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Abstract
We present a rigorous analysis of the Landau–Zener linear-in-time term crossing problem for
quadratic-nonlinear systems relevant to the coherent association of ultracold atoms in
degenerate quantum gases. Our treatment is based on an exact third-order nonlinear
differential equation for the molecular state probability. Applying a variational two-term
ansatz, we construct a simple approximation that accurately describes the whole-time
dynamics of the coupled atom–molecular system for any set of involved parameters. Ensuring
an absolute error of less than 10−5 for the final transition probability, the resultant solution
improves by several orders of magnitude the accuracy of the previous approximations by A
Ishkhanyan et al developed separately for the weak coupling (2005 J. Phys. A: Math. Gen. 38
3505) and strong interaction (2006 J. Phys. A: Math. Gen. 39 14887) limits. In addition, the
constructed approximation covers the whole moderate-coupling regime, providing this
intermediate regime with the same accuracy as the two mentioned limits. The obtained results
reveal the remarkable observation, that for the strong-coupling limit the resonance crossing is
mostly governed by the nonlinearity, while the coherent atom–molecular oscillations arising
soon after the resonance has been crossed are basically of a linear nature. This observation is
supposed to be of a general character, due to the basic attributes of the resonance-crossing
processes in the nonlinear quantum systems of the discussed type of involved quadratic
nonlinearity.

Since the realization of the Bose–Einstein condensates in dilute
gases of neutral atoms [1, 2], the nonlinear version of the
Landau–Zener term crossing problem [3, 4] has become the
subject of considerable theoretical research [5–20]. Different
nonlinear generalizations have been suggested and explored.
Among these, of central interest is the basic case involving
a quadratic nonlinearity in equations of motion, due to its
relevance to superchemistry [21]; that is, coherent association
of cold atoms into molecules via optical laser photoassociation
[22] or magnetic Feshbach resonance [23]. In the context
of cold atom association, the two-mode mean-field Gross–
Pitaevskii limit is described by the following semiclassical
time-dependent nonlinear two-state model, treating the atomic

and molecular condensates as classical fields [21, 23, 24]:

i
da1

dt
= U(t) e−iδ(t)ā1a2,

i
da2

dt
= U(t)

2
eiδ(t)a1a1,

(1)

where a1 and a2 are the probability amplitudes of atomic
and molecular states (ā1 denotes the complex conjugate of
a1) respectively, and the real functions U(t), δ(t) describe
the coupling between the two modes. In photoassociation,
U(t) is referred to as the Rabi frequency of the laser-field,
and the derivative δt (t) is the detuning of the laser field
frequency from that of the transition from the atomic state
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to the molecular one. These functions are controlled by
the applied optical (photoassociation) or magnetic (Feshbach
resonance) fields. The Landau–Zener term crossing problem
is now defined as a linear-in-time resonance crossing of the
detuning, δt (t) = 2δ0t , the Rabi frequency being constant
during the interaction, U(t) = U0 = const [3, 4].

We start our discussion by changing from system (1) to the
equation for the molecular state probability p = |a2|2 written
in the following form [11, 12, 25]:(

d

dt
− 1

t

)[
p′′ − λ

2
(1 − 8p + 12p2)

]
+ 4 t2p′ = 0, (2)

where prime denotes differentiation with respect to time. Here,
all the quantities are supposed to be dimensionless and we
have introduced the conventional Landau–Zener parameter
λ = U 2

0

/
δ0. System (1) describes a lossless process, where

the total number of particles is conserved: |a1|2 + 2 |a2|2 =
const = 1. Note that this normalization is incorporated in
equation (2). Finally, we assume the initial condition of a pure
atomic condensate, with no molecules available originally:
p(−∞) = 0.

Based upon our previous experience in the treatment of
equation (2) (see, e.g., [26–28]) we introduce the following
two-term ansatz involving three variational constants A, C1,
and λ1:

p = p0(A, t) + C1
pLZ(λ1, t)

pLZ(λ1,∞)
. (3)

Here, pLZ(λ1, t) is the solution of the linear Landau–Zener
problem for an effective λ1 [26]:(

d

dt
− 1

t

) (
p′′

LZ + 4λ1pLZ − 2λ1
)

+ 4t2p′
LZ = 0, (4)

and p0(A, t) is the solution of a nonlinear augmented limit
equation controlled by an adjustable parameterA [27, 28]:(

d

dt
− 1

t

) [
−λ

2
(1 − 8p + 12p2) + A

]
+ 4t2p′ = 0. (5)

Both pLZ(λ1, t) and p0(A, t) are supposed to satisfy the initial
condition p(−∞) = 0.

The linear Landau–Zener function pLZ(λ1, t) is written
in terms of known mathematical functions. For instance,
it can conveniently be written in terms of the Kummer
hypergeometric functions [29] (see e.g. [11]). The solution
produces the Landau–Zener exponential law for the final
transition probability: pLZ(t = +∞) = 1 − e−πλ1 . Note
that the transition probability at the resonance crossing point
t = 0 also obeys an exponential dependence: pLZ(t = 0) =
(1 − e−πλ1/2)/2.

Regarding the limit solution p0(A, t), integration of
equation (5) via transformation of the independent variable,
followed by permutation of dependent and independent
variables, results in a quartic polynomial equation for p0:

λ

4t2
= C0 + p0(p0 − β1)(p0 − β2)

9(p0 − α1)2(p0 − α2)2
, (6)
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Figure 1. The limit solution p0(t) for a positive A (λ/2 > A > 0)
and fixed λ = 4.

where C0 is an integration constant and the involved
parameters α1,2, β1,2 are defined as

α1,2 = 1

3
∓ 1

6

√
1 +

6A

λ
, β1,2 = 1

2
∓

√
A

2λ
. (7)

For the initial condition p0(−∞) = 0 it holds that C0 = 0.
Note that if we now take A = 0, equation (6) degenerates into
a quadratic equation because three of the four parameters α1,2,
β1,2 become equal, α2 = β1 = β2 = 1/2. The solution to
this quadratic equation diverges at t → +∞. Hence, it cannot
be used as an appropriate initial approximation. In contrast,
for a positive λ/2 > A > 0 the solution to equation (6)
defines a bounded, monotonically increasing function which
tends to a positive finite value less than 1/2 when t →
+∞ (figure 1). This solution possesses all the necessary
characteristics and, therefore, can be used as an appropriate
initial approximation to construct an accurate solution to the
problem. The introduction of parameter A is therefore a
constructive step.

Though equation (6) does not determine p0 explicitly,
many important characteristics of p0(t) can be determined
exactly. This includes the value of the function and its
derivatives at the resonance crossing point t = 0, as well
as at t → +∞. For instance, the final value p0(+∞) is easily
found by noting that the left-hand side of equation (6) goes to
zero as t → +∞. It is then seen that it should be p0(+∞) = 0,
β1 or β2. Since p0(t) is a monotonically increasing function
with p0(−∞) = 0, and since β2 > 1/2, we deduce that
p0(+∞) = β1.

In a similar way we find that p0(0) = α1. Thus,

p0(t = 0) = 1

3
− 1

6

√
1 +

6A

λ
,

p0(t = +∞) = 1

2
−

√
A

2λ
. (8)

Having introduced the ansatz (3), we first demonstrate
numerically that it produces highly accurate results. The
numerical simulations show that for any given value of the
input Landau–Zener parameter, λ ∈ [0,∞), we can always
find A, C1, and λ1 so that function (3) accurately fits the
numerical solution to the exact equation for the molecular
state probability (2) in the whole-time domain—the graphs
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Figure 2. Molecular state probability as a function of time at λ = 4
(dashed line is the final transition probability p(+∞) = β1 + C1,
dotted lines are the limit solution p0 and the term proportional to
pLZ(λ1, t)). The graph produced by formula (3) is indistinguishable
from the numerical solution of equation (2). The filled circles are
the time points used to fit formula (3). It is seen that in the
strong-coupling limit λ � 1 the prehistory of the system and the
evolution near the resonance crossing region t ≈ 0 are basically
defined by the limit solution p0, while the atom–molecule
oscillations are described by the linear Landau–Zener solution with
the effective Landau–Zener parameter λ1.

produced by the formula are practically indistinguishable from
the numerical solution to equation (2) (see figure 2). More
precisely, in quantitative terms, for any given λ the proposed
approximation assures an absolute error of less than 10−5 for
the final transition probability p(+∞). For arbitrary time
points, the absolute error is commonly of the order 10−4 (the
typical error curves for λ � 1 and λ � 1 are shown in
figures 3(a) and (b)). The less accurate result is observed
for points in a relatively small region embracing the first local
maxima and minima of p(t) after the resonance crossing point
has been passed: for this region, the error increases up to
∼10−3. Summarizing the observations above, we may state
that the introduced ansatz describes the molecule formation
process with very high accuracy in the whole-time domain.

In figures 4–6 we show the dependences λ1(λ), A(λ),
and C1(λ), respectively, obtained from numerical simulations
(filled circles). These graphs suggest several general
conclusions.
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Figure 3. Deviation of the approximation defined by formula (3) from the numerical solution of equation (2) at (a) λ = 0.7 and (b) λ = 4.
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Figure 4. Variational parameter λ1 as a function of λ. Circles
present the numerical fit for ansatz (3), the solid line presents the
analytical formula (13). The two, weak and strong, interaction
regimes differ in sign of λ1: λ1 is positive for λ < 1 while it

becomes negative starting from λ ≈
√√

2. The asymptote of λ1 for
large λ � 1 is a linear function: λ1 ≈ −λ/2 + 0.65.
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Figure 5. Variational parameter A as a function of the input LZ
parameter λ. Circles present the result of the numerical fit using the
ansatz (3) while the solid line presents the analytic formula for A(λ)
given by equation (11). Two clearly marked regimes of interaction
are observed: the weak-coupling regime corresponds to λ < 1, and
the strong interaction occurs at λ > 1.

First, it is seen from figure 4 that for λ � 1, λ1 is a large
negative parameter. Apart from this unexpected negative sign,
this observation leads to a more important conclusion. For
a negative λ1, the linear Landau–Zener function pLZ(λ1, t)

noticeably differs from zero, not starting from a negative
time interval preceding the resonance crossing at t = 0
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Figure 6. Variational parameter C1 as a function of λ. Circles
present the result of the numerical fit for ansatz (3), the solid line
presents analytic formula equation (12). Weak and strong
interaction regimes correspond to increasing and decreasing
branches of C1, respectively.

(as is the case for a positive Landau–Zener parameter), but
exclusively for positive time points of the order of or larger
than t ≈ √−λ1/2 > 0 (see figure 2).

Hence, in the strong interaction limit of high field
intensities λ � 1, the second term in the ansatz equation (3)
is small when compared with the limit solution p0, and thus
can be effectively disregarded for the prehistory under t < 0,
and for a time after the resonance has been crossed. On the
other hand, it is clearly seen from figure 2 that p0 practically
becomes constant at the end of the interaction, after coherent
oscillations between the atomic and molecular populations
have begun. Thus, in this final stage of the evolution the
time dynamics of the system is basically controlled by the
scaled linear Landau–Zener function pLZ(λ1, t). In other
words, since the limit solution p0 is principally defined by the
nonlinearity involved (see equation (5)), in the case of strong
coupling the resonance crossing is mostly governed by the
nonlinearity, while the coherent atom–molecular oscillations
arising soon after the resonance has been crossed are basically
of a linear nature. This decomposition is quite surprising as
the equations of motion (1) do not indicate this.

Furthermore, a glance at the graphs of A(λ) and C1(λ)

(figures 5 and 6) immediately suggests that there exist two
clearly discernible regimes of interaction: for λ < 1 we
observe fast growth for the two parameters, while for λ > 1
we see a relatively slow decrease. The difference between
the two regimes is also clearly seen in the behaviour of the
effective Landau–Zener parameter λ1(λ) (figure 4). Indeed,
the two interaction regimes clearly differ in the sign of λ1: λ1

is positive for λ < 1, while it becomes negative starting from
λ ≈ 1.17. Further examination shows that in the limit of weak
coupling (or, equivalently, fast sweeping), when λ → 0, the
parameter A behaves as A ∼ λ/2, while in the opposite limit
of strong interaction (or slow sweeping), λ → ∞, inverse
dependence A ∼ 1/λ is observed.

The asymptotic behavior of the system in the limit of weak
coupling is readily understood when examining the structure

of ansatz (3), together with the properties of the limit function
p0. Indeed, it is clear physically and it also follows from
equation (2) for the molecular state probability, that in this
limit the influence of nonlinearity ought to disappear. Since
nonlinearity is manifested in equation (3) through the limit
solution p0, one should expect that p0(+∞) → 0 when
λ → 0. This implies β1 → 0, which immediately leads
to the asymptotes [26]

A ∼ λ/2, C1 ∼ PLZ(λ, +∞)/4 and λ1 ∼ λ at λ → 0.

(9)

These are, indeed, the asymptotes observed from the numerical
simulations shown in figures 4–6. Furthermore, it has
previously been shown [27] that in the opposite limit of strong
interaction λ � 1 (high-field intensities or slow sweeping
rates) the asymptotic behaviour of the system is

A ∼ 1/λ, C1 ∼ 1/λ and λ1 ∼ −λ/2 + const,

λ → +∞, (10)

where the constant is of the order of unity.
We go further and find analytic approximations for the

variational parameters A(λ), C1(λ), and λ1(λ) that fit the
numerical results much better than the previous asymptotes.
To do this, we substitute the trial function (3) into the exact
equation for the molecular state probability (2) and examine
the remainder; more precisely, we consider in detail how
the remainder will form the next approximation term. The
minimization of the latter eventually leads to the formulae

A = λ

2
2F1

(
1, 2; 1.385;−λ2

2

)
, (11)

C1 = PLZ(λ, +∞)

4

√
2F1

(
1, 2; 1.284;− λ2

2.75

)
, (12)

(2F1 is the Gauss hypergeometric function [29]), and

λ1 = λ (1 − 3β1 − 3C1) = λ (1 − 3p(+∞)). (13)

The derived formulae define a fairly good approximation.
Comparison of these formulae with the numerically found
values of the introduced variational parameters is made in
figures 4–6. It is seen that the coincidence is, indeed, good. For
the whole variation range of the input Landau–Zener parameter
λ, deviation of the formulae from the numerical result does
not exceed 10−4. Of course this ensures the same accuracy for
the final transition probability p(+∞) = β1 + C1, shown in
figure 7. This result improves the previous approximations
[7, 11, 12] by two orders of magnitude.

To summarize, we have introduced a two-term variational
ansatz for the nonlinear Landau–Zener problem for coherent
association of ultracold atoms. We have demonstrated
numerically that this ansatz accurately describes the dynamics
of the system in the whole-time domain for any set of input
parameters of the problem. It provides the final transition
probability with an absolute error of less than 10−5, and for
arbitrary time points the absolute error is mostly of the order of
10−4, increasing up to ∼10−3 in a relatively small region that
includes the first local maxima and minima of the transition
probability p(t) after the resonance has been crossed. The
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Figure 7. Final transition probability to the molecular state as a
function of λ. Circles show the result of numerical fit with ansatz
(3), the solid line is calculated using formulae (11, 12), and we take
p(+∞) = β1 + C1.

introduced ansatz involves three variational parameters, one
of which serves as an effective Landau–Zener parameter in
the linear Landau–Zener function involved in the proposed
approximation. Surprisingly, this parameter proves to be a
negative number in the strong interaction limit. The first term
of the ansatz accounts for the nonlinearity, while the second is
basically of a linear nature. This decomposition leads to the
conclusion that in the strong interaction limit (corresponding
to high laser-field intensities or slow sweep rates), the time
evolution of the system can be divided into two different
regimes: the prehistory and the close resonance crossing
domain are mostly controlled by the nonlinearity, while
the coherent oscillations between the atomic and molecular
populations that begin after the resonance has been crossed
are basically of a linear nature. This conclusion is applicable
to all the level crossing models as it rests exclusively on the
type of quadratic nonlinearity discussed. Further, we have
examined the asymptotes of the two parameters involved in
the two aforementioned terms, and have shown that in the
strong interaction limit they are inversely proportional to the
input Landau–Zener parameter. Previously it was proposed
that in the strong coupling limit the final transition probability
to the molecular state obeyed a power law [9, 10, 12–19].
The developed ansatz clearly shows that this is not strictly the
case, because of the Landau–Zener exponential involved in the
formula for C1; rather, the power law is a good approximation
if the accuracy of the description is not required to be very
rigorous. We have proposed highly accurate approximate
analytic formulae for the three variational parameters used.
The expression for the final transition probability resulting
from these formulae improves the previous result by an order
of magnitude. Finally, we note that the proposed ansatz may
be extended to other models, and it may be adapted to treat the
extended versions of nonlinear two-state problems involving
higher-order nonlinearities, e.g. those representing the inter-
particle elastic scattering. We have checked that this is the
case for several physical situations (see e.g. [28]).
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