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The performance of one-dimensional (1D) coupled cavities photonic crystal (PC) filters has been analyzed
by finite-difference time-domain (FDTD) simulation. It is shown that the addition of tapered Bragg mir-
rors at each side of the cavities, to create near-Gaussian field profiles for the cavity modes, results in the
prediction of near flat-top passband filters with high out-of-band rejection ratio and near unity transmis-
sion. The tapered structures suppress the vertical radiation loss to allow optimization of the number of
mirror periods for the best filter response whilst guaranteeing high transmission. A critical coupling con-

ﬁ‘i{:gmﬁ dition (k = 2Loyu¢/Lin = 1) for flat-top responses in doubly coupled cavities filters is proposed in the tapered
Photonic crystal structures. An optimized filter for 100 GHz optical communication system are demonstrated with 1dB
Microresonators bandwidth of 0.17 nm, roll-off of 0.6 dB/GHz, out-of-band signal rejection of 33 dB and transmission of
Gratings 95%. Further improvement of roll-off and out-of-band rejection is demonstrated in a triply coupled cav-

Finite difference methods ities filter.
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1. Introduction

Selective bandpass filters play a vital role in modern dense
wavelength-division multiplexing (DWDM) systems that are char-
acterized by small channel spacing and high bit rates [1]. There
are numerous technologies for realizing bandpass filters. Dielec-
tric thin-film [2], arrayed-waveguide grating [3], and Mach-Zehn-
der [4] filters are mature technologies but their complexity or
dimensions strongly increase for applications in DWDM systems.
As an emerging technology, microcavity filters have the great
advantage of compact size, a requirement for high density pho-
tonic integration. Other major advantages include high finesse,
which guarantees the separation of two adjacent channels and
low cross talk, and a large free spectral range, which ensures
the clean transfer of a single channel to and from the whole
DWDM band [5-14].

Compared to microring/microdisk filters, PC cavity filters are
even more compact, have higher quality factors (Q-factors) and
more flexibility in the design [9-14]. Filters made in 2D PC slabs
have been the subject of much attention [10,11,13], owing to the
development of ultrahigh-Q microcavities [15]. One-dimensional
(1D) PC wavelength selective structures, i.e. Bragg gratings embed-
ded in optical waveguides or fibers, have been largely demon-
strated and discussed due to the advantages in terms of
simplicity and flexibility [16-19]. Recently, a 1D PC filter with ta-
pered Bragg mirrors in a silicon-on-insulator (SOI) waveguide with
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a Q-factor as high as 8900 and a transmission of 60% was demon-
strated [20], showing the potential of such structures for applica-
tions in photonic integrated circuits.

In our most recent paper [21], a 1D PC cavity with tapered Bragg
mirrors demonstrated an ultrahigh-Q (>6.7 x 10°) resonance, in
which the optimized Gaussian-like mode field distribution sup-
presses the out-of-plane loss. However, the intrinsic Lorentzian fil-
tering response in a single cavity PC filter is not ideal for practical
applications. For densely spaced channels, the desired filter charac-
teristic is a box-like response with a flat passband and fast roll-off.
High-order filters, i.e. coupled cavity filters, have been widely
investigated for engineering the filtering response [6,8,10-
12,22,23]. Higher-order filters have a larger out-of-band rejection
and a steeper slope. In the case of coupled cavity filters, the shape
of the passband depends on the number of Bragg mirror periods in
the inner and outer reflectors [23]. However, the out-of-plane radi-
ation loss is larger when longer gratings are used to increase Q-fac-
tor or when complex PCs are used to create the filtering function
[14], limiting the scope for optimizing the shape of the passband.
This is a more serious problem in SOI materials where the large in-
dex contrast can increase the loss to limit the linewidth of the
spectral response [10].

This paper describes an investigation by FDTD method of high-
order 1D PC filters with tapered Bragg mirrors. The critical coupling
condition is presented for second order filters with flat-top spectral
responses. The innovation of using tapered Bragg mirrors is shown
to enable the formation of a second order filter with 1 dB band-
width of 0.17 nm, roll-off of 0.6 dB/GHz, out-of-band rejection of
33 dB and transmission of 95%.
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2. Method

Transfer-matrix-method (TMM) is a conventional and efficient
method for the analysis of optical gratings [12,14,22,23]. However,
it does not take into account the out-of-plane loss, which is the key
parameter in PC cavity and waveguide structures in micro-scale.
Actually, the loss becomes the determinate factor in such a struc-
ture in SOI materials, where the refractive index contrast is large
and the light scattering is not negligible.

FDTD method has been proved to be the most accurate numer-
ical method for the optical waveguide investigation [5,7-11]. Being
named as a numerical experiment, FDTD includes all loss mecha-
nism in the simulation and provides the closest result to the real
world. In this paper, FDTD method is used in the filtering response
simulation as in [7,21].

The schematic of a second order 1D PC filter based on doubly
coupled cavities is shown in Fig. 1. It comprises a block of SOI mate-
rial consisting of a Si substrate, SiO, buffer layer of 1.5 pm, the top
Si guide layer of 360 nm and the air cladding layer. The refractive
index values of silicon and silicon dioxide used in the calculations
are 3.48 and 1.46, respectively. It is assumed that coupled cavities
layers are then formed by etching Bragg mirrors, where Nippe, + %2
pairs of Si and air gap layers are sandwiched between two coupled
cavities with thickness D and Noyer + ¥2 pairs of Si and air gap layers
between the cavities and the feeder waveguides.

In the 2D FDTD simulations, the corrugated waveguide is as-
sumed to be illuminated from the input waveguide by the trans-
verse magnetic (TM, Hy=0) fundamental mode, which is a
Gaussian-modulated cosine impulse covering a wide frequency
band. The “bootstrapping” technique is used to set the exciting
source [24]. The perfectly matched layer (PML) absorbing bound-
ary is used to terminate the FDTD calculation window, with the
PML thickness of 0.5 and 1 um in the x and z directions, respec-
tively. The spatial cell size is 10 nm, and the time step is Courant
limit [24]. The transmission spectra are calculated from the power
flux recorded at the detector plane, which is normalised by the
source value. The resonance wavelength is found by fitting a
Lorentzian to the transmission peak and Q-factor is given by the ra-
tio of the peak wavelength to its 3 dB bandwidth. By compressing
the incident impulse spectral width into a range narrow enough to
ensure that only on-resonance modes can be excited, we can ob-
tain the mode field distributions from the FDTD simulation.

3. Filtering response in second order PC filters

In Ref. [21], it is shown that tapered mirrors formed by varying
the length of Si blocks close to the cavity layer creates a nearly
ideal field profile in a single microcavity and suppresses the verti-
cal radiation loss, to yield a theoretical Q-factor as high as
6.7 x 10°. In this paper, the widths of Si block dH, air gap dL and
the cavity D are set to be the same values as in [21], namely
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Fig. 1. Schematic of a second order 1D PC filter on SOI material (Nipper =7,
Nouter=3)~

200 nm, 90 nm and 400 nm, respectively. The etch depth h is set
to be 650 nm. Si tapers are added to the Bragg reflectors by reshap-
ing the three Si blocks in each mirror closest to the cavity layer so
that their widths decrease from 170 to 190 nm, in steps of 10 nm,
moving away from the cavity while the air section lengths remain
constant. Fig. 2 shows the effect of the number of complete mirror
pairs Ninner and Noyter 0N the performance of the filter. In all cases
Nouter includes the number of the tapered periods and the re-
sponses for Noyter = 5, 6 and 7 are shown respectively in Fig 2a-c.
The values of Njyper are given by Nipner = 2Nouter + S Where s = —1,
0, +1, +2 for each value of Nyyter considered.

The grating section between the coupled cavities has a strong
influence on the filtering response. In each case, a top-flat filtering
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Fig. 2. Spectra responses of second order PC filters with tapers. (a) Nouter =5
(including the tapers), (b) Nouter = 6, (C) Nouter = 7. The spectra at Nipner = 2, Nouter + 1,
i.e. k=1, are plotted as thick solid lines.
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response is observed at Nipper = 2Nouter + 1. When Nipper is less than
this critical value for flat responses, two peaks appear in the re-
sponse due to the strong coupling. The resonant modes in two iso-
lated cavities couple with each other and their wavelengths shift
from the initial wavelength 2o. Decreasing Njnner increases the cou-
pling strength, causing a larger wavelength shift and hence a dee-
per dip in the spectral response. When Nj, is larger than the critical
value, the coupling between the two cavities becomes weaker and
no obvious wavelength shift occurs. The filtering behavior of the
whole structure becomes that of a series of filters of the same
selective wavelength and has a Lorentzian shape with reduced
transmission. Based on the results in Fig. 2, a top-flat filtering re-
sponse can be realized in a 1D second order PC filter at Nj, = 2N-
out * 1. For further analysis, we define k =2L,,/L;i,, where L;, is
the center-to-center distance between the two cavities and Loy, is
the distance from the center of one cavity to the plane with dH/2
length into the feed waveguide as marked in Fig. 1. So k = 1 is found
to be the critical condition for a top-flat response. This result con-
firms extends the finding in [22] based on a transfer matrix method
that neglects the effect of vertical radiation loss on the transmis-
sion and the full-width at half-maximum (FWHM).

The filtering responses at k = 1 in both tapered and non-tapered
1D PC filters are shown in Fig. 3 for different Nyye. For the non-ta-
pered structures shown in Fig. 3a, the FWHM of the passband de-
creases significantly with the increasing Nou.er but at the cost of
degraded transmission. For example, only 40% transmission occurs
when Nyyeer = 8. Consequently, in any practical application the
compression of the FWHM achieved by increasing Noyeer Will be
limited by the transmission value. Fig. 3b shows the effect of add-
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Fig. 3. (a) Spectra responses of second order PC filters without tapers. (b) Spectra
responses of second order PC filters with tapers. In both cases, Ninner = 2, Nouter + 1,
i.e. k=1, and Nyye varies from 4 to 8.

ing tapers between the cavities and the outer Bragg mirrors. As No.
ter Varies from 4 to 8, the FWHM is compressed from 4.9 nm to
0.085 nm. However, with the tapers added the flat-top transmis-
sion remains above 98%. As discussed in [21], optimum tapers give
rise to cavity modes with a Gaussian-like field distribution and
suppresses the vertical radiation loss, enabling the use of longer
Bragg mirrors to tailor the passband to meet a given system
specification.

For example, a second order 1D PC microcavity filter with Ng,,.
wer=7 and k=1 will meet the requirements of a DWDM system
operating at 100 GHz, i.e. 0.8 nm channel interval. This is shown
in Fig. 4 which compares the spectral response of both non-tapered
and tapered first and second order PC filters. Compared to the
Lorentzian filtering responses of single cavity filters, the second or-
der filters have flat transmission bands with steep roll-off. Defining
the signal out-of-band rejection as the ratio of spectral intensity at
central wavelength and 0.8 nm-offset wavelength, we summarize
the filtering characteristics in single cavity filters with and without
tapers, and second order filters with and without tapers in Table 1.
It is obvious that the second order filter with tapered structures
supports the highest transmission of 95%, the maximum out-of-
band rejection of 33 dB, and has the largest roll-off of 0.6 dB/
GHz. Such a filter will greatly reduce crosstalk between neighbor-
ing channels in DWDM systems.

The —1 dB bandwidth is 0.17 nm in the tapered second order fil-
ter, which corresponds to a 20 GHz modulation bandwidth. In the
case of a tapered single cavity filter, a 30 dB out-of-band rejection
occurs only with a —1 dB bandwidth of 0.02 nm, owing to the
Lorentzian shape of its response, a value too low to accommodate
encoding a high data rate on to an optical carrier. In addition, the
FWHM in this tapered second order filter will in fact be smaller
than that of the first order filter, unlike the results in [10] where
the FWHM significantly increases in second order filters. This re-
sult demonstrates the feasibility of such a 1D PC filter for applica-
tion in DWDM systems.
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Fig. 4. Spectra responses in a single cavity PC filter without (solid line) and with
(dashed line) tapers, and in the corresponding second order filters without (dotted
line) and with (dash dot) tapers, where Noyter = 7.

Table 1
Filtering characteristics in single cavity filters with (ST) and without (S) tapers, and
doubly coupled cavities filters with (DT) and without (D) tapers

S ST D DT
Roll-off (dB/GHz) 0.09 0.19 0.25 0.60
Signal rejection (dB) 8 14 17 33
—1 dB Band width (nm) 0.34 0.15 0.42 0.17
Transmission in —1 dB band 80% 95% 69% 95%
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Fig. 5. Spectra responses of third order PC filters with tapers, where Nouter = 7 and
Ninner varies from 14 to 16. The response in an optimized third order filter is shown
as dashed line.
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Fig. 6. Electric field and the refractive index distribution in the third order PC filter
at Nouter =7 and Ninner = 7. Two anti-symmetrical modes f=186.29, 187.79 THz
and one symmetrical mode f=187.06 THz are shown.

4. Filtering response in third order PC filters

Further improvements of the out-of-band rejection and the roll-
off are expected in higher-order filters as discussed in [22,23]. The
spectral response of third order 1D PC filters with the same tapered
structure parameters are shown in Fig. 5 for Noyter = 7. The opti-
mized response is again found at Niyper = 2Nouter + 1, although the
peak response now is not as flat as for the optimum second order
filters shown in Fig. 2. The —1.2 dB bandwidth is 0.23 nm. How-
ever, the roll-off is almost double that of the optimum second or-
der filter and the out-of-band rejection increases to 50 dB. Based
on TMM simulation, we found that the non-symmetry and non-flat
top at k=1 are caused by the non-m phase shift in each pair of
Bragg mirror. In fact, the resonant mode in each isolated single cav-
ity should be on resonance. As these three cavities couple with
each other, the modes shift in frequency and raise a wider flat-

top rather than a Lorentzian shape. The field distributions of three
resonant modes in the whole structure are shown in Fig. 6 together
with the refractive index distribution. A simple optimization of the
filtering response is demonstrated in Fig. 5 as dashed line, where
an increase of the refractive index of the central cavity as small
as 2 x 10~ relative to the outer cavities is introduced. Such a small
refractive index change can be achieved by carrier injection in Si.
The frequency intervals between three resonator modes are engi-
neering slightly and give a more flat top of the spectral response.
A further improvement in the third order filters is expected as
TMM predicts if high Si-filling ratio Bragg mirrors with 7 phase
shift is used.

5. Conclusion

In conclusion, high-order 1D PC filters with tapered Bragg mir-
rors have been investigated by FDTD method. The effect of the
numbers of mirror pairs Nipper and Noyer 0N the performance of
the filters is discussed in detail and Njyner = 2Nouter + 1 is found to
be the critical coupling condition for a flat-top response in second
order filters. The use of outer Bragg mirrors that incorporate tapers
results in flat passbands with transmission above 95%. In particu-
lar, the FWHM of an optimized spectral response is reduced to
0.22 nm with a roll-off of 0.6 dB/GHz and an out-of-band rejection
of 33 dB. Higher-order structures such as third order filters demon-
strate larger roll-offs and out-of-band rejections. Such compact 1D
PC filters offer major opportunities for realizing photonic inte-
grated circuits for application in future DWDM systems.
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