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Analysis and Design Equations for Phase Matching
Using Bragg Reflector Waveguides
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Abstract—In this paper, we introduce and analyze a novel wave-
guide design to provide phase matching for nonlinear optical pro-
cesses. Phase matching is achieved by designing the structure to
guide the fundamental frequency by total internal reflection and
the second harmonic (SH) frequency by transverse Bragg reflec-
tion. By forcing the SH mode to operate in the middle of the Bragg
stopband, we solve for the waveguide dimensions for arbitrary
waveguide materials, given the material dispersion between the
fundamental and SH frequencies. Using GaAs–AlGaAs as an ex-
ample, we analytically investigate and quantify properties such as
nonlinear coupling efficiency, bandwidth, tunability, and limita-
tions due to dispersion. The technique shows tremendous promise
when compared to alternate technologies, where it is particularly
attractive as an effective means to obtain ultralow-loss nonlin-
ear optical elements for monolithic integration with coherent light
sources and other active devices.

Index Terms—Integrated optics, nonlinear optics, optical phase
matching, optical waveguides, phase matching.

I. INTRODUCTION

THE demand on optical devices and technologies in the
fields of signal processing, mobile communication tech-

nologies, on chip/board data links, aeronautics, aerospace, sens-
ing, life science diagnostics, and environmental monitoring is
at an all time high [1]. The availability, performance, and cost
effectiveness of such photonic components has been inadequate
at best. This can partially be attributed to the lack of an efficient,
compact, and tunable nonlinear element in the optics domain
in conjunction with a material system with a viable fabrica-
tion technology. III–V semiconductors have been widely used
in integrated optoelectronic circuits and nonlinear optical appli-
cations. Mature growth, lithography, and etching technologies
allow the fabrication of low-loss guiding structures. The use
of electronic-scale heterostructures enables additional control,
flexibility, and functionality to be incorporated into the devices.
The large useable nonlinearities achievable to date in III–V
semiconductors chiefly rely on carriers, and have been studied
extensively to induce nonlinearities in semiconductor optical
amplifiers [2]. The drawbacks of high insertion loss, large size,
and excessive noise figures are inherently associated with them
and hence they will not be suitable for all applications [3]. Most
notable applications that would benefit from integrable ultrafast
optical nonlinearities include monolithically integrated optical
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parametric oscillators (OPOs), correlated photon pair sources,
and tunable frequency conversion monolithic arrays.

OPOs have become indispensable coherent sources for the
midinfrared. Their operating wavelength span is limited by the
transparency window of lithium niobate, however, because pe-
riodically poled lithium niobate (PPLN) is the most commonly
used nonlinear element in OPOs. In contrast, compound semi-
conductors such as GaAs exhibit higher nonlinear coefficients
near the materials’ resonances in comparison to PPLN, and have
a large transparency window. In the case of GaAs, the trans-
parency window scans the spectral range of 1–17 µm. GaAs
also has high damage threshold and a mature fabrication tech-
nology for making waveguides as compared to PPLN.

Correlated photon pairs can be generated through the pro-
cess of parametric down conversion [4]. For example, one pho-
ton at 0.775 µm injected into a sample with appropriate phase
matching could generate two correlated photons at 1.55 µm [5].
Achieving this technology provides very compact sources and
allows the integration of the pump source on the same chip. This
finds applications in fields ranging from metrology, calibration,
quantum experiments, to quantum key distribution [6].

Ultrafast nonlinearities can also enable the realization of inte-
grated arrays of tunable frequency conversion elements. Optical
telecommunications networks which imply any form of wave-
length diversity in the physical layer could greatly benefit from
these devices. The tuning offered by these devices, together
with the integration of the pump source on the same chip, pro-
vides unprecedented versatility and configurability into the net-
work [7]. Devices with such functionality have been previously
demonstrated in LiNbO3 and have been proven very success-
ful in wavelength-division multiplexing (WDM) networks [8].
However, monolithically integrated arrays would vastly reduce
system complexity, and hence the cost.

It is clear from the few applications discussed that achieving
efficient, low-loss, and tunable phase matching in a semiconduc-
tor material is pivotal for the realization of the next generation
of photonic devices. The high nonlinear coefficients of semi-
conductors at photon energies near the bandgap are difficult
to exploit practically, as the material dispersion is formidable
in this spectral region. This makes phase matching between
the fundamental and second harmonic (SH) waves difficult to
achieve. Various authors have proposed schemes to overcome
this limitation, utilizing form birefringence [9], quasi-phase
matching (QPM) through periodic suppression of the nonlin-
ear coefficient [10] or domain inversion [11], [12], and resonant
cavities [13]. Such methods generally suffer from difficulty in
monolithic integration with other active and passive compo-
nents, or large insertion loss due to scattering.
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Fig. 1. BRW for phase-matched second harmonic generation.

In this work, we analyze in detail a means which was proposed
recently to achieve phase matching through the use of a novel
waveguide design [14]. The technique is material independent
and requires no patterning in the direction of propagation, which
will significantly lower the insertion loss. The waveguide will
utilize total internal reflection (TIR) at the fundamental wave-
length and transverse Bragg reflection at the SH wavelength. In
Section II, we discuss the Bragg reflection waveguide (BRW)
and the solution of its quasi-bound modes, with particular atten-
tion to the special case of a transverse quarter-wave cladding.
Section III introduces a procedure by which the BRW mode at
the SH wavelength can be phase matched with the TIR mode at
the fundamental wavelength for arbitrary core and cladding ma-
terials. In Section IV, we analyze critical waveguide properties
such as dispersion and nonlinear coupling coefficient. Wave-
length tuning mechanisms are proposed in Section V, while in
Section VI we suggest various modifications to the waveguide
design that can improve the device operation.

II. BRWs

Although initially proposed earlier, the BRW (Fig. 1) was
analyzed by Yariv, Yeh, and Hong [15], [16]. While the more
common TIR waveguide operates through total internal reflec-
tion between a high-index core and lower index cladding, the
BRW has no such requirement; rather, it utilizes the stopband
of a transverse distributed Bragg reflector to provide reflection
and thus confinement of guided waves, and hence can guide
light in a region of any refractive index. The ability to guide
light within a low-index core has received significant attention
from many authors, particularly in the development of air-core
guides for mechanically tunable gratings [17] and particle accel-
eration [18]. The unique birefringence properties of BRWs due
to the polarization dependence of the Fresnel coefficients have
been utilized to create polarization splitters/combiners [19]. For
nonlinear propagation, BRWs have been shown to support spa-
tial optical solitons [20], as well as nonlinear guided modes at
high optical power in structures that support no linear bound
modes [21].

In the context of phase matching, the ability of BRWs to
support essentially lossless bound modes with effective indices
lower than any of the material indices will be utilized for the
SH wave to compensate for material dispersion [14]. Strictly
speaking, the BRW requires an infinite number of cladding pe-

Fig. 2. 1-D BRW with material indices and dimensions indicated. (Solid line)
Indices at 2ω. (Dotted line) Indices at ω. The dashed line represents the phase-
matched effective index.

riods to have zero loss, but as will be shown further, with proper
design suitably low loss can be achieved with just a few pe-
riods. As such, the derivations in the sections that follow will
assume an infinite cladding in order to utilize Bloch–Floquet
theory; implications of a finite cladding will be discussed
in Section IV.

The one-dimensional (1-D) BRW is shown schematically
in Fig. 2. It consists of a core of thickness tc and index nc,
and periodic cladding layers of thickness a(n1) and b(n2). The
cladding period is Λ = a + b and the waveguide is symmetric
about x = 0. BRWs in general need not be symmetric, but this
restriction eases the design and ensures strong overlap between
the guided modes and the core. Fig. 2 indicates the material
indexes at both fundamental and SH wavelengths as well as the
phase-matched effective index.

The effective indices and mode field profiles of the guided
modes in this structure are derived explicitly in [22]. Here,
we summarize only the pertinent results. For the purpose of
phase matching, we will examine only even modes (by parity,
odd BRW modes will have zero overlap with the desired even
TIR modes, leading to zero second-harmonic generation (SHG)
efficiency, as shown in Section IV). In each layer, the transverse
wave vector at an angular frequency ω is defined as

ki =

√(ωni

c

)2

− β2 (1)

where i = (1, 2, c), β is the propagation constant, and c is the
velocity of light. The assumption of an infinite cladding implies
that β is real (absorption in the waveguide is presumed negligible
here). Guided modes satisfy the mode dispersion equation
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In (2), the terms A and B are elements of the unit cell translation
matrix of the cladding
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and K is the Bloch wavenumber of the cladding

KTE(TM) =
1
Λ

cos−1[Re(ATE(TM))]. (4)

When |Re(A)| > 1,K = mπ/Λ + iKim, where m = 1, 2, . . .
indicates the order of Bragg reflection. This implies that the
field in the cladding is evanescent, which is a requirement for
waveguiding.

A. Quarter-Wave Bragg Reflection Waveguides (QtW-BRWs)

Now, let us examine the case where each layer of the cladding
has quarter-wave optical thickness with respect to the transverse
wave vectors ki , i.e., k1a = k2b = π/2. This constraint places
the Bloch wave number K in the middle of the Bragg stopband,
thus ensuring strong guiding through maximizing the field decay
in the claddings. In this case,
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By inserting (5) into (2) we see that modes occur when

kctc
2

=
(p + 1)π

2
, p = 0, 2, 4, . . . (6)

where p is the mode order for even modes. In the quarter-wave
case, the electric field has a null at the core/cladding bound-
ary [22]. This result is supported by the observation that the
transverse field is encountering an external reflection at a perfect
quarter-wave stack of infinite periods for which the reflection
coefficient r = −1. The sum of outgoing and incoming fields
therefore equals zero at the interface, a condition referred to in
the literature as a “metallic-like” boundary [23]. We will con-
sider only the fundamental even BRW mode in the next of this
paper, for which p = 0. In this case,
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2π

λ

√
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and thus
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λ

2tc

)2

. (8)

Fig. 3. (Solid line) field profile of SH mode and (dashed line) power profile
of phase-matched fundamental TIR mode in a BRW that is quarter-wave at the
SH wavelength.

From (8), it can be seen that for a given core index, a waveguide
can be designed to have an arbitrary effective index simply by
adjusting the core thickness. It must be noted, however, that the
effective index cannot exceed the index of the cladding material.
If this condition is violated, the field will be evanescent in this
material and quarter-wave thickness cannot be achieved [24].
In addition, (8) is only valid when the argument of the square
root is positive. For n2 < nc < n1, these conditions constrain
the guide width to

λ

2nc
< tc <

λ

2
√

n2
c − n2

2

. (9)

Fig. 3 shows the field profile of a quarter-wave TM Bragg mode
at the SH frequency and the power profile in the TE TIR mode
at the fundamental frequency. The justification for this repre-
sentation will become clear in Section IV-A.

Now that we have an analytical form for calculating the ef-
fective index of the BRW mode, we should be able to solve
it simultaneously with that of the TIR mode within the same
waveguide at one-half of the photon energy. The design proce-
dure for calculating the effective index of the BRW mode with
that of the TIR mode is discussed in Section III.

III. PHASE-MATCHED MODES

The previous section provided a mode dispersion equation (2)
for the BRW. In this section we establish a self-consistent design
procedure to match the effective indices of a QtW-BRW mode
at the SH frequency (2ω) with a TIR mode at the fundamental
frequency (ω) when the core and cladding materials are known,
using a suitable choice of core thickness, as shown in Fig. 4.
Note that the cladding thicknesses are implicitly variable—they
will be determined from the resulting effective index using the
quarter-wave condition. In actuality, the TIR mode is confined
by the Bragg reflection in the cladding as well as internal reflec-
tion at the cladding interfaces (neff > nω

2 ), so the waveguide can
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Fig. 4. Effective index versus core thickness for a waveguide with
{x1, x2, xc} = {0.3, 0.5, 0.4}. (Solid line) BRW mode, (dashed line) TIR
mode. Phase matching occurs where the curves cross. Cladding layer thick-
nesses are determined by the quarter-wave condition of the BRW mode.

still be modeled using the results of Section II. For this example,
we consider type-I phase matching, with TE polarization for the
fundamental (ω) mode and TM polarization for the SHG (2ω)
mode. The methodology is applicable to type-II phase matching
as well, when the appropriate mode dispersion equation (2) is
used.

In all the equations given below, the superscripts indicate
which frequency (ω or 2ω) is under consideration. Values that
are identical for both frequencies (a, b, and neff ) are not super-
scripted. We begin by expressing (8) in terms of frequency
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Cladding layer thicknesses a and b are determined by the
quarter-wave condition at 2ω
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and transverse propagation vectors at ω are determined as
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where, for a TIR guide, kω
2 is imaginary. Unit cell translation

matrix elements at ω (for TE polarization) are as in (3)
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and the translation matrix eigenvalue is
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Finally, as the waveguide must satisfy the mode dispersion equa-
tion at ω

1
kω
c

cot
(

kω
c tc
2

)
− i

kω
1

eiK ω
TEΛ − Aω

TE + Bω
TE

eiK ω
TEΛ − Aω

TE − Bω
TE

= F (ω, β) = 0.

(16)

Note that (16) depends only on the core thickness, via (10)–
(15). Since tc is a real quantity, (16) can easily be solved using
numerical root-finding methods.

A. Examples

To demonstrate the concept of the waveguide discussed here
we utilize the GaAs/AlxGa1−xAs material system, which has
been studied extensively for frequency conversion due to its ma-
ture fabrication technology and large nonlinear coefficient at the
half bandgap [25]. To calculate material indices, we use the re-
fractive index dispersion model of Adachi [26]. Fig. 5(a) shows
contours of the phase-matching core thickness for a fundamen-
tal wavelength of 1550 nm over a range of core and cladding
Al concentrations. The Al fraction in the cladding layers is
initially chosen to be symmetric about that of the core, i.e.,
xclad = xc ± ∆xclad/2. Al fractions xc and ∆xclad are used
instead of material indices nc and ∆nclad as the latter are vari-
able due to material dispersion between the fundamental and SH
wavelengths. Note that the range of xclad and ∆xclad is chosen
such that 0.15 ≤ x ≤ 1 to ensure that the SH photon energy
exceeds the bandgap energy of AlxGa1−xAs. Fig. 5(b) shows
contours of the phase-matched effective indices. The calculated
effective indices were verified by solving the waveguides using
the well-known transfer matrix method [27], which makes no
a priori assumption on the waveguiding mechanism (BRW or
TIR).

Fig. 5(a) and (b) shows that phase-matched solutions exist
over a wide range of core and cladding materials, subject to the
constraint (9). This allows us to independently optimize other
waveguide properties such as SHG conversion efficiency and
dispersion, as discussed in Section IV. Of course, xc need not
be at the midpoint of xclad. The relative aluminum fractions
among the core and cladding all represent degrees of freedom
by which the waveguide properties can be optimized.

IV. WAVEGUIDE PROPERTIES WITH RESPECT

TO PHASE MATCHING

Although qualitatively the simultaneous solution of both
modes to achieve phase matching has been proven in Section III
it is still not clear quantitatively what would be the figures of
merit for such phase-matching techniques. Issues such as dis-
persion of the fundamental and SH modes, and phase reversal
of the BRW mode, etc., would all reduce the overall conversion
efficiency. In this section we shall discuss these figures of merit
and explore waveguide designs to optimize them.
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Fig. 5. (a) Core thickness [nm] required for phase matching and (b) resulting phase-matched effective index over a range of xc and ∆xclad (xclad symmetric
about xc).

Fig. 6. (a) (neff)−3(teff)−1 [µm−1] over a range of xc and ∆xclad (xclad symmetric about xc). (b) (neff)−3(teff)−1 [µm−1] over a range of xc and x2 − xc.

A. Nonlinear Coupling Efficiency

The efficiency with which energy is coupled between the
modes depends on the spatial overlap between the induced
dielectric polarization at 2ω, P 2ω (x) = ε0d(x)[Eω (x)]2, and
the SH mode, E2ω (x), where ε0 is the free-space permittiv-
ity. We can thus define a nonlinear coupling efficiency η which
is inversely proportional to (neff)3 and to an effective SHG
width [28]

η = n−3
eff

1
teffSHG

= n−3
eff

[∫ ∞
−∞[E2ω (x)]∗ d′(x)[Eω (x)]2 dx

]2[∫ ∞
−∞[Eω (x)]2 dx

]2 [∫ ∞
−∞[E2ω (x)]2 dx

] (17)

where d′(x) = d(x)/dmax is the SHG coefficient, constant
across each layer of the waveguide, and dmax is the max-

imum SHG coefficient in the structure. The higher effective
indices of GaAs waveguides in comparison to LiNbO3 are more
than compensated for by the difference in nonlinear optic co-
efficient. A geometry-independent figure of merit to compare
SHG in two materials is d2/(neff)3 [29]. Using d14(AlGaAs) =
150 pm/V, d33(LiNbO3) = 32.2 pm/V [30], nLiNbO3 = 2.25, and
the effective indices for the GaAs waveguides shown in Fig. 5(b)
it is seen that GaAs is roughly 8.25 times more efficient than
LiNbO3 for identical effective SHG widths. It should be noted,
however, that there is still a great deal of discrepancy in the
literature as to the absolute value of the nonlinear coefficient of
AlGaAs, particularly as a function of Al fraction and close to
the half bandgap.

Contours of η, corresponding to the same waveguide struc-
tures as in Fig. 5(a), are shown in Fig. 6(a). It is assumed here
that d is approximately equal in all regions of the guide, i.e.,
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Fig. 7. (a) Spectral bandwidth (FWHM) for a 1-cm device length over a range of xc and ∆xclad (xclad symmetric about xc). (b) Spectral bandwidth (FWHM)
for a 1-cm device length over a range of xc and xc − x1(x2 = 1).

d′(x) = 1. The figure indicates that the coupling coefficient can
be increased by using large values of ∆xclad. This can be ex-
plained by the oscillation of the SH mode phase in the cladding
as can be seen in Fig. 3. For the efficiency to be maximized,
one intuitive means is to maximize the core confinement factor
of both modes, which requires a large index difference in the
cladding [22]. In Fig. 6(b), x1 is set to 0.15, while xc and x2–xc

are varied. A significant increase in η can be seen for larger val-
ues of xc (lower core index). The optimized value of η ≈ 0.04 is
very similar to that obtained in a TEω

0 − TE2ω
2 mode dispersion

phase matching configuration (normalized by effective index)
in [28]. The efficiency can be further maximized by various
means, given the versatility afforded by the BRW. These means
are discussed in Section VI.

B. Dispersion

The wavelength dependence of effective index is of great
importance in SHG. Waveguides that are phase matched at a
nominal wavelength, but for which the dispersion differs be-
tween the fundamental and SH wavelengths, will maintain co-
herence over a finite spectral bandwidth. Furthermore, when
ultrashort pulses are used, a mismatch between the group ve-
locities at the two interacting frequencies causes the pulses
to separate in time (pulse walkoff), reducing their temporal
overlap and hence lowering conversion efficiency [29]. Finally,
pulse broadening due to group velocity dispersion (GVD) re-
duces conversion efficiency by reducing the peak power of the
pulses.

To estimate the spectral bandwidth of the structure, we adopt
the criterion suggested by Fejer et al. [31]. For imperfect phase
matching over a device length L, SHG conversion efficiency
varies as [sin(∆L)/(∆L)]2, where 2∆ = β2ω − βω . This factor
is reduced by 3 dB when ∆L = 0.4429π, allowing us to define
a full-width at half-maximum (FWHM) bandwidth around the
fundamental wavelength for a nominally phase-matched struc-

ture with known length LD :

∆λFWHM =
0.4429λ

LD

(∣∣∣∣∂nω
eff

∂λ
− 1

2
∂n2ω

eff

∂λ

∣∣∣∣
)−1

(18)

where λ is the fundamental wavelength and the derivatives,
which include both material and waveguide dispersion, are eval-
uated at their respective wavelengths. Here, dispersion terms
higher than second order have been neglected. Fig. 7(a) shows
the contours of spectral bandwidth, for the waveguide structures
shown in Fig. 5(a), and a device length of 1 cm. Bandwidth
is seen to increase with xc, which can be attributed to the re-
duction in material dispersion of AlGaAs as the bandgap energy
moves away from the photon energy. In Fig. 7(b), bandwidth is
shown for x2 = 1.0 over a range of xc and (xc–x1). Bandwidth
increases to about 0.34 nm at {x1, xc, x2} = {0.5, 0.7, 1.0},
until the parameter range becomes limited by the existence of
phase-matched solutions to the mode dispersion equations, sub-
ject to (9). This bandwidth corresponds well with those mea-
sured by Rao et al. [7] (0.5–1.0 nm over a 3 mm length) using
modal phase matching in AlGaAs, and with those calculated by
Fejer et al. [31] (∼3 nm over a 1 mm length) in PPLN.

Optical pulses travel with a group velocity

vg =
∂ω

∂β
= c

(
neff − λ

∂neff

∂λ

)−1

(19)

which can be evaluated by implicitly differentiating the mode
dispersion equation (2)

vg = −
[
∂F

∂β

]
ω

[
∂F

∂ω

]−1

β

. (20)

The group velocity mismatch (GVM) is equal to the difference
between inverse group velocities, which in the case of nominal
phase matching becomes

GVM =
∣∣∣∣ 1
vω

g

− 1
v2ω

g

∣∣∣∣ =
λ

c

∣∣∣∣
(

∂nω
eff

∂λ
− 1

2
∂n2ω

eff

∂λ

)∣∣∣∣ . (21)

Authorized licensed use limited to: California State University Fresno. Downloaded on June 08,2010 at 08:31:14 UTC from IEEE Xplore.  Restrictions apply. 



WEST AND HELMY: ANALYSIS AND DESIGN EQUATIONS FOR PHASE MATCHING 437

Fig. 8. Group velocity mismatch (ps/mm) over a range of xc and xc −
x1(x2 = 1).

Comparing (21) with (18), it is clear that the spectral band-
width and GVM are optimized simultaneously, as both require
minimization of the difference in dispersion between the two
modes. Fig. 8 shows GVM over the optimized parameter range
used in Fig. 7(b). GVM decreases to a value of ≈1.03 ps/mm
at {x1, xc, x2} = {0.5, 0.7, 1.0}. This GVM allows pulses at ω
of width τGVM

0 > 10 ps to propagate through a waveguide of
1 cm length without appreciable reduction in SHG efficiency
due to pulse walkoff. To enable phase matching over larger
bandwidths and for shorter pulses, hence higher peak intensi-
ties, optimization can be carried out; in Section VI, methods of
further reducing GVM are discussed.

GVD for a device length LD is quantified by a characteristic
pulsewidth [29]

τGVD
0 =

√
8LD

∂2β

∂ω2
(22)

below which the pulse will experience appreciable broadening.
The term ∂2β/∂ω2 can be evaluated by further differentiation
of (20). Fig. 9(a) shows ∂2β/∂ω2 (in units of fs2/µm) for the
fundamental mode, for the range of parameters used in Fig. 5(a),
and LD = 1 cm. The average value of 0.75 fs2/µm corresponds
to τGVD

0 ∼ 250 fs, which is negligible in comparison to τGVM
0 .

GVD at the SH wavelength is shown in Fig. 9(b). Values of
several hundred fs2/µm are found, as can be expected for a res-
onant device operating in the middle of the stopband. Fig. 9(c)
shows GVD for x2 = 1.0, over a range of xc and (xc–x1), which

decreases with the index difference in the cladding (weak res-
onance). A GVD of ∼40 fs2/µm in this region corresponds to
τGVD
0 < 2 ps over 1 cm, again small in comparison to τGVM

0 .
Thus, a tradeoff exists between GVD and SHG conversion ef-
ficiency, which requires large index difference in the cladding
(minimization of propagation loss also requires a large index
difference, as is demonstrated in Section IV-C). From these cal-
culations, it can be seen that the pulses of duration greater than
10 ps can be phase matched over a distance of 1 cm without
appreciable reduction in SHG efficiency.

C. Propagation Loss

The preceding derivations assumed that the cladding consists
of an infinite number of periods, such that the propagation loss
due to leakage of the waveguide is zero. For practical devices,
there will be a finite number of cladding periods. The leakage
in such devices can be estimated using a ray-optics approach, as
in [32]. We assume that the loss is low enough, that the propa-
gation constant β is essentially real, and that there is negligible
perturbation to the unit cell translation matrix formulation de-
scribed in Section II.

In the ray-optics picture, the angle of incidence between core
and cladding is given by

θi = sin−1

(
neff

nc

)
(23)

and the number of reflections per unit length is 1/(tc tan θi). The
reflection coefficient at the interface between the core and finite
cladding can be calculated using the transfer matrix formalism
of Chilwell and Hodgkinson [27]. Here, the field amplitudes in
the jth layer are represented by a matrix

Mj =
(

cos Φj
−i
γj

sin Φj

−iγj sin Φj cos Φj

)
(24)

where

γj =
1

(nj )2ρ

√
n2

j − n2
eff , ρ =

{
0 (TE)
1 (TM)

(25)

and

Φj = kj tj (26)

(tj = a, b) is the phase thickness of the layer. The transfer matrix
for a stack of films is given by the product of these matrices

M =
J∏

j=1

Mj . (27)

Mclad = (M1M2)N

=




cos Φ1 cos Φ2 −
(

γ2

γ1

)
sin Φ1 sin Φ2 −i

(
1
γ1

sin Φ1 cos Φ2 +
1
γ2

cos Φ1 sin Φ2

)

−i(γ1 sin Φ1 cos Φ2 + γ2 cos Φ1 sin Φ2) cos Φ1 cos Φ2 −
(

γ1

γ2

)
sin Φ1 sin Φ2




N

≡
(

mN
11 mN

12

mN
21 mN

22

)
. (28)
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Fig. 9. Group velocity dispersion ∂2β/∂ω2 (fs2/µm) of (a) fundamental mode over a range of xc and ∆xclad (xclad symmetric about xc), (b) SH mode over
a range of xc and ∆xclad, and (c) SH mode over a range of xc and xc − x1(x2 = 1).

Thus, the cladding of an N-period BRW has transfer matrix
shown by (28), at the bottom of the previous page. For the
QtW-BRW, Φj = π/2, and (28), reduces to

Mλ/4 = (−1)N




(
γ2

γ1

)N

0

0
(

γ1

γ2

)N


 . (29)

In the general case, the unimodularity of M1M2 can be ex-
ploited to calculate (28), using the Chebyshev identity [33]

(
m11 m12

m21 m22

)N

=

(
m11UN−1 − UN−2 m12UN−1

m21UN−1 m22UN−1 − UN−2

)
(30)

where

UN =
sin(N + 1)ζ

sin ζ
(31)

ζ = cos−1

[
m11 + m22

2

]
. (32)

The reflection coefficient can then be calculated from the trans-
fer matrix [27] as

r =
γcm

N
11 + γcγsubmN

12 − mN
21 − γsubmN

22

γcmN
11 + γcγsubmN

12 + mN
21 + γsubmN

22

(33)

where γc and γsub are defined analogously to (25) for the core
and substrate. For the QtW-BRW, from (29),

r =
γc

(
γ2
γ1

)N

− γsub

(
γ1
γ2

)N

γc

(
γ2
γ1

)N

+ γsub

(
γ1
γ2

)N
. (34)

As γ1 > γ2, limN→∞ r = −1, as noted in Section II.
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Fig. 10. Propagation loss as a function of the number of cladding periods.
Filled markers: BRW mode. Hollow markers: TIR mode. xc = 0.5, ∆xclad =
0.3(©), 0.4(♦), 0.5(�).

The power remaining after each reflection is |r|2. We can now
calculate the propagation loss using (23)–(34)

Loss [dB/cm] =
−ln(|r|)
5tctanθi

. (35)

Plots of propagation loss versus N for various values of ∆xclad

are shown in Fig. 10. As expected, loss decreases exponentially
with N and is lower for larger ∆xclad. It can be seen that for
a few periods, propagation loss due to leakage is negligible in
comparison to the expected scattering losses. Therefore, it can
be seen that for the quarter-wave case whilst working in the
middle of the Bragg bandgap, it is acceptable to use the theory
of infinite cladding layers to approximate a finite cladding.

V. PHASE-MATCHING TUNABILITY

Many of the applications that rely on second order nonlin-
earities also depend on the capability of tuning the nonlin-
earity, and hence the phase matching, for them to be useful.
Examples include tunable difference frequency generation for
optical communications, tunable OPOs, and tunable intensity-
dependent switches that rely on cascaded second order nonlin-
earities. Temperature and angle tuning have been the two most
popular tuning methods for the PPLN technology. Angle tuning
is not applicable to guided wave devices and was only useful for
collimated beam configurations such as with PPLN. While tem-
perature tuning is applicable for devices such as those studied
here, the technique suffers from numerous unattractive features
that make it undesirable. Performance stability, repeatability,
thermal time constants, and setup complexity are some of these
drawbacks. In addition, as the devices studied here are imple-
mented in semiconductors, it is advantageous to make use of
the various tuning methods offered by these materials. Tech-
niques such as electro-optic and carrier induced tuning lend
themselves to robust, low-power, and high-precision tuning in
integrated photonic device environments.

Tuning the modes of BRWs to remain phase matched with
TIR modes is not straightforward, as a significant perturbation
of the cladding will cause a deviation from the quarter-wave
condition, and may in fact shift the BRW mode entirely out
of the stopband, increasing the mode loss. One of the most
promising means of tuning such structures is to restrict the
refractive index change to the core layer. This is because such
effects will be similar to tuning the material thickness and hence
will have minimal effect on the other waveguiding properties as
well as provide continuous tuning. The examples mentioned in
this section intend to provide an order-of-magnitude estimate of
the tuning range; detailed modeling of the tuning mechanisms
will appear in a future work.

A. Carrier Tuning

Carrier tuning relies on the dependence of the semiconduc-
tor refractive index on the concentration of free carriers. The
most common route to controlling the carrier concentration is
through current injection. A doped structure with a p-i-n doping
profile, where the intrinsic region is the volume that needs to be
tuned, is usually used for this purpose. As the structure is put
in forward bias, current flows across the depletion region which
coincides primarily with the intrinsic region. The technique has
been used to tune filters [34] and tunable lasers [35]. In the
waveguide structure investigated here, if we p -and n -dope the
upper and lower cladding regions, respectively, an appreciable
carrier density in the core will change the core index, thus shift-
ing the effective index of both the BRW and TIR modes and
altering the phase-matching wavelength.

The effect of a given carrier concentration on the refractive
index of GaAs has been studied by numerous authors [36], [37].
A full model calculates the spectral shift of absorption due
to bandfilling (Burstein–Moss effect), bandgap shrinkage, and
free-carrier absorption (plasma effect), with subsequent evalu-
ation of the index shift by Kramers-Kronig analysis [38], and
shows a roughly linear decrease of n with carrier density N
for N > 1018 cm−3, with dn/dN ≈ −10−20 cm3 [36]. In this
way, index changes up to −0.1 can be readily achieved. In
Fig. 11, the phase-matching fundamental wavelength is shown
over a range of carrier concentrations for a waveguide with
{x1, xc, x2} = {0.3, 0.5, 0.7}. Wavelength tunability over sev-
eral tens of nanometers can be accomplished using carrier den-
sities of 1019 cm−3, which is not uncommon to achieve in active
photonic devices. This tuning range will ultimately be limited by
the increased absorption of the tuned SH mode as it approaches
the core bandgap. However, the effects of the excess free-carrier
absorption are not included here.

B. Electro-Optic Tuning

Unlike carrier tuning, which takes place in a forward bi-
ased p-n junction, electro-optic (EO) tuning takes place in a
reverse biased p-n junction. In III–V semiconductors, the EO ef-
fects available include linear EO, quadratic EO, Franz–Keldysh,
or, if quantum wells are present, quantum confined Stark ef-
fects [39], [40]. For simplicity and in order to demonstrate the
principle, we shall restrict the demonstration here to the linear

Authorized licensed use limited to: California State University Fresno. Downloaded on June 08,2010 at 08:31:14 UTC from IEEE Xplore.  Restrictions apply. 



440 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 12, NO. 3, MAY/JUNE 2006

Fig. 11. Example of carrier tuning: phase-matching wavelength versus carrier
density.

EO effect; investigation of the other EO tuning methods will
occur in a future work. As with carrier tuning, we can design a
p-i-n structure, where the intrinsic region is the waveguide core.
Thus, in reverse bias, the electric field will fall chiefly across the
core (we assume here that the widening of the depletion layer
with reverse bias is negligible).

The change in refractive index with applied field E is given
by

∆nc =
1
2
rn3

cE (36)

where r is the linear EO coefficient appropriate to the crys-
tal orientation and field polarization. Extrapolating data from
[41], we use r = −1.5 pm/V at 1550 nm and −1.9 pm/V
at 775 nm. The applied field must be less than the dielectric
breakdown field, which is around 300 kV/cm. From (36), the
largest index difference achievable using the linear EO effect
is ∆nc ≈ −0.001. Fig. 12 shows a tuning curve for a waveg-
uide with {x1, xc, x2} = {0.3, 0.5, 0.7}, with the shift in funda-
mental phase-matching wavelength with applied voltage shown,
due to the small tuning range achieved. The tuning slope is ap-
proximately −29 pm/V, with a maximum wavelength tuning
of −0.29 nm at 10 V (which is close to the breakdown volt-
age for this structure). This fine tuning of the phase-matching
wavelength can be used to compensate for drift in the pump
wavelength.

VI. ADVANCED DESIGNS

Further improvements to the design of the BRW/TIR phase-
matched waveguide can be achieved using advanced optimiza-
tion techniques. In Section IV, the properties of the waveg-
uide were examined by exploring various contours of parameter
space that were expected to provide optimal performance. A
more thorough optimization technique might involve the ap-
plication of evolutionary algorithms to seek out globally op-
timal waveguide designs depending on the particular device
application.

Fig. 12. Example of linear electro-optic tuning: phase-matching wavelength
shift versus applied voltage.

Many of the waveguide properties can be improved upon by
deviating from the structure shown in Fig. 2. The SHG con-
version efficiency of this device is limited by the oscillatory
behavior of the BRW mode, as seen in Fig. 3. Examining the
contribution to effective thickness from cladding period n, it can
be shown that∣∣∣∣

∫
n=2q

[E2ω (x)]∗ d′(x)[Eω (x)]2 dx

∣∣∣∣
>

∣∣∣∣
∫

n=2q+1

[E2ω (x)]∗ d′(x)[Eω (x)]2 dx

∣∣∣∣ , q = 0, 1, . . .

(37)

and, therefore, each pair of cladding periods contributes

2q+1∑
n=2q

∫
n

[E2ω (x)]∗ d′(x)[Eω (x)]2 dx < 0 (38)

with respect to the contribution of the core. This problem has
been overcome by various authors in TEω

0 − TE2ω
2 modal dis-

persion phase matching by using rotationally twinned domains
to reverse the sign of d′ at the points where the TE2ω

2 mode
changes the sign [28]. While domain reversal in GaAs–AlGaAs
has been achieved [11], [12], it has been applied only as a single
reversal, patterned in the direction of propagation, to achieve
QPM. Reversing the domain between every cladding period
would be technologically unfeasible and would create problems
for current injection into the core. However, a single domain
reversal at one core/cladding interface is possible and would
allow the contributions of each cladding to cancel out. The inte-
grand of the numerator of (17) is plotted in Fig. 13 to illustrate
this point. In this case, the problem is reduced to maximizing
the overlap of both modes with the core. Fig. 14 shows η for
this case, using the same waveguide indices as in Fig. 6(b). The
efficiency is seen to improve by a factor of 1.5 to 2 over this
range. It should be noted that inverting one cladding destroys
the symmetry of the induced polarization at 2ω, allowing for
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Fig. 13. Integrand of the numerator of (17), showing the effect of domain
reversal in the cladding. (Solid line) No domain reversal. (Dashed line) domain
reversed in top cladding (x > tc/2).

Fig. 14. (neff)−3(teff)−1 [µm−1] over the range of waveguide designs used
in Fig. 6(b), with one cladding domain inverted.

coupling to odd BRW modes, which may be useful for type-I
phase matching when narrow waveguide cores are used [22].

To avoid the necessity of domain inversion, the index profile
of the cladding may be modified in a number of ways. Specif-
ically, the use of a multilayer cladding period is expected to
improve spatial overlap of the modes while tailoring the dis-
persion to improve the spectral properties of the waveguide.
Clearly, though, this will require a substantial alteration to the
unit cell translation matrix formalism described in Section II.

Finally, it is possible to allow the thicknesses and composi-
tions of each layer to become degrees of design freedom, subject
to the constraint that the fundamental and SH modes experience
TIR and Bragg waveguiding (although not necessarily at the
quarter-wave condition), respectively. In this case, any number
of waveguide properties can be simultaneously optimized. To
this end, optimization methods such as the genetic algorithm

have been successfully applied to design problems involving
stacks of thin films [42], [43].

VII. CONCLUSION

An innovative method has been introduced to provide phase
matching for SHG within a waveguide. The waveguide operates
via TIR at the fundamental wavelength and by transverse Bragg
reflection at the SH wavelength. The Bragg waveguide is capable
of guiding modes with effective indices lower than the material
indices, making it an excellent choice to compensate for the large
dispersion of semiconductors near their electronic resonances,
where nonlinear effects are enhanced. By forcing the BRW to
operate in the center of the stopband, we derived an analytical
solution to the phase-matching core thickness for arbitrary core
and cladding materials.

Using the AlGaAs material system as an example, we in-
vestigated the dispersion, phase-matching bandwidth, and non-
linear coupling efficiency. The applicability of free carrier and
EO tuning of the phase-matching wavelength was discussed,
with order-of-magnitude estimates given for the tuning range.
The waveguide properties compare favorably with many other
methods that have been developed for phase matching, and as
such, the concept holds great promise to provide efficient mono-
lithically integrated nonlinear elements in semiconductors.
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