2j

are the sequence coordinates of the corresponding nucleotides of sequences

1 and 2. In this article we will use some simplification concerning possible

conformational states of the hybrid form AB. Thus, hybridization will

account only for stacked pairs, interior loops, bulges, and, at the ends,

dangling bases. At this stage, we do not consider intramolecular basepairs.

Stacking between the loop regions of sequence 1 and sequence 2 are also not

considered (Fig. 1).

As described by Mathews et al. (1999), Doktycz et al. (1990), Blommers

et al. (1989), LeBlanc and Morden (1991), Zieba et al. (1991), and Zuker

et al. (1999), the energy rules allow us to ascribe to each stacked pair an

energy dependent only on pairs under consideration and their nearest

neighbors. The recursion calculation is based on the condition that there are

at least two nucleotides along sequences S1 and S2 that are in contact. A

contact, or basepair, is denoted by r1i � r2j for 1# i#N1; 1# j#N2.

Sequence enumeration is always from 59 to 39. The contact r1i � r2j includes
an initiation free-energy term necessary to bring the two sequences together

Finitiation. Each nucleotide pair, r1i � r2j, formally divides the hybridized

form S1S2 of sequences 1 and 2 into two parts; left, L and right, R, in such

way that the free energy, FðS1S2Þ, of S1S2 is a sum of the free energies of the

left FLðr1i; r2jÞand right FRðr1i; r2jÞ parts plus the initiation free energy

Finitiation which is assumed to be the same for all possible pairs r1i � r2j.

Thus,

FðS1S2Þ ¼ FLðr1i;r2jÞ1FRðr1i;r2jÞ1F
initiation

: (25)

This additive property of the energy rules based on nearest neighbor

approximation forms the basis of the recursion calculations of the partition

function S1S2. The additivity of the free energy leads to a multiplication of

the partition functions of the left, ZL and right, ZR, parts. Therefore, the
recursions for the partition functions of the left and right parts are:

ZLðr1i;r2jÞ ¼ ZL
openðr1i;r2jÞZLdanglingðr1i;r2jÞ

1 +
i\k#N1

+
1#l\j

ZLðr1k;r2lÞ

3exp �Fðr1k;r2l;r1i;r2jÞ
RT

� �
(26)

ZRðr1i;r2jÞ ¼ ZR
openðr1i;r2jÞZRdanglingðr1i;r2jÞ

1 +
1#k\i

+
j\l#N2

ZRðr1k;r2lÞ

3exp �Fðr1k;r2l;r1i;r2jÞ
RT

� �
(27)

ZL
danglingðr1i;r2jÞ ¼ 11exp �Fðr1ði11Þ;r1i;r2jÞ

RT

� �

1exp �Fðr2ðj�1Þ;r1i;r2jÞ
RT

� �

1exp �Fðr1ði11Þ;r1i;r2jÞ1Fðr2ðj�1Þ;r1i;r2jÞ
RT

� �
(28)

ZR
danglingðr1i;r2jÞ ¼ 11exp �Fðr1ði�1Þ;r1i;r2jÞ

RT

� �

1exp �Fðr2ðj11Þ;r1i;r2jÞ
RT

� �

1exp �Fðr1ði�1Þ;r1i;r2jÞ1Fðr2ðj11Þ;r1i;r2jÞ
RT

� �
: (29)

Here ZLopenðr1i; r2jÞ and ZRopenðr1i; r2jÞ correspond to cases where only

the r1i � r2j pair is formed in the left and right parts, respectively; whereas

ZLdanglingðr1i; r2jÞ and ZRdanglingðr1i; r2jÞ correspond to the dangling free

energies of the tails of sequence 1 and 2. The dangling free energies take into

account the ensemble of all possible stackings between the nucleotides

adjacent to the r1i � r2j pair. When jk � ij ¼ 1 and jl� jj ¼ 1 the free

energyFðr1k; r2l; r1i; r2jÞ represents a stacked pair that belongs to a secondary
structure, when jk � ij[1 and jl� jj ¼ 1 or jk � ij ¼ 1 and jl� jj[1 we

have a bulge. In general when jk � ij 6¼ jl� jj, the free energy,

Fðr1k; r2l; r1i; r2jÞ, represents an asymmetric internal loop, whereas

jk � ij ¼ jl� jj[1 leads to a symmetric loop. For a detailed description

of the free energies of bulges, symmetric and asymmetric internal loops, and

dangling ends, we refer the reader to the articles by Zuker et al. (1999) and

(Mathews et al., 1999). Based on the multiplication property of the partition

functions for the left and the right parts of the S1S2 hybridization form for the

total partition function we have:

ZðS1S2Þ ¼ +
1#i#N1

+
1#j#N2

ZL
openðr1i;r2jÞZRðr1i;r2jÞ
exp �F

initiation

RT

� �
2
6664

3
7775 (30)

FIGURE 1 Diagram A illustrates the contributions of stacked pairs,

symmetric and asymmetric interior loops, bulges, and, at the ends, dangling

bases to the duplex stability. Diagram B illustrates what type of contributions

are not taken into consideration in this work. Thus, at this stage, we do not

consider intramolecular basepairs, and stacking between the loop regions is

also not considered.
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¼ +
1#i#N1

+
1#j#N2

ZLðr1i;r2jÞZRopenðr1i;r2jÞ
exp �F

initiation

RT

� �
2
6664

3
7775 (31)

Pair probabilities

The calculated partition functions will allow us to derive the probabilities of

various conformations. Our main interest here is to calculate the probabilities

Pðr1i; r2jÞ and Pðr1ði11Þ; r2m; r1i; r2nÞ of a single r1i � r2n and double

r1ði11Þ � r2m; r1i � r2n pair formation, where N2 $ n[m$ 1. These proba-

bilities play a major role in hybridization or melting processes.

Pðr1i;r2jÞ ¼ ZLðr1i;r2jÞZRðr1i;r2jÞ
Z exp �F

initiation

RT

� � (32)

Pðr1ði11Þ;r2m;r1i;r2nÞ

¼
ZLðr1ði11Þ;r2mÞexp �Fðr1ði11Þ;r2m;r1i;r2nÞ

RT

� �
ZRðr1i;r2nÞ

Z exp �F
initiation

RT

� � :

(33)

It is now easy to calculate the probabilities P1ðiÞ and P1ði; i1 1Þ that an
arbitrary single fig, fi1 1g or double fi, i 1 1g nearest-neighbor positions

along the sequence 1 forms basepairs with the sequence 2 and vice versa. We

have:

P1ðiÞ ¼+
j

Pðr1i;r2jÞ; (34)

P2ð jÞ ¼+
i

Pðr1i;r2jÞ; (35)

P1ði; i11Þ ¼ +
N2$n[m$1

Pðr1ði11Þ;r2m;r1i;r2nÞ and (36)

P2ð j; j�1Þ ¼ +
1#m\n#N1

Pðr1n;r2ð j�1Þ;r1m;r2jÞ: (37)

In particular the equilibrium fraction of bases paired u can be calculated

from

u¼+
ij

Pðr1i;r2jÞ (38)

RESULTS AND DISCUSSIONS

Table 1 presents the experimental and predicted thermody-

namic parameters such as enthalpy DHo, entropy DSo and the
melting temperature, Tm, for a number of oligonucleotides

taken from the literature (Allawi and SantaLucia, 1997).

There are two main groups of sequences in Table 1; those in

which the transition equilibrium involves only two states,

i.e., duplex (as complete as possible if mismatches occur)

and random coils, and those in which the transition equili-

brium involves more than two states. Sequences from the

two-state group are designed to have a melting temperature,

Tm, between 308C and 608C and to minimize the possibility

of forming stable alternative secondary structures such as

slipped duplexes or hairpins. Non-two-state sequences are

designed to form both duplex and hairpin species. In

addition, sequences are designed with uniform distribution

of the 11 different G�T mismatch containing nearest neigh-

bors. The data set for internal G�T mismatches does not

contain sequences that have terminal G�T mismatches. As a

result, there are only 10 uniquely determined parameters

as linear combinations of 11 G�T nearest-neighbor dimers

(Allawi and SantaLucia, 1997). This special design is a very

good test for the nearest-neighbor model according to which

the terminal nearest neighbors make the same contribution as

internal neighbors.

Our calculations are based on the following main

assumptions:

1. The different species that can be formed by two se-

quences A and B in solution, such as single-stranded

folded (AF, BF) or unfolded (AU, BU) and double-

stranded hybridization in terms of two equivalent (AA,
BB) or two different (AB) sequences can be described as

an ensemble of ideally mixed species. This assumption is

rather obvious as a result of the experimental requirement

for low concentrations of the sequences.

2. The free energies of the unfolded sequences at 378C
are used as a reference state in our calculations. This as-

sumption is of special importance because databases of

thermodynamic parameters reported at a given temper-

ature are often used to predict hybridization properties at

different temperatures as part of various diagnostic and

therapeutic protocols (Owczarzy et al., 1997). The usual

assumption is that because of the enthalpy-entropy

compensation, DHo and DSo per basepair or stack for

double-stranded helixes and single-stranded helixes,

respectively, can be considered as temperature indepen-

dent for most practically important temperature ranges.

However, when DHo and DSo represent the difference

between the double helix and the single-stranded se-

quences, adjustments should be made for stacking pre-

sent in the single-stranded sequences before and after

the double helix is formed. Without taking into account

the temperature dependence (and probable dependence of

some other factors) of the reference state, the deviation

between the calculated and experimentally determined

values for DHo and DSo can be quite large. The reference

state refers to unfolded single strand sequences in which

stacking between nearest neighbor nucleotides are

present.

3. We do not take into account intramolecular basepairs in

duplexes. This is rather good approximation for short

sequences.

4. Conformational transformation between different struc-

tural species is as follows. Single-stranded unfolded

sequences can hybridize to form the double helix species
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TABLE 1 Experimental and predicted thermodynamic parameters of oligonucleotides

�DHoðkcal=molÞ �DSoðeuÞ Tmð8CÞ
SEQUENCES exp* Ay Bz exp A B exp A B

CAAAGAAAG 46.7 46.1 46.1 137.0 136.6 160 27.6 24.5 21

GTTTTTTTC — — — — — — — — —

CAAATAAAG 55.6 48.4 51.1 165 142 166.9 30.2 28.5 26

GTTTGTTTC — — — — — — — — —

CGTGTCTCC 52 52.4 53.3 142.4 142.8 161.6 50 52.1 49

GCACGGAGG — — — — — — — — —

CGAGTGTCC 62.5 59.5 60.7 174.1 164.8 183.5 51.6 51.8 51

GCTCGCAGG — — — — — — — — —

GGACTCTCG 57.9 50.5 51.6 162.7 138.4 157.8 46.9 49.1 45

CCTGGGAGC — — — — — — — — —

GGACTGACG 62.6 58.5 59.6 174.9 162.2 180.4 51 50.9 51

CCTGGCTGC — — — — — — — — —

GGAGTCACG 65.4 52.4 53.6 182.4 142.8 162 52.6 52.1 50

CCTCGGTGC — — — — — — — — —

GACCGTGCAC 53.4 55.2 55.7 148.9 153.5 170.4 46 48.2 49

CTGGTGCGTG — — — — — — — — —

GACGTTGGAC 60.4 54.3 54.8 169.3 150 166.2 49.1 49.5 49

CTGCGGCCTG — — — — — — — — —

GACGTTAGGC 46 51.3 51 123.5 140.2 153.4 51.1 50.5 51

CTGCGGTCCG — — — — — — — — —

GGAGTGCTCC 65.7 58 61.1 187.1 163.6 188.7 46.5 45.7 47

CATGAGGCTAC 69.9 67.2 66.1 197.6 189.6 200.3 50.6 50.1 49.0

GTACTTCGATG — — — — — — — — —

CATGTGACTAC 64.2 65.6 62.1 182.1 188 191.2 47.2 44.8 45.0

GTACATTGATG — — — — — — — — —

CCATCGCTACC 79.8 71.6 73.2 223.8 199.4 218 56.6 55.7 55.0

GGTAGTGATGG — — — — — — — — —

CCATTGCTACC 75.7 67.3 70.1 214.8 189.3 213.6 51.5 51 50.0

GGTAATGATGG — — — — — — — — —

GATCATTGTAC 69.3 65.9 65.1 198.1 189.6 200.2 46.9 43.8 44.0

GTAGTGACATG — — — — — — — — —

GATCTTTGTAC 67.6 64.0 63.3 194.5 184.9 196.2 44.6 41.8 43.0

CTAGAGACATG — — — — — — — — —

GTAGCGTCATG 76.6 72.0 71.2 215.5 202.6 213.0 54.7 52.8 55.0

CATCGTAGTAG — — — — — — — — —

GTAGTGACATG 68.3 65.6 64.4 194.7 188.0 199.5 47.3 44.8 45.0

CATCATTCTAG — — — — — — — — —

CCATGCGTAACG 71.2 70.0 72.1 200.7 195.6 215.0 52.1 54.1 53.0

GGTATGCGTTGC — — — — — — — — —

CGAGACGTTTCG 61.0 65.4 67.6 174.1 186.8 205.0 43.7 45.7 45.0

CGAGCATGTTCG 59.8 68.4 70.5 169.6 194.2 215.5 45.3 48.7 47.0

CGCGAATTTGCG 79.3 74.4 83.4 224.1 208.8 256.4 53.9 54.5 55.0

CGTGACGTTACG 73.3 68.0 70.4 210.0 192.6 212.8 47.7 49.3 49.0

CGTGTCGATACG 73.8 70.0 72.1 210.9 198.4 216.6 48.8 49.9 50.0

CGTTACGTGACG 64.9 68.0 70.4 184.0 192.6 211.8 47.8 49.3 50.0

CTCGGATCTGAG 75.0 69.2 71.7 214.5 198.4 220.7 48.8 46.2 50.0

CTCTCATGGGAG 50.4 55.0 50.3 141.5 154.4 200 41.9 45.3 52.0

CTCTGATCGGAG 60.3 69.2 70.4 170.3 198.4 214.7 46.7 46.2 51.0

CTGTCATGGCAG 59.2 58.8 61.8 164.2 163.2 188.8 51.4 50.8 56

CTGTGATCGCAG 67.0 73.0 74.9 188.2 207.2 224.8 51.4 50.6 53.0

CTTGGATCTAAG 64.0 60.6 60.0 187.3 178.2 189.3 38.1 35.2 39.0

CAACTTGATATTAATA 91.3 98.5 98.9 264.0 286.4 295.1 47.1 50.1 55.0

GTTGAATTATAATTAT — — — — — — — — —

CAACTTGATATTAATA 92.6 102.8 103.3 266.0 296.5 304.9 49.4 53.4 59.0

GTTGAGCTATAATTAT — — — — — — — — —

CAACTTGATATTAATA 95.5 100.1 100.4 274.0 287.7 296.5 50.5 54.0 62.0

GTTGAACTATAGTTAT — — — — — — — — —

CGTCTGTCC 56.5 58.5 59.5 156.5 162.2 179.3 50.1 50.9 50.0

GCAGGCAGG — — — — — — — — —

GATCTGTGTAC 70.6 66.3 65.4 202.5 190.7 200.8 46.7 44.1 46.0

CTAGATACATG — — — — — — — — —
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or can form internal basepair contacts to form single-

stranded hairpins. However, single-stranded hairpins

cannot hybridize with each other to form double helixes.

They have to unfold first. This assumption is rather

strong in general, but for sequences for which the

equilibrium transformation involves only two states, it is

a good approximation. Work on the more general case is

in progress in our lab. We have to note that this as-

sumption does not restrict the general expression for the

partition function presented in (1) above.

In Table 1, the experimental data show good agreement

both with the calculations by our group and that of

SantaLucia. It is important to note that the calculations of

the SantaLucia group are based on the approximation that

folded species do not explore all possible conformations in

their folded state but are represented by the conformations

with minimum energy. In our calculations we do explore all

possible conformations of the folded species within the

limitations specified above. In both the SantaLucia and our

groups, the entropy loss by the single-stranded unfolded

sequences in forming the first basepair of the double helix is

taken into account by an experimentally determined initiation

parameter. Since the conformation of denatured single strands

is unknown, this is a reasonable approximation. The enthalpy

and entropy contribution per basepair relative to the unfolded

sequences are taken from experiments at 378C.As a result, the
entropy values of our calculations are consistently greater

than those of the SantaLucia group. The differences are

relatively small which should be expected because of the way

the sequences are designed. Nevertheless, our calculations

show that there is a variability around the minimum energy

conformations of the folded species, and of course this

variability will increase with the sequence length. Of

particular interest are the last six sequences in Table 1 which

melt with non-two-state thermodynamics regardless of the

way they are designed. For two of them NTS-1, (59-
CGTTGCGTAACG-39)2 and NTS-2, 59-GCGTACGCAT-
GCG-39/39-CGCATGTGTACGC-59 (Plum et al., 1995), the

non-two-state melting is in contrast with the good agreement

between the experimentally determined van’t Hoff enthalpies

derived from 1=Tm versus lnCT plots and from the fits of

individual melting curves. Melting simulation of NTS-1 from

SantaLucia and our group and NTS-2 from our group are

represented in Figs. 2–4, respectively.

In Fig. 2, both SantaLucia’s and our simulations are in

good agreement and clearly show a significant population of

hairpins at temperatures near the duplex Tm. Similarly (Fig.

3), our simulations show the presence of the duplex from

sequence 2, CGCATGTGTACGC, near the melting temper-

ature for the NTS-2 duplex, GCGTACGCATGCG/

CGCATGTGTACGC.

Fig. 4 shows the calculated heat capacity for the NTS-2

duplex. It is consistent with the agreement between the UV

melting data and calorimetric data from the experimental

results of Plum et al. (1995) and SantaLucia. Our calcula-

tions show that heat capacity is almost perfectly symmetric

as one would expect from a two-state melting process. Thus,

it is well known that the van’t Hoff enthalpy change, DHvH,

calculated from the temperature dependence of the equilib-

rium constant from spectroscopic data equals the total

calorimetric enthalpy change, DHcal, only if the melting reac-

tion follows a two-state transition between free and bound

molecules and if the change in the spectroscopic signal used

to calculate the equilibrium constant reflects the entire

population of free and bound molecules. Otherwise, DHvH

and DHcal are different. Therefore, when DHvH and DHcal are

equal, this can be taken to indicate a two-state transition.

However, our mole fraction calculations show that the

apparent two-state shape for the heat capacity follows from

the fact that the maximum of the CGCATGTGTACGC

duplex fraction is centered at the melting temperature of the

TABLE 1 Continued

�DHoðkcal=molÞ �DSoðeuÞ Tmð8CÞ
SEQUENCES exp* Ay Bz exp A B exp A B

CGAGTCGATTCG 69.6 67.4 69.7 199.7 192.6 211.4 46.1 46.4 48.0

CTTGCATGTAAG 56.7 64.4 64.5 162.9 187.0 199.4 39.5 40.5 41.0

CGTGTCTAGATACG 78.3 82.2 84.9 222.6 234.4 252.6 51.7 52.1 53.0

GACGTGAGGC 35.6 59.5 59.1 94.0 166.0 178.3 43.8 50.8 51.0

CTGCGTTCCG — — — — — — — — —

CGTTGCGTAACG 58.7 73.3 79.5 163.1 203.4 243.3 49.2 57.5 56.0

CTCGCATGTGAG 64.6 73.0 73.6 181.9 207.2 221.3 49.7 50.6 54.0

CTGGCATGTCAG 67.8 58.8 58.8 191.2 163.2 176.7 50.7 50.8 52.0

CTGGGATCTCAG 73.8 55.0 54.6 213.4 154.4 168.2 45.6 45.3 47.0

GCGTACGCATGCG 80.9 97.3 98.3 220.0 264.4 280.5 66.3 71.0 69.0

CGCATGTGTACGC — — — — — — — — —

*Experimental data are from the article of SantaLucia (Allawi and SantaLucia, 1997). Standard errors for experimental entropy DHo, enthalpy DSo, and the

melting temperature Tm are 8%, 8%, and 28C, respectively.
yPredictions based on two-state model (Allawi and SantaLucia, 1997).
zPredictions based on the partition function calculations described in this article.
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NTS-2 duplex. As a result, the melting of CGCATGTG-

TACGC duplex is superimposed on that of the NTS-2

duplex which leads to almost symmetric shape of the heat

capacity curve. Our simulations show clearly the advantage

of the general statistical mechanical approach which

explores all possible conformations of single hairpins and

double helixes as well as the conformational transformations

among them. In such way, we avoid confusions from the

assumption of two-state melting based on the agreement

between the van’t Hoff and the total enthalpy change during

the melting process.

Next we analyze the role of stacking between neighboring

nucleotide residues of single strands as an important source

of enthalpy change on helix formation. Thus, each oligomer

has a stacked-unstacked transition that is superimposed upon

the helix-coil transition. Therefore we should expect that the

FIGURE 2 Predicted fraction of species

from our group and that of SantaLucia

(Allawi and SantaLucia, 1997) formed by

CGTTGCGTAACG versus temperature at

total strand concentration of 1 3 10�4 M.

(}) Random coil (SantaLucia); (1) du-

plex (SantaLucia); (�) hairpin (SantaLu-

cia); (3) random coil (Dimitrov and

Zuker); n duplex (Dimitrov and Zuker);

(\) hairpin (Dimitrov and Zuker).

FIGURE 3 Predicted fraction of species

versus temperature for NTS-2 59-GCGT-
ACGCATGCG-39/39-CGCATGTGTAC-
GC-59 from our group. Conditions: strand

concentrations, 2 3 10�4 M; Na1, 1000

mM; Mg21, 0 mM. (}) 11 (duplex); (1)

12 (duplex); (�) 2 (hairpin); (3) 1 (hair-

pin); (n) 1 (random coil); (\) 2 (random

coil); (K) 22 (duplex).
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measured enthalpy for the helix-single strands transition will

be less at low temperatures where the nearest-neighbor

nucleotide residues in the single strands are partially stacked

than at very high temperature where the nearest-neighbor

nucleotide residues are totally unstacked. On the other hand,

in both our group and the SantaLucia group, the difference in

heat capacities DCo
obs between the unfolded and folded states

of the species is taken to be zero. The calculated enthalpy

contributions and the melting temperatures (Table 1)

between the SantaLucia group and our group, as should be

expected, based on the same DCo
obs ¼ 0 approximation), are

in very good agreement. However, the existence of heat

capacity DCo
obs differences between the unfolded and folded

states has been demonstrated experimentally in a few groups

(Holbrook et al., 1999; Freier et al., 1981; Chalikian et al.,

1999). Thus, in the work of Holbrook et al. (1999), it has

been found that the contributions to the DCo
obs coming from

changes in nonpolar and polar surfaces in single helix

formation and the docking of the single strand helixes in

hybridization and self-folding processes largely offset each

other. As a result, the observed heat capacity changes in

double-strand helix formation must arise primarily from

temperature-dependent coupled processes in the unfolded

strands. From the analysis of DSC and UV thermal-scan

data, the values of enthalpies of ordering and folding of the

single strands together with their relative fractional extents at

a given temperature allowed the authors in combination with

the observed DSC and isothermal titration calorimetry (ITC)

enthalpies to extract the DHo for double helix formation.

Changes in the states of the single strands with temperature

are shown to lead to a larger heat effect at higher

temperature. Our calculations together with the experimental

ITC data on the enthalpies of association of two 14 bp

complementary sequences 59-GCGTCATACAGTGC-39
and 59-GCACTGTATGACGC-39 taken from the work of

Holbrook et al. (1999) are shown in Fig. 5.

The data in Fig. 5 represent experimental and calculated

enthalpies at 292.8 K, 310 K, and 312.4 K in 120 mM Na1.

The results indicate that DHobs decreases strongly with

increasing temperature. In the past few years, a series of

experimental and theoretical papers were published on the

differences between the DNA and RNA polymer and

oligonucleotide nearest-neighbor thermodynamics. These

differences led to the notion that there is a length dependency

in DNA thermodynamics. An important paper of SantaLucia

(1998) showed that most probably, this length dependence is

only for the salt effect but not for the nearest-neighbor

propagation energies. Thus, increasing sequence lengths lead

to increasing melting temperatures as a result of the increase

of the total number of basepair contacts whereas the nearest

neighbor propagation energies, to a good approximation, do

not change. Moreover, the melting temperature can be

increased by increasing the number of energy rich basepair

contacts without increasing the sequence length. Thus, the

difference between the predicted and experimentally de-

termined enthalpies is a direct consequence of the change in

the melting temperature and as a result the changes in the

heat effect from the stacking in the unfolded single strand

sequences rather than the sequence length itself. The above

analysis indicates that predictions of enthalpies based on

databases of nearest-neighbor energy parameters determined

for sequences with lower melting temperatures compared

with the melting temperature of the sequences for which they

are used as a predictive tool will be underestimated. In the

FIGURE 4 Predicted heat capacity ver-

sus temperature for NTS-2 59-GCGTAC-
GCATGCG-39/39-CGCATGTGTACGC-
59. Conditions: strand concentrations, 2

3 10�4 M; Na1, 1000 mM; Mg21, 0 mM.
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work of SantaLucia, all sequences are designed to have

a melting temperature between 308C and 608C, whereas

the database of nearest-neighbor parameters which they used

is determined at 378C. Our calculations demonstrate that

the predicted enthalpies for the sequences in the work of

SantaLucia are in good agreement with their experimental

data because the sequences are designed to melt near the

database melting temperature.

In conclusion, we present here a general statistical

mechanical approach appropriate to describe the hybrid-

ization processes between finite length DNA and RNA

sequences that takes into account the whole ensemble of

single and double strand species in the solution and their

fractional extents at different temperatures. The folding

models for both duplexes and self-folding of single strands

developed here deals with matches, mismatches, symmetric

and asymmetric interior loops, bulges and single base

stacking that might exist at the ends and explores all possible

conformations of the single and double strand species. The

advantage of such a general approach is most clearly

demonstrated in the cases where the melting of the different

species are superimposed onto each other, leading to an

agreement between the van’t Hoff and the total enthalpy

change during the melting process. As a result, it is not clear

whether such a melting process is two-state or a multi-state

that involves intermediates. In particular, we focused also on

the role of stacking between neighboring nucleotide residues

of single unfolded strands as an important source of enthalpy

change on helix formation which has not been distinguished

thus far. Changes in the states of the single strands with

temperature are shown to lead to a larger heat effect at higher

temperature. An important consequence of this is that

predictions of enthalpies based on databases of nearest-

neighbor energy parameters determined for sequences with

lower melting temperatures compared with the melting

temperature of the sequences for which they are used as

a predictive tool, will be underestimated. Lastly, this article

demonstrates the need for an accurate statistical mechanical

description of the single-stranded unfolded sequences that

can still preserve some nearest-neighbor stacking contacts.

The development of such a method is in progress in our

laboratory. Further information about the programs used in

this article can be found at http://www.bioinfo.rpi.edu/

applications/hybrid/.
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