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Dynamics of a charged particle in a circularly polarized traveling electromagnetic wave
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The relativistic motion of a charged particle in a transverse circularly or almost circularly polarized homo-
geneous electromagnetic wave is studied using the Hamiltonian formalism. First, the case of a circularly and
almost circularly polarized traveling wave propagating in a nonmagnetized space is studied. In the case of an
almost circularly polarized wave, it is shown that the charged particle has an average velocity along the
propagation direction of the wave. The same result is derived considering a cold electron plasma. The case of
a traveling wave propagating along a constant homogeneous magnetic field is then considered. Using canonical
transformations, it is shown that the equations of motion can be derived from an autonomous Hamiltonian
which has two degrees of freedom and a first integral. As a consequence, the system is completely integrable.
An equation is found for the particle energy when it is initially resonant. This equation is solved exactly, and
the asymptotic solution is obtained. The expression for the energy allows a solution for the system in terms of
guadratures, and in consequence the asymptotic solution for all the variables. The case of an almost circularly
polarized wave propagating along a constant homogeneous magnetic field is also studied. Finally, a magnetic
field gradient is considered, and new acceleration mechanisms are found.

PACS numbgs): 41.75.Lx, 05.45-a, 03.65.Pm, 02.10.Jf

[. INTRODUCTION that the wave generates a constant electron current along its
propagation direction. The existence of such an effect is con-
The dynamics of a charged particle in a transverse circufirmed for a cold electron plasma approach by using the
larly polarized electromagnetic wave is studied in this paperwave equations first derived by Akhiezer and Poloyii
by using the Hamiltonian formalism. Several important(also see Ref.8]).
points in Hamiltonian dynamics must first be recalled. An  The dynamics of a charged particle in a circularly polar-
autonomous Hamiltonian system is called completely inteized electromagnetic wave propagating along a constant
grable if it possessasindependent, time-independent invari- magnetic field is studied next. First, the magnetic field is
ants in involution[1-4]. This is often called the Liouville assumed to be homogeneous, this problem has already been
theorem[1,2]. When it is completely integrable, the solution explored by Roberts and Buchsba{@j. We present elegant
for the motion can be expressed in terms of canonical actiorderivations for some results previously derived by them.
angle variable$1—4]. Kozlov and Kolesnikov showed that When the index of refraction is unity, Roberts and Buchs-
the solution of a time-dependent Hamiltonian system with baum considered a charged particle starting from rest in the
degrees of freedom possessimgndependent, possibly time- field of a circularly polarized plane wave, whose frequency is
dependent invariants in involution can be found by quadraequal to the rest mass cyclotron frequeneB{/m). They
tures[1,5]. It was shown that in this case no chaos can takdound a “synchronous” solution in which the particle gains
place[6]. We shall call such a system integrable. This is anenergy indefinitely. This solution occurs because the particle
extension of the first definition of integrability. In this sense,gains energy parallel to, as well as perpendicular to, the
Liouville’s theorem on integrability still holds in the case of propagation direction of the circularly polarized plane wave.
time-dependent Hamiltonian systems. The increase in perpendicular energy lowers the cyclotron
By considering the problem of a charged particle in afrequency of the charged particle, while the increase in par-
purely circularly polarized wave, we demonstrate simplyallel energy changes the velocity of the particle, resulting in
how invariants can be found and some of their propertiesa Doppler shift to a lower frequency as “seen” by the par-
Similar invariants with the same properties exist in many ofticle. In this case, the Doppler shift to the lower frequency
the more complex problems studied further in this paperequals the reduction in the cyclotron frequency, and the par-
Complete integrability is shown. Then the dynamics of oneticle remains “synchronously” in cyclotron-resonance con-
particle in an almost circularly polarized wave is considereddition. This problem is studied again in this paper by using
Complete integrability is also proved in this case. It is shownthe Hamiltonian formalism, which provides a way to prove
the integrability of the system. The system has three degrees
) of freedom and three independent constants in involution,
*Also at Laboratoire de Physique des Milieux lomisécole  one obtained by using Noether’s theorfh2,10—-12. Alter-
Polytechnique, Centre National de la Recherche Scientifiquenatively, the system can be reduced to a two-dimensional
91128 Palaiseau Cedex, France. problem. Canonical transformatiof$—4,11,12 permit the
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use of two invariants as two conjugate variables, and, conse- koEo KoEo .

quently, the system can be reduced to a time-dependent BXZw—COE(wot—koZ)- By=w—3|n(wot—koz),

Hamiltonian system with two degrees of freedom possessing 0 0

two independent invariants in involution. This problem is

therefore integrable in the new “Liouville sense.” A formal B,=0, (1)

solution is given in terms of quadratures. It is also shown )

that a canonical transformation can change this system int9hereEq, wo, andk, are constants. The following vector

an autonomous one with two degrees of freedom. In thigotential is chosen:

way, the problem is shown to be completely integrable. The

resonance condition is identical to one of the invariants when Eo = R

expressed in terms of resonant initial conditigas]. This A= w_OCOE(wot_koZ)ex+ w_os'”(wot_koz)ey- 2

gives a mathematical explanation for the synchronous case

already discussed above. The approach by quadratures shotse relativistic Hamiltonian of a charged particle submitted

that the solution can be written in terms of the energy of theo this wave is, in MKS units, given by

particle, and that the energy is a solution of an integrable

differential equation in the general case. We only study the

resonant case, and asymptotic solutions for the energy and H=

the different variables are derived. The asymptotic solution

for the energy is used to show that the acceleration mecha-

nism described above is more efficient than a linear accel- +

erator with the same field strength for a short distance in the

direction of the wave propagation only. It is shown numeri- (3)

cally that, for a short distance, the particle gains more trans-

verse energy than parallel energy. The situation where th@here —e and m are the charge and the rest mass of the

wave is almost circularly polarized is also studied, and it isparticle. This is a time-dependent Hamiltonian with one de-

shown numerically that the synchronous solution still existsgree of freedom. The constants that we are going to derive
Finally, the situation where a charged particle is first ac-now, and their properties, are not always necessary to study

celerated over a short distanttee distance where the lon- this system. The fact similar constants with the same prop-

gitudinal energy catches up with the transverse enarging ~ erties exist in most of the more complex systems studied

the synchronous resonance, then is introduced to a regidiext justify this presentation. Asandy are two cyclic vari-

where the magnetic field is no longer homogeneous, is corgbles the system has the two following constants of motion:

sidered, and new acceleration mechanisms are described.

When the magnetic field grows linearly very rapidly, the A=P,,

final energy reached by the particle can be higher than when

the magnetic field is homogeneous. When one has a decreas-

ing magnetic field i.e., if a charged patrticle is initially reso-

nant and at rest and then immersed in a linear magnetic fielfﬂheSe two constants are obviously independent and in invo-
gradient, or initially resonant and at rest in the middle ofIution Another constant can be found simply by deriving
Helmoltz coils, an interesting phenomenon takes place. Whe\?vith réspect to time the quantity
the magnitude of the electric field is higher than some value
the particle is accelerated just as if the magnetic field were

homogeneous, over a distance which is roughly five times Az=yPy—xPy+Hlwg, )

the magnetic field gradient length.

2
C2

e
PX+ _EO COS( (,l)ot - koZ)
®o

2
c?+P2c?+m?ct

1/2

eE
Py+ w—OSIn( a)ot_ koZ)

A,=P,. 4

with the help of Hamilton’s equations. This invariant can
also be evidenced by using Noether's theorem as follows
[10,12. The relations

Il. DYNAMICS OF A CHARGED PARTICLE IN AN [A],As]=A,, [Ay,As]l=—A,, (6)
ELECTROMAGNETIC CIRCULARLY AND ALMOST
CIRCULARLY POLARIZED TRAVELING WAVE are satisfied, wherpA,B] stands for the Poisson bracket of

A. Dynamics of a charged particle in an electromagnetic A with B. Another first integral is given by

circularly polarized wave
. : : : Ay=AZ+A3. 7
A circularly polarized traveling wave propagating along

the z direction (wave vectork, parallel to thez direction is
considered. The fields are given by

It satisfies the relation

Ex=Eosinwgt—koz), Ey=—EqCos wot—ko2), [A4,Az]=2A[A1,Az]+2A,[Az,A3]=0 (8)
The Poisson theorem does not allow one to find new con-
stants of motion when considering the four constants of mo-

E,=0, tion that we have foun{2]. One can notice that
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JF

T e _wop 9 A(Qi,P)=F(aip)+ — (18)
dt ﬁt ko 02 ko z (R ql ’pl &'t\
One obtains a fifth constant of motion by integrating this
equation or
o H=[(P,+acos¢)?+(P,—asing)?+ P2+ 1]2—P,.
A5—H—k—PZ. (10 X y z z
0 (19

This constant satisfies Since this Hamiltonian is time independent, it is a constant of

motion. One can notice thatl is the constantA; (A
=As/mc®) exponent expressed in terms of the new vari-

and ables. ThustX and l5y and the Hamiltonian are three con-
stants. One of these constants is sufficient to prove this time
_ _ that the system is completely integrable. As shown in Refs.
= + =0. ) X
[Ad,As]=2A1l A Asl + 2Rzl Az, As] =0 (12 [6], both integrable and completely integrable systems are
We have:lAsz,A4]=0,[A4,A5]=0, and[A3,A5]=0. Only  nonchaotic. When the constari® and I5y equal zero, the

one of these constants is enough to prove that the systemfgct thatA; and As are constants implies that, P,, and
integrable according to the definition given in Re®)]. This consequentlyb(g=ag/at) are constant. In this case, it is

is important from a practical point of view, as it means thatvew simple to show that trajectories are circles when pro-

trajectories are not sensitive to their initial conditions. acted onto the %.9) bl o =0 P.—0
Let us now introduce the following dimensionless vari- JEcted onto €X.9) plane. One can assunit=0, Py=

ables and parameters: and P,=0, which implies that the electron is at rest on av-
erage in the ,y) plane, and is at rest along tkeaxis, as is
assumed when considering the propagation of circularly po-
= ) larized wave in a plasma. One can then predict that purely
MCwq transverse circularly polarized waves can propagate in a cold
(13)  electron plasma.

[A1,As]=0, [Az,As]=0, [A3,As]=0  (11)

A . H ek
2=koz,Pyy,=——, t=wot,H=y= e’ a

The new Hamiltonian of the charged particle, expressed in

terms of these normalized quantities, is B. Dynamics of a charged particle in an almost circularly
polarized wave
H=[[Py+acogt—2)]?+[ IE’y+ asin(t—2)]2+PZ+1]"2 1. Dynamics of one particle only
(14

The fields are given by
A canonical transformation is introduces, @, ,9,P,,2,P,)

—(%,P4.9,Py,¢,P,), given the type-2 generating function E, = Eo sin(wot—ko2),
[1_416
Fa(%.9,2,P,,P, P, )=5P,+9P,+P,(2-1). (15 Ey=—Eo(1+d)coswot—koz), E,=0,

(20
When one has a type-2 generating functieg(q; E, 1),

whereP; and theQ; are the new coordinates, afgl and the B,=
g; the old ones, the canonical transformations are given by

kOEO
(1 + 5) COS{ wot - koZ) y
@o

_dF(q P koEo
P~ 99 ' Bwa—oSIn(wot—ka), B,=0,
IF,(q P, D) where § is a quantity such thgts|<1. The following gauge
oAt EEL (16)  was chosen:
P,

Consequently, the generating function defined by &&)
yields the canonical transformation

EO ~ EO .
A= w—OCOE(wot— KoZ) &+ w_0(1+ d)sin(wot —Ko2)8, .
(21)

d=2—1. 17 o o S _
The relativistic Hamiltonian of a charged particle in this
The Hamiltonian expressed in terms of the new variables isvave is



4192 A. BOURDIER AND S. GOND PRE 62

2 0.00010 —— T
C2

H=

e
P+ —EO cog wgt —Kgz)
wo

2 Z
+

ek :
Py+ —(1+ §)sin(wot —kq2)
“o 0.00008 1
1/2

X %+ P2c?+ m?c? (22)

-5

This system still has only one degree of freedom. On the one ¢ 08 |
hand,P,, P, (A; andA,), andA; are still constants. On the
other handA; is no longer a first integral. The system is of

course integrable. §=0.1
The normalized Hamiltonian is obtained by introducing NS /

the same dimensionless parameters and variables as in the0.00004 £ \
previous case: /

H=[[P,+acogt—2)]?

0.00002 -
+[Py+a(l+d)sin(t—2)]°+P2+11"2 (23
Performing the canonical transformation defined by the
type-2 generating function given by E(.5), the following 0000 . . l L
autonomous normalized Hamiltonian is obtained: 00 200 00 600 800 At 1000
H=[[Py+acos¢]? FIG. 1.z component of the charged particle for different values
A o an 1w & of & a=3%x107%.
+[Py—a(l+d)sing]°+P;+ 1"~ P,.
(24) .. 1 a?

o . (0)=5 129 (28)
Py, Py, andH are three independent constants in involu-
tion. One of these constants is sufficient to show that this
system is completely integrable. We have verified, by numerically solving the exact equation

Assuming|5|<1 and neglecting terms 6%, Eq. (24) of motion, that the average velocity is indeed proportional to
leads to 6 (Fig. 1. This result shows that the propagation of an al-

most circularly polarized traveling wave can produce a con-
1 stant electron current in a plasma when its density is very
P~ 2f[(1+ a’+ P2+ |5§_A§) low or when the wave has a relativistic intensity.
5
. A . P 2. Cold electron plasma approach
+2P,acos¢—2Pya(1+ d)sing+2a?ssir? ¢]. _
We now show that the propagation of a strong electro-
(25 magnetic wave in a cold electron plasma generates a constant

L ~ A current along the propagation direction of the wave when its
When considering that the constaRigandP, equal to zero, phase velocity is very close to the speed of light in vacuum.

andP,=0 when¢=0, the constant term between parenthe- To describe the propagation of a relativistically strong
ses on the right hand of E@25) is zero, and this equation wave in a cold electron plasma, we start from the Maxwell

becomes and Lorentz equations
p - 220SiT ¢ 26) B
£ 1+a? -’ VXE:_E'
With these hypotheses, the velocity along thaxis of the
charged patrticle is given by
VB 1 JE
. =3 —— Mohev,
. v, P, assit4 , ¢ at 9
YTy T Tiea 7
By averaging ovekp, one finds that the charged particle has V.E=— E(n_ No),

an average velocity along tteaxis: )
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ap 0.0015 7 T T T T T T

EHV V)p=—eE—evXB, v,

wherev andp are respectively the velocity and momentum 0
of the electrons, respectively,is their density and\, is the
one of ions.

All the variables entering into Eq$29) are assumed not
to be functions of space and time separately, but only of the 99
combinationi-r —Vt, wherei is a constant unit vector, and
V a constant. This means that we look for plane wave solu-
tions travelling in the directiom with speedV. Introducing 0.0000 |
the variables

i 2

Y .U I-r V 5, €Ng -0.0005 . . ‘ ‘ ‘ ‘ , ‘ 1

p=—, V=—, 71=t——, B=—, w;= , 00 200 400 600 800 1000 1200 140.0 160.0 180.0 200.0
mc c \Y, c P egm 9

(30

) ) ) FIG. 2. Velocity of the particle along theaxis vsé, compared
after some algebra we find the following wave equations: o the average velocity given by E38) (horizontal solid ling.
5=0.1,a=0.1, andg=1+10".

d?p,  , B BPx
+ =0, 31 Px=Pox COK 6/ @),
) ) Py=Poy Sin(0/ ), (35
G . P By 5 pox andp
q2 ) BW* B wherepo, and o, are constants.

Considering that the wave is almost circularly polarized,
we letPoy=pPox(1+6)(5<1). Itis assumed thdi, is small
B°p, compared t@,, andp,=0 whend=0. The electric field can
ar 2(,3pz Vi+p?)+ ) PNy =0. (319  pe calculated by using the express[dd]
z

While the electron density is given by ap
eE=— 5 gradcpg, (36)
NoV
n=y-iv (32 with py=p?+m?c?. Then, it is consistent to takigy,=a.

Equation(34) leads to
Letting 6= w,(B2—1)" 27, the propagation equations be-

come a25
p,~ Sirt(6l a); 3
- N P, Ty (0] a) (37)
B B (333
de? BY1+p%—p, 0.0015
\L

d2a 34

py+ P Py 0, (33b) 0.0010

d6* " gJ1+p2-p,

0.0005

B (:8 - )pz
z(ﬂp V1+p%)+ 7A:0- (339

des 7 B+ p,
Assuming that the phase velocity is close to the velocity of ;g0 |

lightin vacuum, i.e.8~1, Eq.(330) leads to the fact that the
following quantity is a constant:

10,0008 U
A — 2 A2_n 00 200 400 600 800 1000 1200 1400 160.0 180.0 200.0
As=a“=\1+p"—p,. (34 9

This invariant is the same as the one found in the case of one FIG. 3. Velocity of the particle along theaxis vs 6, compared

particle in an almost circularly polarized wave. It follows to the average velocity given by E¢38) (horizontal solid ling.
from Eqgs.(33a and(33b) that 6=0.1,a=0.1 andg=1+10°.
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FIG. 4. Coordinate system.

as a consequence, the average velocity alongzthris is
again[8]

1 a®

21+a? (38)

<Uz>

This is the same result as in the case of one patrticle.
Equations(33) are solved numerically considering very
low density plasmagit has been assumed thgt=1+¢’
with ¢’ <1). When the phase velocity of the wave is close to
the speed of light in vacuum, Fig. 2 shows the good agree
ment between the numerical solution of E¢R3) and the
average value of, determined analyticallyEq. (38)]. Fig-
ure 3 shows for a slightly higher phase speed velocity tha
the agreement exists only over a very short distance.
According to Eq.(32) the electron density is given by

2

No| 1+ oy Ssir?( 6 39
N~No| 1+ 37z dsin(b/a)|, (39
the following average density increase is created:
A G SN 40
< n> 2 1+a2 0 ( )
The average electron current density is
4@
<]Z> <nUZ> 2 1+a25 (41)

Ill. MOTION OF A CHARGED PARTICLE IN A
CIRCULARLY POLARIZED ELECTROMAGNETIC
TRAVELING WAVE PROPAGATING ALONG A
CONSTANT MAGNETIC FIELD

A. Homogeneous constant magnetic field case

1. The wave is purely circularly polarized
(a) Description of the system. Numerical solution of
Hamilton’s equations.The constant magnetic fie®, is as-
sumed to be along theaxis (Fig. 4). The traveling wave is
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1.0 +

0.0

-1.0

-2.0

(b) 800.0

: I .
0.0 200.0 400.0 600.0

t

FIG. 5. (a) Trajectory of a charged particle initially resonant and
at rest (yo=Q,=1) atXq=¥,=0 (initial values ofx andy) in the
%—¢ plane.a=3x10"3. (b) X component of the charged particle
in the same conditions as those(af.

circularly polarized and has a propagation vedtgiparallel
to By. The fields are given by

Ex=Epsin(wgt—koz), Ey=—Egcogwot—ko2),
E,=0,
B,= ko— cog wot —kg2), By=@ sin(wot—Kkq2),
@ o
B,=By. (42

whereE,, By, wg, andky are constants. The following vec-
tor potential is chosen for the electromagnetic field:

(_

B
+(2°x+

Bo Eo .
A ?y+ w—ocos{wot—koz) ey

Eo . )
w—osm(wot—koz) & . (43
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1.0 T T 400.0 T T T T T
v z
Q=1
3000 |
05 - y 4 \
W
200.0 | 1
0.0 B
1000 F Qp=1.02
05 J
0.00.6_ 200.0 400.0 60;).0 806.0 ’t‘ 10(;0.0
(;;)-1.0 05 00 05 g 10 FIG. 8. Z component of the particle \isfor three values of)g.
Yo=1 anda=3x10 3.
2.0 T T
151 1 The relativistic Hamiltonian for the motion expressed in
MKS units is
1.0 7
ek, eB, \?
05+ AT 1 H:[(Pﬁcos{wotkoz)y) c?
0.0 ‘ 1 2
| | | ek eBy
e +| Py+ —sin(wot—k z)+x)
05t : ( Y wg o "o 2
12
1.0 F X ¢+ P§CZ+ m?c* (44)
A5+ 1
This is a time-dependent Hamiltonian with three degrees of
('é')oo.o 2000 050 5000 : 8000 freedom. Two new dimensionless variables and a new di-

mensionless parameter are now introduced:

FIG. 6. (a) Trajectory of a charged particle that is initially non-
resonant and at resty,=1, Q;=1,01) at X,=y,=0 in theXx—y . wy o eBy
plane.a=3x10"3. (b) X component of the charged particle in the X=X Y=Y QO:F%'
same conditions as those @f.
As it is assumed that the electromagnetic wave propagates in
vacuum Koc/wg=1), the normalized Hamiltonian is ex-

10.0 ' ' - ' pressed in terms of the dimensionless variables and param-
eters defined in the following way:
y
50 F b 10.0 " r T T
8.0
0.0 i
8.0
4.0
-5.0 | .
2,0
-10.0 L L ! 0.0 . . . A .
15.0 10.0 50 0.0 % 5.0 0.0 1000.0 2000.0 3000.0 4000.0 t 5000.0

FIG. 7. Trajectory of a charged particle with a high initial en-  FIG. 9. y vs time for two values ofQ}y. y,=1 anda=3
ergy in thex—¥ plane (yo=7.07).Qy=1, anda=3x10"3. X103,
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. . . Qo \? C3=yP,—xP,+H/wq. 50
Hz[(PXnLacos{t—Z)—?Oy) YT ° 0
It can be noted that the first two constat® andC,/eBy)
12 are canonically conjugate:
(45)

2

+ +P2+1

. PR VT
Py+asm(t—z)+7x

C11 =1. (51)

C

The canonical equations are solved numerically using a eBy
fourth order Runge-Kutta method. Figures 5—7 show differ- . )
ent types of trajectories. When the particle is initially at rest"MoNg the_se_ three_constants of motion, one cannot find two
and resonant, it spirals outward in the plane perpendicular t§onstants in involution:
the z axis (Fig. 5. When the particle is initially nonresonant
_anc_i at rest, it spirals ou'gwar(_j ar_ld inyva(ﬁjg_. 6). When th_e [C;,C3]=C,, [C,,C3]=-C;. (52)
initial energy of the particle is high, its trajectory is a circle
(Fig. 7). Thez component of the particle strongly depends onAnother constant of motion is given by
the initial mismatch with the resonance condition; for a given
finite time the final energy reached by the particle is greater C,=C2+C2 (53)
in the resonant case than in any nonresonant ¢Rise 8). a
Figure 9 compares the Lorentz factor variation of the particlerhjs satisfies the relation
versus time in a resonant case to a nonresonant one.

(b) First demonstration of the integrability of the prob-
lem. The Hamilton equations allow us to readily find two [C4,C5]=2C4[Cy,C3]+2C,[C;,C5]=0. (54)

constants of motiof12]: A constant of motion can be found very simply, as above, by

integratingdH/dt= (wqy/kg) P,, it gives

e
Cl: PX+ ;Boy,
2 wo
Cs=H-—P,. (55
Ko
eBy
Co=Py——x. (46) |t satisfies the relations
A third constant of motion can be obtained by using Noet- [C,,C5]=0, [C,,C5]=0, (56)
her's theoren{10,12. If the Lagrangian is invariant under
the infinitesimal transformation and consequently
t—t+eg(t,r), [C4,Cs]=0. (57)
It also satisfies
r—r+eu(t,r), (47)
wheree is an infinitesimal, then a constant of motion is [C53,C5]=0. (58)
ﬂ Ut L=v- ﬂ g (48) As C3, C4, andCjy are three independent constants in invo-
av v lution, the system is integrable according to the definition

given in Sec. | and in Ref$6].

(c) Reduction to a two-dimensional problem, second dem-
onstration of the integrability of the problenin the normal-
'%zed variables, the constants of motion correspondinG4o
andCs are

where L=—-mc?\1-v?/c?—eA-v is the relativistic La-
grangian, andv the velocity of the charged particle. It is
simple to show that the Lagrangian of the system is invarian
under the following transformations:

t—t—elwg, észyﬁx_j‘(ﬁy+ﬂ,
X—X+ey, észl:l—lsz. (59
y—y—eX, (49

Those corresponding t6,; andC, are

Z—Z.

Therefore, a third constant of motion is Ci=Py+ 7)’,
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o ﬁ QO,\ . o P2
Co=Py——%; (60) $=Q1~ g,
they satisfy
. Py
~ ~ y: QZ_ Q_v
[C1,Ca]=0Qp. (62) 0
; ; L 1
By using this property, we can show that the system can be PXZE(QoQ2+ P,), (67)

described by a time-dependent Hamiltonian with two degrees
of freedom. To do so, let us choose the two consténtand

Cz (one must be normalized Ky ,) as new momentum and
coordinate conjugatgl2]. We choose a first canonical trans-

formation, &,9,P,,P,)— (X,¥,Py,P,), defined by the fol-

.~ 1
PyZE(Qle"' P2).

lowing type-2 generating function: In terms of these variables, one has
0 - G .
F2=(PX— SV |%+Pg. (62) Q=g P=Ca (68)
This yields the canonical transformations and the new Hamiltonian is
X=X,
9=y, H={[(P;+acogt—2))]2+[Q¢Q;+asint—2)]?
P ¢) +P2+1)12 69
PP 22, 63 . .
The constants of motion corresponding @ and Cs are
. o~ Qg now
y=Py= 57X
~ ~ VT P% ‘QO 2
In these variablesC,; andC, become =H- 20, 2 & (70
C,=P,, and
C,=P,— Q¢x. (64) A=H=P:. 7y

Then we introduce a second canonical transformation, KX=0. th o bl h h ical
(7<37,'~3x,ﬁy)ﬁ(Ql,Qz,PLPz), generated by As [K,A]=0, the system is integrable. Then the canonica

transformation Q;,P;,2,P,)—(Q,,P;,¢,P,), generated

P >y
Fo=(Py+ QeR)y+ Py X+ Q—Z) (65) . o
0 F2(Q1,2,P1,P;,1)=Q1P1+P,(2-1), (72)
and yielding is performed, yielding
P -
yle_Q_Z’ bp=2—1. (73
The Hamiltonian becomes
- Py
y=Qe Qo' H=[(P;+acos$)?+(Q,Q;—asing)?+P2+112-p,.
(74)
Px=Q0Q2, (66)
One must point out that this is the expressio\oéxpressed
ﬁy:Qle_ in terms of the new variables. The Hamiltonian is now time-

independent and the system has a constant of motion. The

The resulting transformation, which is the product of the twoinvariant obtained by using Noether's theorem written in

transformations, is given by

these variables is
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K=H+P PL_ Do, 75 Q=22 sirf () + 81+ sing
=H+ z 2_%_ 7Q11 ( ) 1 QO g ‘Q’O
which is in involution withH. As a consequence, the system @ F&b(r)cos{a(f)— o(r)— ¢(7)]dr. (81)
is completely integrable. Qo Jo

(d) Equation for the energy of the particle and another R

way to show the system can be solved by quadratufes. The quantitiesA, and & are determined, so that, &&0,

equations of Hamilton derived from E(4) are AS= 75— P~ 1=pZ+ D, and tans=Pyo/p,o (p=p/mc,
and p is the momentum of the partigleThe subscript O
. o appended to variableg and p refers to their initial values.

P1=——(Q¢Q;—asing), This formal solution shows that when the particle has an

Y initial normalized energyy, large compared ta (Ay>a),

the trajectory of the particule is an ellipse in tklg —P;

.1 plane which is transformed into a circle in the-§ plane
le;(P1+acos¢), according to Eqs(67). Equations(81) are now substituted

into the equation forI'DZ [Egs. (76)], to obtain a nonlinear
integro differential equation

ﬁzzg(Pl sing+ QyQ; Cose), (76)

A

PZ=%AO sia (1) + ¢(1) + 8]

az (. R R
- —f d(7)cod[a(t)+ o(t)]—[o(7)+ (1) ]}d7.
Y Jo

Introducing the variables

(82
61=Q1—a/(10 sing, Let us now consi<_1|er the synchronpus case only. In terms
of the original coordinates the condition for resonance is
P,=P,+acosg, (77) eB,
wo_koz_ m_y:o (83)

and the complex quantitZ=P;+iQ,Q;, the two first . T o .
equations of HamiltodEgs. (76)] are equivalent to the fol- Th|s condition |mpI|§s that the |n.var|ant defmeq by E55) .
lowing equation is such asCs=eByc/wy [13]. This means that if the parti-

cule is initially resonant, it remains resonant all the time. In
terms of the new coordinates, this condition becomes

. 1QeZ . )
Z= —iagexp —ig¢), (78
Y . Qp
L . : : ¢+—=0. (84)
which is the equation of a nonlinear oscillator under the ac- Y
tion of an external force. Formally, the solution of this equa- .
tion can be written Integrating this expression from O togives
$(1)+ (1)~ $o=0, (85)

Z=A,expi[o(f)+ 5]—iaft;z;(T)expi[a(E)—o(T)
0 N
where ¢ is the value of¢ at t=0. Then Eq.(82) becomes

—¢(7)]dT, (79)
whereA, and § are real constants, and yy=aAysinfy+a’o(t), (86)
. with 6y= ¢y+ 6. Equation(86) can be divided byy and
cr(t)=00f dry (7). (80) integrated between 0 aridto give
0
Then ahAy a2

Y= 70=Q—05i” foo (1) + ZQO[U(f)]Z- (87)
P,=A,cod o(t)+ 8]—acose

t . - Theno(t) is calculated from Eq(86) and substituted in Eq.
+a O(;b(T)SIr’[O'(t)—O'(T)—(;b(T)]dT, (87). We obtain
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FIG. 10. Comparison of the evolution gfwhen the particle is
initially resonant obtained with the exact equatidisg)s. (76)] or
Eqg. (94) and the asymptotic solutiofEg. (95)]. y,=Q,=1, and
a=3x10"3

(7)?+V(7)=0, (88)

where
20032 [(aAgsinby)—20qy0a?]

V(y)= 5 v

(89
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FIG. 11. Comparison between two numerical solutions derived

through the exact equations of moti¢solid lineg to their corre-

sponding asymptotic solutioffiong dashed linésEy=10° V/m and

f=10GHz @#9.337x 10 %).

B A\ 2/3 4 \12 \2s
'yz—z 3X > {( 1+ 27A2) —1)
4 \Y2 \a3 o o\23
+ (1+ﬁ2) +1 _§(K +1t. (99

This expression, substituted into Eq81) and (82), shows
that, at least in the resonant case, the solution can be ex-

Equation(88) describes motion in the one-dimensional well pressed in terms of quadratures according to Kozlov and

defined by V(y). Letting a=2Q04a?% B=/(aA,sinby)?
—200y8° and (= \Jay+ B, it reads[15]

2(£%- B)d=¢,a?dt, (90)

where e,;=*1. Considering that, is the value of{ att
=t,, this equation is trivially integrated to give

2 , 2 , o
30-2B0= 58320t era¥ (i1, (9D

This expression can be expressed in term&oh T. As Bis

Kolesnikov. AsA goes tox in the limit whent—o, the
asymptotic form of the solutiofEq. (94)] is

y~(3Q0a?) %25, (95

The comparison between this solution and the exact one is
performed in Fig. 10.

Equations(84) and (95) lead to the following asymptotic
expression fof:

2=1-(3Q0a%) V&34 2, (96)

always negative when the charged patrticle is resonant, one

can consider that—3(B/\?)=1; that is to say, A

=£,+/3| 8|, with e,= +1. Then Eq(91) takes the canonical

form

T3+ T+A=0, (92

where

3g,0?

A=—sz<—3ﬂ)‘3’z[z8—3ﬂ§o+ >—(t=to)|. (93

whereZ, is the value ofz att=0.
Equationg81) and(85) provide the following asymptotic
expressions foP; andQ;:

P1=Aocod ¢o— #(1)+ 8)] —a{cosp+[ ¢(1)

— polsing (1)},

_Ao . ~ a . ~
Ql—Q—OSW[¢o—¢(t)+ o)+ Q—O{Sln¢—[¢(t)

Equation(92) can be easily solved. Hence the exact expres-

sion for the normalized energy of the particle is

— polcose(1)}. (97)
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FIG. 12. Evolution of the total energy, compared to the lon-
gitudinal energyy, and the transverse energy,. (yo=Qq=1).
Eo=10°V/m andf=2.5GHz @~3.735< 10 ?).

#(1) is given by Eqs(80), (85), and(95):

2\ —1/3
a) tu3

¢<E>=¢o—(5 o (98)

Taking into account the resonance condition, the equation for |

ISZ [Eqg. (82)] becomes

2

. a . a ~
pZ:;Aosm((j)O—i-ﬁ)—7[¢(t)_¢0]v (99
which leads to
) 6| 13 A 9 W
0
(100

whereP,, is the value ofP, att=0. The asymptotic trajec-
tory in the physical space is given by E@67).

. ) s
4000 6000 8000 10000

t

FIG. 13. Evolution ofy for different values of5. The solid line
is for 6=0. yo=0Q,=1 anda=3x10"3,
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In Fig. 11, the asymptotic evolutions & and I5Z are
compared to those when calculated numerically through the
exact equations of motion. Assuming that the charged par-
ticle has a velocity close to the speed of light in vacuum, we
have

z~ct. (101

If the charged particle is initially at rest, the Lorentz factor
can be expressed as a functionzof

(3 eR 2/3
The energy gained by a particle in a linear accelerator is the
product of axial electric field and distance

(102

ek
N’

At the same field strength, the efficiency of the linear accel-

(103

16 +

Y

12

0 2000 4000 6000 8000 10000

L I L
4000 6000 8000 10000

0 2000 ~
(b) t

FIG. 14. y vs time: (a) The solid line corresponds ta= 3.3
x10 2 and =0, and the triangles correspondae-3x 10 2 and
8=0.2. (b) The solid line corresponds ta=3x10"2 and 6=0,
and the circles correspond #o=6x 10 % and 6= — 1.
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erator for an electron is the same as the one associated with 1© ;
the synchronous solutiony& y, ), when[16] Tp

Lys

(104

For examplez, =2.3m for Eo=10° V/m. This shows that
the cyclotron resonance accelerator is competitive only if a
very short acceleration distance is requested. Moreover, one

must note that, over a short distance, the transverse accelera: , |

tion in the x-y plane is more efficient than the longitudinal
one(Fig. 12.

2. The wave is almost circularly polarized
The fields are given by

EX: EO S|n( (vot_ koZ),

Ey=_E0(1+ 5)C0£{a)0t—k02), EZZO,

I(OEO
BX: o (1+ 5)Cosw0t_koz),
0

kOEO .
By:w_o S|n( (l)ot - koZ), BZ: Bo, (105)

where é is defined in the same way as for E@RO0).

¥

20 -

0 0.5 1 L5
Z (m)
FIG. 15. y vs zwhen the patrticle is initially resonant and at rest.

Eo=10"V/m and f=25GHz @~3.735<10 %) when the mag-
netic field is linearly increasingl( '=0.5m%) after z.=0.4m

0 015 i li5 z (m) 2

FIG. 16. y, vs z when the particle is initially resonant and at
rest. E,=10" V/m and f=25GHz @~3.735<10 ?), when the
magnetic field is linearly increasingL(1=0.5m) after z
=0.4 m(solid line), compared to the case when the magnetic field
is homogeneouflong dashed ling

The normalized Hamiltonian is obtained by introducing
the same dimensionless parameters and variables as above

H=

. L Q|
Px+acos(t—z)—7y

2
+P2+1

1/2
+

. o~ Qg
Py+a(1+6)3|n(t—z)+7x

(106)

It can be easily checked th&t;, C,, andCg are still con-
stants of the motion.

The canonical transformation defined by E@) is used
again in order to reduce the number of degrees of freedom of
the system. The new Hamiltonian is

Yz

20

0 . . ;
0 0.5 1 15 2

z (m)

FIG. 17. y, vs z when the particle is initially resonant and at
rest. E,=10" V/m and f=25GHz @~3.735<10°?), when the
magnetic field is linearly increasingL(1=0.5m) after z

(solid line), compared to the case when the magnetic field is homo=0.4 m(solid line), compared to the case when the magnetic field

geneouglong dashed ling

is homogeneouflong dashed ling
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20

0 0s I 0 z(m) 2 0 05 1 15 z(m) 2

FIG. 18. y vszwhen the particle is initially resonant and at rest.  F|G. 20. ¥p Vs z when the particle is initially resonant and at
Eo=10"V/m and f=25GHz (@~3.735<10 %) when the mag- rest. E,=10f V/m and f=25GHz @~3.735<10"1), when the
netic field is linearly increasingL("*=2m™") after 2z=04m  magnetic field is linearly increasingL({1=3.5m %) after z,
(solid line) compared to the case when the magnetic field is homo-= .4 m (solid line), compared to the case when the magnetic field

geneouglong dashed ling is homogeneoudong dashed ling
g:{[(PlJracos(f_z))]z This Hamiltonian is a constant, as it does not explicitly de-
pend on time. The system now has two degrees of freedom,
+[QoQ +a(l+ 8)sin(t—2) ]2+ P2+1}12 and a set of only four coupled equations has to be solved

numerically. It has been checked numerically that, even
(107 \when s+ 0, the synchronous solution is still possilil€ig.
13). The energy of the particle versus time is compared to
Then the canonical transformation defined by Etp) is  the one when the wave is purely circularly polarized and has

performed. The Hamiltonian becomes the same Poynting vect@Figs. 14a) and 14b)]. It has been
shown numerically that when one hag(1+ 6/2)=a.,

wherea,. anda, are the parameterin the almost circularly
_ polarized case and in the circularly polarized one, respec-
H={(P;+acos¢)’ tively the evolution of the charged particle’s energy is the
same. Consequently, at the same power, an almost circularly
polarized wave is as effective to accelerate a particle as a
(108  Ppurely circularly one.

+[QoQ—a(1+ 8)sing]?+ P2+ 1}12—P,.

25 T T T T

¥

125

20
100

75 F

50 -

25+

0

0 015 1 115 Z(m) 2

FIG. 19. y vs zwhen the particle is initially resonant and at rest.  FIG. 21. y vs z when the particle is initially at restE,
Eo=10%V/m and f=25GHz @~3.735<10"1) when the mag- =10"V/m and f=25GHz (@~3.735<10"?) when the magnetic
netic field is linearly increasing with. " '=3.5m! after z,  field is linearly increasingl("*=0.5m?) after z,=0.4 m (solid
=0.4m (solid line), compared to the case whén'=5 m™! and line), compared to the case when the magnetic field is homogeneous
z.=0.4 (dashed ling and when the magnetic field is homogeneous(long dashed line Cases when the particle is initially resonant
(long dashed ling (Q9=1) and nonresonan{),=1.02) are considered.
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FIG. 24. Normalizedz component of the magnetic field wsn
the case of some magnetic field gradie®=0.5m and d
=0.25m.

have a high velocity component along thexis and in the
plane perpendicular to this axis at the same time. The other
point is that over such a short distance the final energy
reached is not very sensitive to inaccuracies in the initial
conditions. Then the particle is immersed in a magnetic field
gradient in order to obtain a very high energy on a short
distance.

Let us first consider such a constant honhomogeneous
magnetic field

i

(b) 0 040‘01 0.002 0.(;03 OA(;04 z (m) 0.005

z—z
FIG. 22.(a) y vs zwhen the particle is initially resonant and at Bo(r)=Bo|1+eY(z—2) % &—eY(z—2)
rest. E,=10" V/m and f=2x10" Hz (a~46.68) when the mag-
netic field is linearly decreasind_& 0.5 m) afterz.=0.4 m (solid By . R
line) compared to the case when the magnetic field is homogeneous XS0 (xet+yey), (109
(circles. (b) y vs zwhen the particle is initially resonant and at rest.

Eo=2%x10"V/m and f=10°Hz (a~1.867) when the magnetic _ . - . .
field is linearly decreasingl(=10"3m) after z,=10"*m (solid Whereg._tsol de(Z)Il O_'f'l \((tr'f’ tfhel dHea"!S'de f””Ct'OJ'ZC IS
line), compared to the case when the magnetic field is homogeneo&‘sOme IStance, a =+ \Ine Nield can Increase or decrease
(circles. whenz>z.). The magnetic field should satisfy

B. Circularly polarized wave traveling along a V-B=0 (110
non-homogeneous constant magnetic field

Let us take advantage of the fact that the synchronougnd
resonance is an efficient acceleration mechanism over a short
distance only, as was shown above. More precisely, by short V XB=0. (111
distances we mean distances such that the transverse energy

of the particle is about the same as the longitudinal one. Thghe magnetic field given by Eq109 does not satisfy Eq.
idea is to use this mechanism first, so that the particle may111) at z=z.. This is because of the discontinuity intro-
duced by the Heaviside function. This discontinuity has no
physical meaning, and is thought not to affect the existence
R of the acceleration mechanism.

In this case the vector potential is

0 Z
«—> B E
2 A=| — ﬂy"’ —Ocos{wot—koz))éx
2 (l)o
- - 2t PGt —k z))éy (112
FIG. 23. Helmoltz coils. 2 o 0 0 '




4204 A. BOURDIER AND S. GOND PRE 62

N
35 F Pe
-
-
Qo=1_ .-
-
- =3
3 /// 0
-
//
///
257 7 Qp=1
-
-
~
-
I
2 e
e
//
// QO = 3
w5t 7 o AV
y /e ~~ e \\\ et \\\
NS N N
\
1 : v LY . Y
0 0.02 0.04 0.06 0.08 z (m) 0.1

FIG. 26. y vs z when the particle is initially at restEg
=10"V/m and f=10° Hz (a~0.933) when the magnetic field is
the one of the Helmoltz coils withR=10"3m and d=0.5
%102 m (solid line), and when the magnetic field is homogeneous
(long dashed line Cases when the particle is initially resonant
(Qo=1) and nonresonan{X,=3) are considered.

(v, is the velocity in the plane perpendicular to thexis,

andB,, is the radial constant magnetic figldDver the dis-
tance along the axis considered in Figs. 15-21, it can be
checked numerically that the effect of this force is over-
whelmed by thesv | B force (B is the magnetic field of the
wave). When these calculations are run for longer times, the
charged particle goes backward along thaxis after some
distance, as the average force in #direction, acting on the
particle, becomes more and more negative. It has been
shown numerically that, when one has a positive linear mag-
netic field gradient, the additional acceleration is due mainly
to theev,Bq, (v, is the component of the velocity along the
d=0.25 m(solid ling), and when the magnetic field is homogeneousZ axis) transverse force, Whlch is much gfeater than that in
(long dashed ling (b) ¥ vs zwhen the particle is initially resonant the homogeneous magne_tlc field case. .Flgl.”e 16 shows the
and at restE,= 10 V/m andf=10° Hz (a~0.933) when the mag- transverse energy, and Flg._ 17 th_e Io_ngltudlnal one. In each
netic field is the one of the Helmoltz coils witR=10"3m and  CaS€, the energy reached finally is higher when some mag-
d=0.5x10"3m (solid line) and when the magnetic field is homo- Netic field gradient is taken into account. When the gradient
geneouglong dashed ling is strong enough, its effect can be positive up to a certain
distance and become negative afterwafdg. 18. Figure 19

Using the same dimensionless variables and parameters 80ws, for another of the electric field magnitude, the range

before, a normalized Hamiltonian can be built to describe th@f magnetic field gradients which leads to a positive effect.
system Figure 20 displays, for the same electric field, the very im-

portant gain obtained in transverse energy. The fact that an
5 increasing linear gradient can be used to diminish the effect
H:[( B +acogi—2)— QOZ,S/) of inaccuracies in the initial conditions is shown in Fig. 21.
X 2 When the magnetic field decreases linearly after some dis-
tancez.(e=—1), theev,B, force kicks the charged par-
(113 ticle forward in thez direction, but this force is not sufficient
' to beget the additional acceleration shown in the growing
magnetic field case. The other forces are not high enough
whereQ y,=eBy,/Mwg. compared to those one has in the homogeneous magnetic
For a given increasing magnetic field gradient, Fig. 15field to increase the acceleration. At this point, it must be
shows the normalized energy of the particle versu®m-  mentioned that we have considered thg{=0 whenz>z_
pared to the one obtained by using the simple synchronous L in order not to let the magnetic field become negative.
resonance only. It must be pointed out that when the particl&till, even if the additional acceleration process did not exist
is introduced to the nonhomogeneous magnetic field domainn the domain that we have explordgl, is assumed to be in
it is kicked backward along the axis by theev, By, force  the range 19-10° V/m and the frequency in the range

1

0
(b)

0.002 0.004 0.006 0.008 z (m ) 0.01

FIG. 25. (a) vy vs zwhen the particle is initially resonant and at
rest. E,=10" V/m and f=2%x10" Hz (a~46.68) when the mag-
netic field is the one of the Helmoltz coils witR=0.5m and

2 1/2
+ +P2+1

2 AN QOZ,\
Py+asin(t—2)+ TX
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10°-10° Hz, another very interesting phenomenon takes IV. CONCLUSIONS
place. It has been found numerically that, when the magni-
tude of the electric field is high enough, the particle is accely
erated just as if the synchronous interaction regime contin
ued up to a distance of about five times the constan
magnetic field gradient lengifwith an accuracy of about 5%
in most cases The rough inequality

It has been shown that, in an almost circularly polarized
raveling wave, a charged particle can have a constant aver-
age velocity along its propagation direction using the Hamil-
fonian formalism. In a cold electron plasma, the wave equa-
tions derived by Akhiezer and Polovin permit one to show
that this effect is relevant only when the electron densities
are low compared to the nonrelativistic critical density or

Eo=3%x10 °Lf2 (V/m), (1148  when the intensity of the wave is relativistically very strong.
Still, with the help of the Hamiltonian formalism, the
must be satisfied whea>1. Parameter, plays no part in  proplem of relativistic motion of a charged particle in a con-

this condition. When 0-4a<1, the inequality stant homogeneous magnetic field and a transverse circularly
polarized traveling wave has been studied. The integrability
Eq=1.35<10 °Lf? (V/m), (114b of this problem was shown in two different ways. Noether’s

theorem was applied to find a constant of motion of the
must be verified whez,=2XL. Whena<0.4 andz,;=2.5 system. Then two other integrals were derived; these three

X L, one has to satisfy invariants are independent and in involution with each other.
This is sufficient to prove integrability, since this problem
Eo=6.74x10"10L 2 (V/m). (1149  has three degrees of freedom. Then, using canonical trans-

formations, we reduced the system to a time-dependent one
Figures 22a) and 22b) illustrate these results in two cases. with two degrees of freedom. It has a constant of motion,
Moreover, it has been verified that the good agreement bewhich is the one found previously using Noether’s theorem.
tween the two evolutions of is improved when inequalities Another one is the resonance condition, when the value of

(114) are amply verified. the constant is calculated with resonant initial conditions. As
Let us now consider the magnetic field produced by Helthese two constants are independent and in involution, we
moltz coils, have shown a second time that the problem is integrable. We

have also proved that the system can be solved by quadra-
— _ _ tures in the resonant case. This consists of deriving and solv-
Bo,=BoR*{[(d—2)*+ R?] *2+[(d+2)*+ R?] 3, ing an equation for the energy.
(119 The problem of an almost circularly polarized wave

where A is the distance between the two coiR,is the Propagating along a constant homogeneous magnetic field
radius of each coilBy is the magnetic field created by one has also been discussed. It was shown that the synchronous

X . 0 9 " y. solution still exists. A condition to obtain the same particle
coil at its center, and measures the position on the axis of

symmetry of the two coilSFig. 23. In order to have an energy evolution as in the pure circular polarization case was

. o . ._also given.
almost uniform magnetic field over a short distance, the dis- . . .

o New acceleration mechanisms have been described when
tance between the two coils is assumed to be equal to tr}

radius of each coil. The charged particle is considered to béﬁe charged patrticle is first accelerated for a short distance by

initially resonant and at rest at0. In such a case. Fig. 24 dsing the synchronous resonance, and then introduced to a
y . L » 719 region where the magnetic field is no longer homogeneous
shows the normalized magnetic field versug, andf are

assumed to be in the same range as above, Vit sup- and exhibits a very steep linearly growing magnetic field.

posed to be in the range 18-1 m. The additional accelera- n@ver a short distance the final energy reached can be much

fion or which exists when the maanetic field aradi igher than if the magnetic field were homogeneous all the
tlon process ch exists when the magnetic Tield gracie ay. It has also been shown that when a particle is resonant

?;‘ge' r-g]ri Eﬁmgleeﬁeiczeler?ées gé?;;lg'ea; gt}getr&?‘gﬂiﬂgtant magnetic field gradient, the magnitude of the electric
el w 9 us up ' u M&Rald is higher than some threshold, then the particle is accel-

the radius of the' .COiIS with roughly the same accuracy AZrated just as if the magnetic field were homogeneous.
above. The condition These acceleration mechanisms are also very important,

as the synchronous interaction regime is very sensitive to

Eo=2.25x107 R f* (V/m), (11638 inaccuracies in the initial conditions for long distance accel-
erations. Using magnetic field gradients allows one to dimin-
whena>1, or ish the strong influence of the inaccuracies in the initial con-
ditions of the charged particle. Thus a spatial cyclotron
Eg=2.25<10 °Rf? (V/Im), (116b accelerator using a magnetic field gradient is realistic.

whena<1 must be satisfied. This is displayed, in one case,

in Figs. 2%a) and 2%b). The effect on the initial conditions

is shown in Fig. 26. The authors wish to thank Professor J. M. Buzzi for valu-
able discussions, and are very grateful to Dr. J. H. Eggert for
reading and improving the English of the manuscript.
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