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Dynamics of a charged particle in a circularly polarized traveling electromagnetic wave

A. Bourdier and S. Gond*
Commissariat a` l’Énergie Atomique, Direction Ile de France, De´partement de Physique The´orique et Applique´e,

Boı̂te Postale 12, 91680 Bruye`res-le-Chaˆtel, France
~Received 4 November 1999; revised manuscript received 24 January 2000!

The relativistic motion of a charged particle in a transverse circularly or almost circularly polarized homo-
geneous electromagnetic wave is studied using the Hamiltonian formalism. First, the case of a circularly and
almost circularly polarized traveling wave propagating in a nonmagnetized space is studied. In the case of an
almost circularly polarized wave, it is shown that the charged particle has an average velocity along the
propagation direction of the wave. The same result is derived considering a cold electron plasma. The case of
a traveling wave propagating along a constant homogeneous magnetic field is then considered. Using canonical
transformations, it is shown that the equations of motion can be derived from an autonomous Hamiltonian
which has two degrees of freedom and a first integral. As a consequence, the system is completely integrable.
An equation is found for the particle energy when it is initially resonant. This equation is solved exactly, and
the asymptotic solution is obtained. The expression for the energy allows a solution for the system in terms of
quadratures, and in consequence the asymptotic solution for all the variables. The case of an almost circularly
polarized wave propagating along a constant homogeneous magnetic field is also studied. Finally, a magnetic
field gradient is considered, and new acceleration mechanisms are found.

PACS number~s!: 41.75.Lx, 05.45.2a, 03.65.Pm, 02.10.Jf
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I. INTRODUCTION

The dynamics of a charged particle in a transverse cir
larly polarized electromagnetic wave is studied in this pa
by using the Hamiltonian formalism. Several importa
points in Hamiltonian dynamics must first be recalled. A
autonomous Hamiltonian system is called completely in
grable if it possessesn independent, time-independent inva
ants in involution@1–4#. This is often called the Liouville
theorem@1,2#. When it is completely integrable, the solutio
for the motion can be expressed in terms of canonical act
angle variables@1–4#. Kozlov and Kolesnikov showed tha
the solution of a time-dependent Hamiltonian system witn
degrees of freedom possessingn independent, possibly time
dependent invariants in involution can be found by quad
tures@1,5#. It was shown that in this case no chaos can ta
place@6#. We shall call such a system integrable. This is
extension of the first definition of integrability. In this sens
Liouville’s theorem on integrability still holds in the case
time-dependent Hamiltonian systems.

By considering the problem of a charged particle in
purely circularly polarized wave, we demonstrate simp
how invariants can be found and some of their propert
Similar invariants with the same properties exist in many
the more complex problems studied further in this pap
Complete integrability is shown. Then the dynamics of o
particle in an almost circularly polarized wave is consider
Complete integrability is also proved in this case. It is sho
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that the wave generates a constant electron current alon
propagation direction. The existence of such an effect is c
firmed for a cold electron plasma approach by using
wave equations first derived by Akhiezer and Polovin@7#
~also see Ref.@8#!.

The dynamics of a charged particle in a circularly pola
ized electromagnetic wave propagating along a cons
magnetic field is studied next. First, the magnetic field
assumed to be homogeneous, this problem has already
explored by Roberts and Buchsbaum@9#. We present elegan
derivations for some results previously derived by the
When the index of refraction is unity, Roberts and Buch
baum considered a charged particle starting from rest in
field of a circularly polarized plane wave, whose frequency
equal to the rest mass cyclotron frequency (eB0 /m). They
found a ‘‘synchronous’’ solution in which the particle gain
energy indefinitely. This solution occurs because the part
gains energy parallel to, as well as perpendicular to,
propagation direction of the circularly polarized plane wav
The increase in perpendicular energy lowers the cyclot
frequency of the charged particle, while the increase in p
allel energy changes the velocity of the particle, resulting
a Doppler shift to a lower frequency as ‘‘seen’’ by the pa
ticle. In this case, the Doppler shift to the lower frequen
equals the reduction in the cyclotron frequency, and the p
ticle remains ‘‘synchronously’’ in cyclotron-resonance co
dition. This problem is studied again in this paper by usi
the Hamiltonian formalism, which provides a way to pro
the integrability of the system. The system has three deg
of freedom and three independent constants in involuti
one obtained by using Noether’s theorem@1,2,10–12#. Alter-
natively, the system can be reduced to a two-dimensio
problem. Canonical transformations@1–4,11,12# permit the

e,
4189 ©2000 The American Physical Society
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4190 PRE 62A. BOURDIER AND S. GOND
use of two invariants as two conjugate variables, and, co
quently, the system can be reduced to a time-depen
Hamiltonian system with two degrees of freedom posses
two independent invariants in involution. This problem
therefore integrable in the new ‘‘Liouville sense.’’ A forma
solution is given in terms of quadratures. It is also sho
that a canonical transformation can change this system
an autonomous one with two degrees of freedom. In
way, the problem is shown to be completely integrable. T
resonance condition is identical to one of the invariants w
expressed in terms of resonant initial conditions@13#. This
gives a mathematical explanation for the synchronous c
already discussed above. The approach by quadratures s
that the solution can be written in terms of the energy of
particle, and that the energy is a solution of an integra
differential equation in the general case. We only study
resonant case, and asymptotic solutions for the energy
the different variables are derived. The asymptotic solut
for the energy is used to show that the acceleration me
nism described above is more efficient than a linear ac
erator with the same field strength for a short distance in
direction of the wave propagation only. It is shown nume
cally that, for a short distance, the particle gains more tra
verse energy than parallel energy. The situation where
wave is almost circularly polarized is also studied, and i
shown numerically that the synchronous solution still exis

Finally, the situation where a charged particle is first a
celerated over a short distance~the distance where the lon
gitudinal energy catches up with the transverse energy! using
the synchronous resonance, then is introduced to a re
where the magnetic field is no longer homogeneous, is c
sidered, and new acceleration mechanisms are descr
When the magnetic field grows linearly very rapidly, th
final energy reached by the particle can be higher than w
the magnetic field is homogeneous. When one has a dec
ing magnetic field i.e., if a charged particle is initially res
nant and at rest and then immersed in a linear magnetic
gradient, or initially resonant and at rest in the middle
Helmoltz coils, an interesting phenomenon takes place. w
the magnitude of the electric field is higher than some va
the particle is accelerated just as if the magnetic field w
homogeneous, over a distance which is roughly five tim
the magnetic field gradient length.

II. DYNAMICS OF A CHARGED PARTICLE IN AN
ELECTROMAGNETIC CIRCULARLY AND ALMOST

CIRCULARLY POLARIZED TRAVELING WAVE

A. Dynamics of a charged particle in an electromagnetic
circularly polarized wave

A circularly polarized traveling wave propagating alon
the z direction ~wave vectork0 parallel to thez direction! is
considered. The fields are given by

Ex5E0 sin~v0t2k0z!, Ey52E0 cos~v0t2k0z!,

Ez50,
e-
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Bx5
k0E0

v0
cos~v0t2k0z!, By5

k0E0

v0
sin~v0t2k0z!,

Bz50, ~1!

whereE0 , v0 , and k0 are constants. The following vecto
potential is chosen:

A5
E0

v0
cos~v0t2k0z!êx1

E0

v0
sin~v0t2k0z!êy . ~2!

The relativistic Hamiltonian of a charged particle submitt
to this wave is, in MKS units, given by

H5FFPx1
eE0

v0
cos~v0t2k0z!G2c2

1FPy1
eE0

v0
sin~v0t2k0z!G2

c21Pz
2c21m2c4G1/2

,

~3!

where 2e and m are the charge and the rest mass of
particle. This is a time-dependent Hamiltonian with one d
gree of freedom. The constants that we are going to de
now, and their properties, are not always necessary to s
this system. The fact similar constants with the same pr
erties exist in most of the more complex systems stud
next justify this presentation. Asx andy are two cyclic vari-
ables the system has the two following constants of moti

A15Px ,

A25Py . ~4!

These two constants are obviously independent and in in
lution. Another constant can be found simply by derivin
with respect to time the quantity

A35yPx2xPy1H/v0 , ~5!

with the help of Hamilton’s equations. This invariant ca
also be evidenced by using Noether’s theorem as follo
@10,12#. The relations

@A1 ,A3#5A2 , @A2 ,A3#52A1 , ~6!

are satisfied, where@A,B# stands for the Poisson bracket
A with B. Another first integral is given by

A45A1
21A2

2. ~7!

It satisfies the relation

@A4 ,A3#52A1@A1 ,A3#12A2@A2 ,A3#50. ~8!

The Poisson theorem does not allow one to find new c
stants of motion when considering the four constants of m
tion that we have found@2#. One can notice that
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PRE 62 4191DYNAMICS OF A CHARGED PARTICLE IN A . . .
dH

dt
5

]H

]t
52

v0

k0

]H

]z
5

v0

k0
Ṗz . ~9!

One obtains a fifth constant of motion by integrating th
equation

A55H2
v0

k0
Pz . ~10!

This constant satisfies

@A1 ,A5#50, @A2 ,A5#50, @A3 ,A5#50 ~11!

and

@A4 ,A5#52A1@A1 ,A5#12A2@A2 ,A5#50. ~12!

We have:@A3 ,A4#50, @A4 ,A5#50, and@A3 ,A5#50. Only
one of these constants is enough to prove that the syste
integrable according to the definition given in Refs.@6#. This
is important from a practical point of view, as it means th
trajectories are not sensitive to their initial conditions.

Let us now introduce the following dimensionless va
ables and parameters:

ẑ5k0z,P̂x,y,z5
Px,y,z

mc
, t̂5v0t,Ĥ5g5

H

mc2 , a5
eE0

mcv0
.

~13!

The new Hamiltonian of the charged particle, expressed
terms of these normalized quantities, is

Ĥ5†@ P̂x1a cos~ t̂2 ẑ!#21@ P̂y1a sin~ t̂2 ẑ!#21 P̂z
211‡1/2.

~14!

A canonical transformation is introduced (x̂,P̂x ,ŷ,P̂y ,ẑ,P̂z)
→( x̂,P̂x ,ŷ,P̂y ,f,P̂z), given the type-2 generating functio
@1–4,6#

F2~ x̂,ŷ,ẑ,P̂x ,P̂y ,P̂z , t̂ !5 x̂P̂x1 ŷP̂y1 P̂z~ ẑ2 t̂ !. ~15!

When one has a type-2 generating functionF2(qi ,P̄i , t̂ ),
whereP̄i and theQ̄i are the new coordinates, andPi and the
qi the old ones, the canonical transformations are given

pi5
]F2~qi ,P̄i , t̂ !

]qi
,

Q̄i5
]F2~qi ,P̄i , t̂ !

] P̄i

. ~16!

Consequently, the generating function defined by Eq.~15!
yields the canonical transformation

f5 ẑ2 t̂ . ~17!

The Hamiltonian expressed in terms of the new variable
is

t

in

is

Ĥ~Q̄i ,P̄i !5Ĥ~qi ,pi !1
]F2

] t̂
~18!

or

Ĥ5@~ P̂x1a cosf!21~ P̂y2a sinf!21 P̂z
211#1/22 P̂z .

~19!

Since this Hamiltonian is time independent, it is a constan
motion. One can notice thatĤ is the constantÂ5 (Â5
5A5 /mc2) exponent expressed in terms of the new va
ables. ThusP̂x and P̂y and the Hamiltonian are three con
stants. One of these constants is sufficient to prove this t
that the system is completely integrable. As shown in Re
@6#, both integrable and completely integrable systems
nonchaotic. When the constantsP̂x and P̂y equal zero, the
fact that A3 and A5 are constants implies thatg, P̂z , and
consequentlyḟ(ġ5]g/] t̂ ) are constant. In this case, it i
very simple to show that trajectories are circles when p
jected onto the (x̂,ŷ) plane. One can assumeP̂x50, P̂y50
and P̂z50, which implies that the electron is at rest on a
erage in the (x̂,ŷ) plane, and is at rest along theẑ axis, as is
assumed when considering the propagation of circularly
larized wave in a plasma. One can then predict that pu
transverse circularly polarized waves can propagate in a
electron plasma.

B. Dynamics of a charged particle in an almost circularly
polarized wave

1. Dynamics of one particle only

The fields are given by

Ex5E0 sin~v0t2k0z!,

Ey52E0~11d!cos~v0t2k0z!, Ez50,
~20!

Bx5
k0E0

v0
~11d!cos~v0t2k0z!,

By5
k0E0

v0
sin~v0t2k0z!, Bz50,

whered is a quantity such thatudu!1. The following gauge
was chosen:

A5
E0

v0
cos~v0t2k0z!êx1

E0

v0
~11d!sin~v0t2k0z!êy .

~21!

The relativistic Hamiltonian of a charged particle in th
wave is
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4192 PRE 62A. BOURDIER AND S. GOND
H5FFPx1
eE0

v0
cos~v0t2k0z!G2

c2

1FPy1
eE0

v0
~11d!sin~v0t2k0z!G2

3c21Pz
2c21m2c4G1/2

. ~22!

This system still has only one degree of freedom. On the
hand,Px , Py ~A1 andA2!, andA5 are still constants. On the
other hand,A3 is no longer a first integral. The system is
course integrable.

The normalized Hamiltonian is obtained by introduci
the same dimensionless parameters and variables as i
previous case:

Ĥ5†@ P̂x1a cos~ t̂2 ẑ!#2

1@ P̂y1a~11d!sin~ t̂2 ẑ!#21 P̂z
211‡1/2. ~23!

Performing the canonical transformation defined by
type-2 generating function given by Eq.~15!, the following
autonomous normalized Hamiltonian is obtained:

Ĥ5†@ P̂x1a cosf#2

1@ P̂y2a~11d!sinf#21 P̂z
211‡1/22 P̂z .

~24!

P̂x , P̂y , and Ĥ are three independent constants in invo
tion. One of these constants is sufficient to show that
system is completely integrable.

Assuming udu,1 and neglecting terms ind2, Eq. ~24!
leads to

P̂z'
1

2Â5

@~11a21 P̂x
21 P̂y

22Â5
2!

12P̂xa cosf22P̂ya~11d!sinf12a2d sin2 f#.

~25!

When considering that the constantsP̂x andP̂y equal to zero,
and P̂z50 whenf50, the constant term between parenth
ses on the right hand of Eq.~25! is zero, and this equation
becomes

P̂z'
a2d sin2 f

A11a2
. ~26!

With these hypotheses, the velocity along thez axis of the
charged particle is given by

v̂z5
vz

c
5

P̂z

g
'

a2d sin2 f

11a2 . ~27!

By averaging overf, one finds that the charged particle h
an average velocity along thez axis:
e

the

e

-
is

-

^v̂z&'
1

2

a2

11a2 d. ~28!

We have verified, by numerically solving the exact equat
of motion, that the average velocity is indeed proportiona
d ~Fig. 1!. This result shows that the propagation of an
most circularly polarized traveling wave can produce a c
stant electron current in a plasma when its density is v
low or when the wave has a relativistic intensity.

2. Cold electron plasma approach

We now show that the propagation of a strong elect
magnetic wave in a cold electron plasma generates a con
current along the propagation direction of the wave when
phase velocity is very close to the speed of light in vacuu

To describe the propagation of a relativistically stro
wave in a cold electron plasma, we start from the Maxw
and Lorentz equations

“3E52
]B

]t
,

“3B5
1

c2

]E

]t
2m0nev,

~29!

“•E52
e

«0
~n2N0!,

FIG. 1. ẑ component of the charged particle for different valu
of d. a5331023.
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]p

]t
1~v•“ !p52eE2ev3B,

wherev andp are respectively the velocity and momentu
of the electrons, respectively,n is their density andN0 is the
one of ions.

All the variables entering into Eqs.~29! are assumed no
to be functions of space and time separately, but only of
combinationi•r2Vt, wherei is a constant unit vector, an
V a constant. This means that we look for plane wave so
tions travelling in the directioni with speedV. Introducing
the variables

p̂5
p

mc
, v̂5

v
c

, t5t2
i•r

V
, b5

V

c
, vp

25
e2N0

«0m
,

~30!

after some algebra we find the following wave equations

d2p̂x

dt2 1vp
2 b2

b221

b p̂x

bA11 p̂22 p̂z

50, ~31a!

d2p̂y

dt2 1vp
2 b2

b221

b p̂y

bA11 p̂22 p̂z

50, ~31b!

d2

dt2 ~b p̂z2A11 p̂2!1vp
2 b2p̂z

bA11 p̂22 p̂z

50. ~31c!

While the electron density is given by

n5
N0V

V2 i•v
. ~32!

Letting u5vp(b221)21/2t, the propagation equations be
come

d2p̂x

du2 1
b3p̂x

bA11 p̂22 p̂z

50, ~33a!

d2p̂y

du2 1
b3p̂y

bA11 p̂22 p̂z

50, ~33b!

d2

du2 ~b p̂z2A11 p̂2!1
b2~b221! p̂z

bA11 p̂22 p̂z

50. ~33c!

Assuming that the phase velocity is close to the velocity
light in vacuum, i.e.,b'1, Eq.~33c! leads to the fact that the
following quantity is a constant:

Â55a25A11 p̂22 p̂z . ~34!

This invariant is the same as the one found in the case of
particle in an almost circularly polarized wave. It follow
from Eqs.~33a! and ~33b! that
e

-

f

ne

p̂x5 p̂0x cos~u/a!,

p̂y5 p̂0y sin~u/a!, ~35!

wherep̂0x and p̂0y are constants.
Considering that the wave is almost circularly polarize

we let p̂0y5 p̂0x(11d)(d!1). It is assumed thatp̂z is small
compared top̂0x andp̂z50 whenu50. The electric field can
be calculated by using the expression@14#

eE52
]p

]t
2gradcp0 , ~36!

with p05Ap21m2c2. Then, it is consistent to takep̂0x5a.
Equation~34! leads to

p̂z'
a2d

A11a2
sin2~u/a!; ~37!

FIG. 2. Velocity of the particle along thez axis vsu, compared
to the average velocity given by Eq.~38! ~horizontal solid line!.
d50.1, a50.1, andb5111027.

FIG. 3. Velocity of the particle along thez axis vsu, compared
to the average velocity given by Eq.~38! ~horizontal solid line!.
d50.1, a50.1 andb5111025.



ry

to
e

ha

o

-

d

e

4194 PRE 62A. BOURDIER AND S. GOND
as a consequence, the average velocity along thez axis is
again@8#

^v̂z&'
1

2

a2

11a2 d. ~38!

This is the same result as in the case of one particle.
Equations~33! are solved numerically considering ve

low density plasmas~it has been assumed thatb511«8
with «8!1!. When the phase velocity of the wave is close
the speed of light in vacuum, Fig. 2 shows the good agr
ment between the numerical solution of Eqs.~33! and the
average value ofv̂z determined analytically@Eq. ~38!#. Fig-
ure 3 shows for a slightly higher phase speed velocity t
the agreement exists only over a very short distance.

According to Eq.~32! the electron density is given by

n'N0F11
a2

11a2 d sin2~u/a!G , ~39!

the following average density increase is created:

^Dn&'
1

2

a2

11a2 dN0 . ~40!

The average electron current density is

^ j z&5^nvz&'
c

2

N0a2

11a2 d. ~41!

III. MOTION OF A CHARGED PARTICLE IN A
CIRCULARLY POLARIZED ELECTROMAGNETIC

TRAVELING WAVE PROPAGATING ALONG A
CONSTANT MAGNETIC FIELD

A. Homogeneous constant magnetic field case

1. The wave is purely circularly polarized
(a) Description of the system. Numerical solution

Hamilton’s equations.The constant magnetic fieldB0 is as-
sumed to be along thez axis ~Fig. 4!. The traveling wave is

FIG. 4. Coordinate system.
e-

t

f

circularly polarized and has a propagation vectork0 parallel
to B0 . The fields are given by

Ex5E0 sin~v0t2k0z!, Ey52E0 cos~v0t2k0z!,

Ez50,

Bx5
k0E0

v0
cos~v0t2k0z!, By5

k0E0

v0
sin~v0t2k0z!,

Bz5B0 . ~42!

whereE0 , B0 , v0 , andk0 are constants. The following vec
tor potential is chosen for the electromagnetic field:

A5S 2
B0

2
y1

E0

v0
cos~v0t2k0z! D êx

1S B0

2
x1

E0

v0
sin~v0t2k0z! D êy . ~43!

FIG. 5. ~a! Trajectory of a charged particle initially resonant an
at rest (g05V051) at x̂05 ŷ050 ~initial values ofx̂ and ŷ! in the
x̂2 ŷ plane.a5331023. ~b! x̂ component of the charged particl
in the same conditions as those of~a!.
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FIG. 6. ~a! Trajectory of a charged particle that is initially non
resonant and at rest~g051, V051,01! at x̂05 ŷ050 in the x̂2 ŷ
plane.a5331023. ~b! x̂ component of the charged particle in th
same conditions as those of~a!.

FIG. 7. Trajectory of a charged particle with a high initial e
ergy in thex̂2 ŷ plane (g057.07). V051, anda5331023.
The relativistic Hamiltonian for the motion expressed
MKS units is

H5F S Px1
eE0

v0
cos~v0t2k0z!2

eB0

2
yD 2

c2

1S Py1
eE0

v0
sin~v0t2k0z!1

eB0

2
xD 2

3c21Pz
2c21m2c4G1/2

. ~44!

This is a time-dependent Hamiltonian with three degrees
freedom. Two new dimensionless variables and a new
mensionless parameter are now introduced:

x̂5x
v0

c
, ŷ5y

v0

c
, V05

eB0

mv0
.

As it is assumed that the electromagnetic wave propagate
vacuum (k0c/v051), the normalized Hamiltonian is ex
pressed in terms of the dimensionless variables and pa
eters defined in the following way:

FIG. 8. ẑ component of the particle vst̂ for three values ofV0 .
g051 anda5331023.

FIG. 9. g vs time for two values ofV0 . g051 and a53
31023.
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4196 PRE 62A. BOURDIER AND S. GOND
Ĥ5F S P̂x1a cos~ t̂2 ẑ!2
V0

2
ŷD 2

1S P̂y1a sin~ t̂2 ẑ!1
V0

2
x̂D 2

1 P̂z
211G1/2

. ~45!

The canonical equations are solved numerically using
fourth order Runge-Kutta method. Figures 5–7 show diff
ent types of trajectories. When the particle is initially at re
and resonant, it spirals outward in the plane perpendicula
the z axis ~Fig. 5!. When the particle is initially nonresonan
and at rest, it spirals outward and inward~Fig. 6!. When the
initial energy of the particle is high, its trajectory is a circ
~Fig. 7!. Thez component of the particle strongly depends
the initial mismatch with the resonance condition; for a giv
finite time the final energy reached by the particle is grea
in the resonant case than in any nonresonant case~Fig. 8!.
Figure 9 compares the Lorentz factor variation of the part
versus time in a resonant case to a nonresonant one.

(b) First demonstration of the integrability of the prob
lem. The Hamilton equations allow us to readily find tw
constants of motion@12#:

C15Px1
eB0

2
y,

C25Py2
eB0

2
x. ~46!

A third constant of motion can be obtained by using No
her’s theorem@10,12#. If the Lagrangian is invariant unde
the infinitesimal transformation

t→t1«g~ t,r !,

r→r1«u~ t,r !, ~47!

where« is an infinitesimal, then a constant of motion is

]L

]v
•u1S L2v•

]L

]v Dg, ~48!

where L52mc2A12v2/c22eA•v is the relativistic La-
grangian, andv the velocity of the charged particle. It i
simple to show that the Lagrangian of the system is invar
under the following transformations:

t→t2«/v0 ,

x→x1«y,

y→y2«x, ~49!

z→z.

Therefore, a third constant of motion is
a
-
t
to

r

e

-

t

C35yPx2xPy1H/v0 . ~50!

It can be noted that the first two constants~C1 andC2 /eB0!
are canonically conjugate:

FC1 ,
C2

eB0
G51. ~51!

Among these three constants of motion, one cannot find
constants in involution:

@C1 ,C3#5C2 , @C2 ,C3#52C1 . ~52!

Another constant of motion is given by

C45C1
21C2

2. ~53!

This satisfies the relation

@C4 ,C3#52C1@C1 ,C3#12C2@C2 ,C3#50. ~54!

A constant of motion can be found very simply, as above,
integratingdH/dt5(v0 /k0) Ṗz , it gives

C55H2
v0

k0
Pz . ~55!

It satisfies the relations

@C1 ,C5#50, @C2 ,C5#50, ~56!

and consequently

@C4 ,C5#50. ~57!

It also satisfies

@C3 ,C5#50. ~58!

As C3 , C4 , andC5 are three independent constants in inv
lution, the system is integrable according to the definiti
given in Sec. I and in Refs.@6#.

(c) Reduction to a two-dimensional problem, second de
onstration of the integrability of the problem.In the normal-
ized variables, the constants of motion corresponding toC3

andC5 are

Ĉ35 ŷP̂x2 x̂P̂y1Ĥ,

Ĉ55Ĥ2 P̂z . ~59!

Those corresponding toC1 andC2 are

Ĉ15 P̂x1
V0

2
ŷ,
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Ĉ25 P̂y2
V0

2
x̂; ~60!

they satisfy

@Ĉ1 ,Ĉ2#5V0 . ~61!

By using this property, we can show that the system can
described by a time-dependent Hamiltonian with two degr
of freedom. To do so, let us choose the two constantsĈ1 and
Ĉ2 ~one must be normalized byV0! as new momentum an
coordinate conjugate@12#. We choose a first canonical tran
formation, (x̂,ŷ,P̂x ,P̂y)→( x̃,ỹ,P̃x ,P̃y), defined by the fol-
lowing type-2 generating function:

F25S P̃x2
V0

2
ŷD x̂1 P̃yŷ. ~62!

This yields the canonical transformations

x̂5 x̃,

ŷ5 ỹ,

P̂x5 P̃x2
V0

2
ỹ, ~63!

P̂y5 P̃y2
V0

2
x̃.

In these variables,Ĉ1 and Ĉ2 become

C̃15 P̃x ,

C̃25 P̃y2V0x̃. ~64!

Then we introduce a second canonical transformat
( x̃,ỹ,P̃x ,P̃y)→(Q1 ,Q2 ,P1 ,P2), generated by

F25~P21V0x̃!ỹ1P1S x̃1
P2

V0
D , ~65!

and yielding

x̃5Q12
P2

V0
,

ỹ5Q22
P1

V0
,

P̃x5V0Q2 , ~66!

P̃y5V0Q1 .

The resulting transformation, which is the product of the t
transformations, is given by
e
s

n,

x̂5Q12
P2

V0
,

ŷ5Q22
P1

V0
,

P̂x5
1

2
~V0Q21P1!, ~67!

P̂y5
1

2
~V0Q11P2!.

In terms of these variables, one has

Q25
Ĉ1

V0
, P25Ĉ2 , ~68!

and the new Hamiltonian is

H̄5$@~P11a cos~ t̂2 ẑ!!#21@V0Q11a sin~ t̂2 ẑ!#2

1 P̂z
211%1/2. ~69!

The constants of motion corresponding toC3 and C5 are
now

K̄5H̄2
P1

2

2V0
2

V0

2
Q1

2 ~70!

and

D̄5H̄2 P̂z . ~71!

As @K̄,D̄#50, the system is integrable. Then the canoni
transformation (Q1 ,P1 ,ẑ,P̂z)→(Q1 ,P1 ,f,P̂z), generated
by

F2~Q1 ,ẑ,P1 ,P̂z , t̂ !5Q1P11 P̂z~ ẑ2 t̂ !, ~72!

is performed, yielding

f5 ẑ2 t̂ . ~73!

The Hamiltonian becomes

H% 5@~P11a cosf!21~V0Q12a sinf!21 P̂z
211#1/22 P̂z .

~74!

One must point out that this is the expression ofD̄ expressed
in terms of the new variables. The Hamiltonian is now tim
independent and the system has a constant of motion.
invariant obtained by using Noether’s theorem written
these variables is
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K5H% 1 P̂z2
P1

2

2V0
2

V0

2
Q1

2, ~75!

which is in involution withH% . As a consequence, the syste
is completely integrable.

(d) Equation for the energy of the particle and anoth
way to show the system can be solved by quadratures.The
equations of Hamilton derived from Eq.~74! are

Ṗ152
V0

g
~V0Q12a sinf!,

Q̇15
1

g
~P11a cosf!,

P6 z5
a

g
~P1 sinf1V0Q1 cosf!, ~76!

ḟ5
P̂z

g
21.

Introducing the variables

Q̄15Q12a/V0 sinf,

P̄15P11a cosf, ~77!

and the complex quantityZ5 P̄11 iV0Q̄1 , the two first
equations of Hamilton@Eqs. ~76!# are equivalent to the fol-
lowing equation

Ż5
iV0Z

g
2 iaḟ exp~2 if!, ~78!

which is the equation of a nonlinear oscillator under the
tion of an external force. Formally, the solution of this equ
tion can be written

Z5A0 expi @s~ t̂ !1d#2 iaE
0

t̂
ḟ~t!expi @s~ t̂ !2s~t!

2f~t!#dt, ~79!

whereA0 andd are real constants, and

s~ t̂ !5V0E
0

t̂
dt g21~t!. ~80!

Then

P15A0 cos@s~ t̂ !1d#2a cosf

1aE
0

t̂
ḟ~t!sin@s~ t̂ !2s~t!2f~t!#dt,
-
-

Q15
A0

V0
sin@s~ t̂ !1d#1

a

V0
sinf

2
a

V0
E

0

t̂
ḟ~t!cos@s~ t̂ !2s~t!2f~t!#dt. ~81!

The quantitiesA0 and d are determined, so that, att̂50,
A0

25g0
22 p̂z0

2 215 p̂x0
2 1 p̂y0

2 and tand5p̂y0 /p̂x0 ~p̂5p/mc,
and p is the momentum of the particle!. The subscript 0
appended to variablesg and p refers to their initial values.
This formal solution shows that when the particle has
initial normalized energyg0 large compared toa (A0@a),
the trajectory of the particule is an ellipse in theQ12P1
plane which is transformed into a circle in thex̂2 ŷ plane
according to Eqs.~67!. Equations~81! are now substituted
into the equation forṖz @Eqs. ~76!#, to obtain a nonlinear
integro differential equation

P6 z5
a

g
A0 sin@s~ t̂ !1f~ t̂ !1d#

2
a2

g E
0

t̂
ḟ~t!cos$@s~ t̂ !1f~ t̂ !#2@s~t!1f~t!#%dt.

~82!

Let us now consider the synchronous case only. In te
of the original coordinates the condition for resonance is

v02k0ż2
eB0

mg
50. ~83!

This condition implies that the invariant defined by Eq.~55!
is such asC55eB0c2/v0 @13#. This means that if the parti
cule is initially resonant, it remains resonant all the time.
terms of the new coordinates, this condition becomes

ḟ1
V0

g
50. ~84!

Integrating this expression from 0 tot̂ gives

f~ t̂ !1s~ t̂ !2f050, ~85!

wheref0 is the value off at t̂50. Then Eq.~82! becomes

gġ5aA0 sinu01a2s~ t̂ !, ~86!

with u05f01d. Equation ~86! can be divided byg and
integrated between 0 andt̂ to give

g2g05
aA0

V0
sinu0s~ t̂ !1

a2

2V0
@s~ t̂ !#2. ~87!

Thens( t̂ ) is calculated from Eq.~86! and substituted in Eq
~87!. We obtain
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~ ġ !21V~g!50, ~88!

where

V~g!52
2V0a2

g
2

@~aA0 sinu0!222V0g0a2#

g2 . ~89!

Equation~88! describes motion in the one-dimensional w
defined by V(g). Letting a52V0a2, b5(aA0 sinu0)

2

22V0g0a
2 andz5Aag1b, it reads@15#

2~z22b!dz5«1a2d t̂, ~90!

where «1561. Considering thatz0 is the value ofz at t̂

5 t̂0 , this equation is trivially integrated to give

2

3
z322bz5

2

3
z0

322bz01«1a2~ t̂2 t̂0!. ~91!

This expression can be expressed in terms ofz5lT. As b is
always negative when the charged particle is resonant,
can consider that23(b/l2)51; that is to say, l
5«2A3ubu, with «2561. Then Eq.~91! takes the canonica
form

T31T1A50, ~92!

where

A52«2~23b!23/2Fz0
323bz01

3«1a2

2
~ t̂2 t̂0!G . ~93!

Equation~92! can be easily solved. Hence the exact expr
sion for the normalized energy of the particle is

FIG. 10. Comparison of the evolution ofg when the particle is
initially resonant obtained with the exact equations@Eqs. ~76!# or
Eq. ~94! and the asymptotic solution@Eq. ~95!#. g05V051, and
a5331023.
l

ne

-

g52
b

a H 33S A

2 D 2/3F XS 11
4

27A2D 1/2

21C2/3

1XS 11
4

27A2D 1/2

11C2/3

2
2

3 S 2

AD 2/3G11J . ~94!

This expression, substituted into Eqs.~81! and ~82!, shows
that, at least in the resonant case, the solution can be
pressed in terms of quadratures according to Kozlov
Kolesnikov. AsA goes to` in the limit when t̂→`, the
asymptotic form of the solution@Eq. ~94!# is

g'~ 9
2 V0a2!1/3t̂2/3. ~95!

The comparison between this solution and the exact on
performed in Fig. 10.

Equations~84! and ~95! lead to the following asymptotic
expression forẑ:

ẑ5 t̂2~ 9
2 V0a2!21/3t̂1/31 ẑ0 , ~96!

whereẑ0 is the value ofẑ at t̂50.
Equations~81! and~85! provide the following asymptotic

expressions forP1 andQ1 :

P15A0 cos@f02f~ t̂ !1d!] 2a$cosf1@f~ t̂ !

2f0#sinf~ t̂ !%,

Q15
A0

V0
sin@f02f~ t̂ !1d!] 1

a

V0
$sinf2@f~ t̂ !

2f0#cosf~ t̂ !%. ~97!

FIG. 11. Comparison between two numerical solutions deriv
through the exact equations of motion~solid lines! to their corre-
sponding asymptotic solution~long dashed lines!. E05105 V/m and
f 510 GHz (aÞ9.33731024).
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f( t̂ ) is given by Eqs.~80!, ~85!, and~95!:

f~ t̂ !5f02S 1

6

a2

V0
2D 21/3

t̂1/3. ~98!

Taking into account the resonance condition, the equation
P̂z @Eq. ~82!# becomes

P6 z5
a

g
A0 sin~f01d!2

a2

g
@f~ t̂ !2f0#, ~99!

which leads to

P̂z5A0S 6a

V0
D 1/3

sin~f01d! t̂1/31S 9

2
V0a2D 1/3

t̂2/31 P̂z0 ,

~100!

whereP̂z0 is the value ofP̂z at t̂50. The asymptotic trajec
tory in the physical space is given by Eqs.~67!.

FIG. 12. Evolution of the total energyg, compared to the lon-
gitudinal energygz and the transverse energygp . (g05V051).
E05106 V/m and f 52.5 GHz (a'3.73531022).

FIG. 13. Evolution ofg for different values ofd. The solid line
is for d50. g05V051 anda5331023.
or

In Fig. 11, the asymptotic evolutions ofẑ and P̂z are
compared to those when calculated numerically through
exact equations of motion. Assuming that the charged p
ticle has a velocity close to the speed of light in vacuum,
have

z'ct. ~101!

If the charged particle is initially at rest, the Lorentz fact
can be expressed as a function ofz:

g5S 3

&

eE0

mc2 zD 2/3

. ~102!

The energy gained by a particle in a linear accelerator is
product of axial electric field and distance

gL5
eE0

mc2 z. ~103!

At the same field strength, the efficiency of the linear acc

FIG. 14. g vs time: ~a! The solid line corresponds toa53.3
31023 andd50, and the triangles correspond toa5331023 and
d50.2. ~b! The solid line corresponds toa5331023 and d50,
and the circles correspond toa5631023 andd521.
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erator for an electron is the same as the one associated
the synchronous solution (g5gL), when@16#

z5zL5
2.33106

E0
. ~104!

For example,zL52.3 m for E05106 V/m. This shows that
the cyclotron resonance accelerator is competitive only
very short acceleration distance is requested. Moreover,
must note that, over a short distance, the transverse acce
tion in the x-y plane is more efficient than the longitudin
one ~Fig. 12!.

2. The wave is almost circularly polarized

The fields are given by

Ex5E0 sin~v0t2k0z!,

Ey52E0~11d!cos~v0t2k0z!, Ez50,

Bx5
k0E0

v0
~11d!cos~v0t2k0z!,

By5
k0E0

v0
sin~v0t2k0z!, Bz5B0 , ~105!

whered is defined in the same way as for Eqs.~20!.

FIG. 15. g vs z when the particle is initially resonant and at re
E05107 V/m and f 525 GHz (a'3.73531022) when the mag-
netic field is linearly increasing (L2150.5 m21) after zc50.4 m
~solid line!, compared to the case when the magnetic field is hom
geneous~long dashed line!.
ith

a
ne
ra-

The normalized Hamiltonian is obtained by introducin
the same dimensionless parameters and variables as ab

Ĥ5FF P̂x1a cos~ t̂2 ẑ!2
V0

2
ŷG2

1F P̂y1a~11d!sin~ t̂2 ẑ!1
V0

2
x̂G2

1 P̂z
211G1/2

.

~106!

It can be easily checked thatC1 , C2 , andC5 are still con-
stants of the motion.

The canonical transformation defined by Eqs.~67! is used
again in order to reduce the number of degrees of freedom
the system. The new Hamiltonian is

-

FIG. 16. gp vs z when the particle is initially resonant and a
rest. E05107 V/m and f 525 GHz (a'3.73531022), when the
magnetic field is linearly increasing (L2150.5 m21) after zc

50.4 m ~solid line!, compared to the case when the magnetic fi
is homogeneous~long dashed line!.

FIG. 17. gz vs z when the particle is initially resonant and a
rest. E05107 V/m and f 525 GHz (a'3.73531022), when the
magnetic field is linearly increasing (L2150.5 m21) after zc

50.4 m ~solid line!, compared to the case when the magnetic fi
is homogeneous~long dashed line!.
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H̄5$@„P11a cos~ t̂2 ẑ!…#2

1@V0Q11a~11d!sin~ t̂2 ẑ!#21 P̂z
211%1/2.

~107!

Then the canonical transformation defined by Eq.~73! is
performed. The Hamiltonian becomes

H% 5$~P11a cosf!2

1@V0Q12a~11d!sinf#21 P̂z
211%1/22 P̂z .

~108!

FIG. 18. g vs z when the particle is initially resonant and at re
E05107 V/m and f 525 GHz (a'3.73531022) when the mag-
netic field is linearly increasing (L2152 m21) after zc50.4 m
~solid line! compared to the case when the magnetic field is hom
geneous~long dashed line!.

FIG. 19. g vs z when the particle is initially resonant and at re
E05108 V/m and f 525 GHz (a'3.73531021) when the mag-
netic field is linearly increasing withL2153.5 m21 after zc

50.4 m ~solid line!, compared to the case whenL2155 m21 and
zc50.4 ~dashed line!, and when the magnetic field is homogeneo
~long dashed line!.
This Hamiltonian is a constant, as it does not explicitly d
pend on time. The system now has two degrees of freed
and a set of only four coupled equations has to be sol
numerically. It has been checked numerically that, ev
when dÞ0, the synchronous solution is still possible~Fig.
13!. The energy of the particle versus time is compared
the one when the wave is purely circularly polarized and
the same Poynting vector@Figs. 14~a! and 14~b!#. It has been
shown numerically that when one hasaac(11d/2)5ac ,
whereaac andac are the parametera in the almost circularly
polarized case and in the circularly polarized one, resp
tively the evolution of the charged particle’s energy is t
same. Consequently, at the same power, an almost circu
polarized wave is as effective to accelerate a particle a
purely circularly one.

-

FIG. 20. gp vs z when the particle is initially resonant and a
rest. E05108 V/m and f 525 GHz (a'3.73531021), when the
magnetic field is linearly increasing (L2153.5 m21) after zc

50.4 m ~solid line!, compared to the case when the magnetic fi
is homogeneous~long dashed line!.

FIG. 21. g vs z when the particle is initially at rest.E0

5107 V/m and f 525 GHz (a'3.73531022) when the magnetic
field is linearly increasing (L2150.5 m21) after zc50.4 m ~solid
line!, compared to the case when the magnetic field is homogen
~long dashed line!. Cases when the particle is initially resona
(V051) and nonresonant (V051.02) are considered.
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B. Circularly polarized wave traveling along a
non-homogeneous constant magnetic field

Let us take advantage of the fact that the synchron
resonance is an efficient acceleration mechanism over a s
distance only, as was shown above. More precisely, by s
distances we mean distances such that the transverse e
of the particle is about the same as the longitudinal one.
idea is to use this mechanism first, so that the particle m

FIG. 22. ~a! g vs z when the particle is initially resonant and
rest. E05107 V/m and f 523107 Hz (a'46.68) when the mag-
netic field is linearly decreasing (L50.5 m) afterzc50.4 m ~solid
line! compared to the case when the magnetic field is homogen
~circles!. ~b! g vs z when the particle is initially resonant and at re
E0523107 V/m and f 5109 Hz (a'1.867) when the magnetic
field is linearly decreasing (L51023 m) after zc51024 m ~solid
line!, compared to the case when the magnetic field is homogen
~circles!.

FIG. 23. Helmoltz coils.
s
ort
rt
rgy
e
y

have a high velocity component along thez axis and in the
plane perpendicular to this axis at the same time. The o
point is that over such a short distance the final ene
reached is not very sensitive to inaccuracies in the ini
conditions. Then the particle is immersed in a magnetic fi
gradient in order to obtain a very high energy on a sh
distance.

Let us first consider such a constant nonhomogene
magnetic field

B0~r !5B0F11«Y~z2zc!
~z2zc!

L G êz2«Y~z2zc!

3
B0

2L
~xêx1yêy!, ~109!

whereL5B0 /dBz(z)/dz, Y is the Heaviside function,zc is
some distance, and«561 ~the field can increase or decrea
whenz.zc!. The magnetic field should satisfy

“•B50 ~110!

and

“3B50. ~111!

The magnetic field given by Eq.~109! does not satisfy Eq.
~111! at z5zc . This is because of the discontinuity intro
duced by the Heaviside function. This discontinuity has
physical meaning, and is thought not to affect the existe
of the acceleration mechanism.

In this case the vector potential is

A5S 2
B0z

2
y1

E0

v0
cos~v0t2k0z! D êx

1S B0z

2
x1

E0

v0
sin~v0t2k0z! D êy . ~112!

us

us

FIG. 24. Normalizedz component of the magnetic field vsz in
the case of some magnetic field gradient.R50.5 m and d
50.25 m.
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Using the same dimensionless variables and paramete
before, a normalized Hamiltonian can be built to describe
system

Ĥ5F S P̂x1a cos~ t̂2 ẑ!2
V0z

2
ŷD 2

1S P̂y1a sin~ t̂2 ẑ!1
V0z

2
x̂D 2

1 P̂z
211G1/2

, ~113!

whereV0z5eB0z /mv0 .
For a given increasing magnetic field gradient, Fig.

shows the normalized energy of the particle versusz com-
pared to the one obtained by using the simple synchron
resonance only. It must be pointed out that when the part
is introduced to the nonhomogeneous magnetic field dom
it is kicked backward along thez axis by theev'B0r force

FIG. 25. ~a! g vs z when the particle is initially resonant and
rest. E05107 V/m and f 523107 Hz (a'46.68) when the mag-
netic field is the one of the Helmoltz coils withR50.5 m and
d50.25 m~solid line!, and when the magnetic field is homogeneo
~long dashed line!. ~b! g vs z when the particle is initially resonan
and at rest.E05107 V/m and f 5109 Hz (a'0.933) when the mag-
netic field is the one of the Helmoltz coils withR51023 m and
d50.531023 m ~solid line! and when the magnetic field is homo
geneous~long dashed line!.
as
e

us
le
in,

~v' is the velocity in the plane perpendicular to thez axis,
andB0r is the radial constant magnetic field!. Over the dis-
tance along thez axis considered in Figs. 15–21, it can b
checked numerically that the effect of this force is ove
whelmed by theev'B force ~B is the magnetic field of the
wave!. When these calculations are run for longer times,
charged particle goes backward along thez axis after some
distance, as the average force in thez direction, acting on the
particle, becomes more and more negative. It has b
shown numerically that, when one has a positive linear m
netic field gradient, the additional acceleration is due mai
to theevzB0r ~vz is the component of the velocity along th
z axis! transverse force, which is much greater than that
the homogeneous magnetic field case. Figure 16 shows
transverse energy, and Fig. 17 the longitudinal one. In e
case, the energy reached finally is higher when some m
netic field gradient is taken into account. When the gradi
is strong enough, its effect can be positive up to a cert
distance and become negative afterwards~Fig. 18!. Figure 19
shows, for another of the electric field magnitude, the ran
of magnetic field gradients which leads to a positive effe
Figure 20 displays, for the same electric field, the very i
portant gain obtained in transverse energy. The fact tha
increasing linear gradient can be used to diminish the ef
of inaccuracies in the initial conditions is shown in Fig. 2

When the magnetic field decreases linearly after some
tancezc(«521), the evzB0r force kicks the charged par
ticle forward in thez direction, but this force is not sufficien
to beget the additional acceleration shown in the grow
magnetic field case. The other forces are not high eno
compared to those one has in the homogeneous mag
field to increase the acceleration. At this point, it must
mentioned that we have considered thatV050 whenz.zc
1L in order not to let the magnetic field become negati
Still, even if the additional acceleration process did not ex
in the domain that we have explored,E0 is assumed to be in
the range 106– 109 V/m and the frequencyf in the range

FIG. 26. g vs z when the particle is initially at rest.E0

5107 V/m and f 5109 Hz (a'0.933) when the magnetic field i
the one of the Helmoltz coils withR51023 m and d50.5
31023 m ~solid line!, and when the magnetic field is homogeneo
~long dashed line!. Cases when the particle is initially resona
(V051) and nonresonant (V053) are considered.



e
n
e
tin
an

s.
b

e

e
of

is
t
b

4

-
ien
av
k
e
m
a

se

ed
ver-
il-

ua-
w
ies
or
g.
e
n-
larly
ility
r’s
he
ree
er.
m
ans-
one

on,
m.
of

As
we
We
dra-
olv-

e
field
nous
le
as

hen
e by
to a
ous
ld.
uch

the
ant
n a
n-
tric
cel-

ant,
to

el-
in-
n-

on

lu-
for

PRE 62 4205DYNAMICS OF A CHARGED PARTICLE IN A . . .
105– 109 Hz, another very interesting phenomenon tak
place. It has been found numerically that, when the mag
tude of the electric field is high enough, the particle is acc
erated just as if the synchronous interaction regime con
ued up to a distance of about five times the const
magnetic field gradient length~with an accuracy of about 5%
in most cases!. The rough inequality

E0*331029L f 2 ~V/m!, ~114a!

must be satisfied whena.1. Parameterzc plays no part in
this condition. When 0.4,a,1, the inequality

E0*1.3531029L f 2 ~V/m!, ~114b!

must be verified whenzc>23L. Whena,0.4 andzc>2.5
3L, one has to satisfy

E0*6.74310210L f 2 ~V/m!. ~114c!

Figures 22~a! and 22~b! illustrate these results in two case
Moreover, it has been verified that the good agreement
tween the two evolutions ofg is improved when inequalities
~114! are amply verified.

Let us now consider the magnetic field produced by H
moltz coils,

B0z5B̄0R3$@~d2z!21R2#23/21@~d1z!21R2#23/2%,

~115!

where 2d is the distance between the two coils,R is the
radius of each coil,B̄0 is the magnetic field created by on
coil at its center, andz measures the position on the axis
symmetry of the two coils~Fig. 23!. In order to have an
almost uniform magnetic field over a short distance, the d
tance between the two coils is assumed to be equal to
radius of each coil. The charged particle is considered to
initially resonant and at rest atz50. In such a case, Fig. 2
shows the normalized magnetic field versusz. E0 and f are
assumed to be in the same range as above, whileR is sup-
posed to be in the range 1023– 1 m. The additional accelera
tion process which exists when the magnetic field grad
increases linearly does not exist in the domain that we h
explored, but another very interesting phenomenon ta
place. The particle is accelerated exactly as if the magn
field where homogeneous up to a distance of about ten ti
the radius of the coils with roughly the same accuracy
above. The condition

E0*2.25310210R f2 ~V/m!, ~116a!

whena.1, or

E0*2.2531029R f2 ~V/m!, ~116b!

whena,1 must be satisfied. This is displayed, in one ca
in Figs. 25~a! and 25~b!. The effect on the initial conditions
is shown in Fig. 26.
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IV. CONCLUSIONS

It has been shown that, in an almost circularly polariz
traveling wave, a charged particle can have a constant a
age velocity along its propagation direction using the Ham
tonian formalism. In a cold electron plasma, the wave eq
tions derived by Akhiezer and Polovin permit one to sho
that this effect is relevant only when the electron densit
are low compared to the nonrelativistic critical density
when the intensity of the wave is relativistically very stron

Still, with the help of the Hamiltonian formalism, th
problem of relativistic motion of a charged particle in a co
stant homogeneous magnetic field and a transverse circu
polarized traveling wave has been studied. The integrab
of this problem was shown in two different ways. Noethe
theorem was applied to find a constant of motion of t
system. Then two other integrals were derived; these th
invariants are independent and in involution with each oth
This is sufficient to prove integrability, since this proble
has three degrees of freedom. Then, using canonical tr
formations, we reduced the system to a time-dependent
with two degrees of freedom. It has a constant of moti
which is the one found previously using Noether’s theore
Another one is the resonance condition, when the value
the constant is calculated with resonant initial conditions.
these two constants are independent and in involution,
have shown a second time that the problem is integrable.
have also proved that the system can be solved by qua
tures in the resonant case. This consists of deriving and s
ing an equation for the energy.

The problem of an almost circularly polarized wav
propagating along a constant homogeneous magnetic
has also been discussed. It was shown that the synchro
solution still exists. A condition to obtain the same partic
energy evolution as in the pure circular polarization case w
also given.

New acceleration mechanisms have been described w
the charged particle is first accelerated for a short distanc
using the synchronous resonance, and then introduced
region where the magnetic field is no longer homogene
and exhibits a very steep linearly growing magnetic fie
Over a short distance the final energy reached can be m
higher than if the magnetic field were homogeneous all
way. It has also been shown that when a particle is reson
and at rest and when the magnetic field is decreasing, if, o
distance which is roughly five times the length of the co
stant magnetic field gradient, the magnitude of the elec
field is higher than some threshold, then the particle is ac
erated just as if the magnetic field were homogeneous.

These acceleration mechanisms are also very import
as the synchronous interaction regime is very sensitive
inaccuracies in the initial conditions for long distance acc
erations. Using magnetic field gradients allows one to dim
ish the strong influence of the inaccuracies in the initial co
ditions of the charged particle. Thus a spatial cyclotr
accelerator using a magnetic field gradient is realistic.
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