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Abstract 

We investigate the fluctuations induced by irrationality in simple games with a large number of 
competing players. We show that Nash equilibria in such games are "weakly" stable: irrationality 
propagates and amplifies through players' interactions so that huge fluctuations can result from a 
small amount of irrationality. In the presence of multiple Nash equilibria, our statistical approach 
allows to establish which is the globally stable equilibrium. However, characteristic times to reach 
this state can be very large. 

Game theory [1] provides strategical thinking for modern economics and socio- 

political decisions. It has been an active research subject, in the economist 's  com- 
munity, in the past half  century. Extremely refined analysis is now being preformed, 

however, there is growing frustration recently [2] that such studies prove to be far too 
idealized as to deal with the real world in economics. One of  the main pitfalls lies 

in the fact that the assumption of  rationality makes game theory deterministic. On the 
other hand, we know that the economic world is characterized by large fluctuations. 
These fluctuations are, for obvious reasons, of  great interest for people in economics. 

They are now inspiring great interest also among physicists; it has been realized [3] 
that economic systems share scaling and self-organized critical behaviors with more 

traditional subjects in statistical physics. 
In real world irrationality is ubiquitous. This gives us reason to use physics tools to 

include it in game theory. Strikingly we find that irrationality propagates and amplifies 
through player 's  interactions and it can lead to huge fluctuations, growing with the 
number of  players. This shows that irrationality is indeed a "relevant parameter", which 

should be included in game theory. 
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A game is defined as a mathematical model for optimal strategies among competing 
players. Typically a player has a utility function depending on the strategies of all the 
players. In this paper we will limit ourselves to the so-called complete information 
games where every player is aware of all other players' strategies and benefits. Under 
the basic assumption of rationality of all players, solutions in game theory are given 
by Nash equilibria of  all players' strategies. The nature of a Nash equilibrium differs 
qualitatively from that of an equilibrium state in statistical mechanics. Nash equilibria 
do not result from just the maximization or minimization of some global function (such 
as e.g. the free energy in statistical mechanics) but rather from the requirement that 
each player's strategy must simultaneously be a local maximum with respect to his 
own strategy. Loosely speaking, in game theory there is not a unique Hamiltonian, 
but rather each player has his own Hamiltonian to minimize. The interactions among 
players need not be symmetric and their goals may be in conflict with one another. 
Finally Nash equilibria gives an exact deterministic answer in the sense that it includes 
no fluctuations. In parallel with statistical mechanics, one could say that game theory 
is a "zero temperature" theory similar to ground states. The aim of this paper is to 
include "thermal" fluctuations in game theory through the Langevin approach. For any 
realistic game, this issue is of utmost importance since no player can have infinitely 
precise actions. The "zero temperature" nature of game theory, resulting from complete 
rationality, was indeed recently questioned [2]. We show that the effects of fluctuations, 
in standard games of a large number of competing players, can be quite dramatic and 
that they characterize the stability of Nash equilibria. 

The simplest, economy motivated model of game theory was introduced by Cournot 
in 1838 [4]: 2 finns produce quantities xl and x2, respectively, of a homogeneous 
product. The market-clearing price of the product depends, through the law of demand- 
and-offer, on the total quantity X = x l  +x2 produced: P ( X ) = a -  bX. The larger X 
the smaller P is. The model assumes that the cost of  producing a quantity xi is cxi 
and c <a.  The finns choose their strategies (i.e. xi) with the goal to maximize their 
profit (utility): ui =xi[P(xl + x2) - c]. The problem is to find xi assuming that both 
finns behave rationally. The best response x*(x2) of firm 1 to any given strategy x2 of 
firm 2 is obtained by maximizing UI(Xl ,X2)  with respect to xl with fixed x2. Firm 2, 
assuming that 1 behaves rationally (i.e. that it will play x?(x2) whatever x2 is) will 
choose x~ which maximizes u2(x~(x2),x2). This leads to x* =x~ = ( a -  c)/3b. This 
solution highlights the essential point of the concept of Nash equilibrium [5], which 
applies also to more general games. 

In a situation with n players, we consider 

ui = x iV (X l  ÷ "'" ~- X i ÷ "'" q- Xn ) . (1) 

In general, one requires that V(X) be a decreasing function of X. This describes, apart 
from a demand-and-offer law, also situations where the gain of each player depends on a 
common resource. As X =x~ + . . -+xn grows, the resource is depleted (V(X) decreases). 
V(X) can eventually turn negative for X>X0: the resource has been exhausted and 
production gives rise to negative benefit for all the players. Generally one has V ~  - 
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n - I V  (V I denotes derivative here and below) as a consequence of  the fact that each xi 

have an effect 1In on a global quantity V. We shall consider -~x~ <xi < vc. A negative 
xi is a quantity that, instead of  being produced and sold, is bought by player i. We 

shall also discuss briefly the effects of  the constraints xi > 0. 
Technically, the Nash equilibrium is obtained by solving 

~ u i ( x L  . . . . .  x,,) = 0  Vi. (2) 
Xi x, =x~ Vj 

This equation contains the maximization of  the utility of  player i and his expectation 

that all other players will do the same [6]. For the generalized Cournot model with n 

firms, a - c = 1 and b = 1/n (i.e. V = 1 - X/n),  Eq. (2) gives the Nash equilibrium 

n t/ 
xi=x,v  :- and u i -  (3) 

n + l  ( n + l )  2" 

Note that ui is of  order l/n: the common resource is nearly exhausted V_~0 due to 

the aggressive strategies xi ~- 1. 
It is interesting to compare the above to the case where each player acts to maximize 

the total utility U(xl . . . . .  x , ) =  ~ i U i  . I n  this case xi is given by ~U/('.ri=O and the 
1 and ui result is quite different: xi = 5  = ~. Strikingly the profit of  each player in this 

case is a factor n larger than in the previous case! 
This is a typical lesson [7] of  game theory: when each player acts to maximize his 

own utility ui, the global utility is very small. The global utility is maximized when 

all players have a common goal. This is very similar to the dynamics in statistical me- 

chanics where all degrees of  freedom evolve to optimize an Hamiltonian. The maximal 
utility state, in spite of  being "socially" better (everybody behaves less aggressively 

and receives a better payoff), is unfortunately never achieved since incentives to cheat 
are large. This fact will emerge clearly from the analysis of  fluctuations. 

In the Nash equilibrium instead, everybody is more aggressive (larger xi) and per 
player benefit is much more meager. The crucial features which makes this state more 

relevant than the social one is its stability: The Nash equilibrium is stable because each 
player has no incentive to cheat since an over-aggressive move (x~ > . rx )  would hurt 
the player himself. 

It is important to note that the Nash equilibrium can be reached dynamically, like 

for example in a repeated game where the players adjust their strategies according to 
the gradient: (?tx~ : ~uj/~x~. This observation suggests that a "finite temperature" can 

be included in the system, by considering the kangevin-like equation (in suitable units 

of  time): 

(?U i 
(~'tXi : ?X i @ •i, (4) 

where q~(t) is gaussian noise with (r l i ( t ) )=0 and (q i ( t ) r l j ( t ' ) )=D6~, /6( t -  t'). D, in 
the statistical mechanics analogy, plays the role of  a finite temperature. 

If ui is given by Eq. (1), it is possible to find the stationary state distribution P(x).  
Indeed, since V depends only on X = ~ i x i ,  it is convenient to perform an orthonormal 
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transformation in the space spanned by X=(X1,...,X/7) into Y = ( Y l  . . . . .  y/7) in such 
a way that y , = X / v ~ .  The Gram-Schmidt method [8] then gives y k = ( ~ i < ~ k x i -  
kxk+l)/kv/-k-~ + 1) for k<n .  

In the new variables, the dynamics reads 

(?,Yk = V~Yk + Ok, 1 <~k < n ,  (5) 

~?,y, = x/-nV + Vtyn -~- On, (6) 

and, by orthonormality ( Oi( t )Oj( t' ) ) = D6i, j6( t - t' ). 
This transformation has the virtue of  displaying the statistical dependence of the 

variables in a natural way. Since V and V ~ depends on y/7 only, y/7 has a dynamics 
which is independent of  the Yk, whereas each yk is coupled to yn. Therefore the 

stationary distribution can, in general, be expressed as P ( y ) =  P(y/7)[Ik<n P(YklY,,), 
where P(Yk lY/7) is the distribution of Yk conditional to y~. Eq. (6) describes a "particle" 
in a potential with thermal fluctuations and can be solved using standard techniques 
[9]. The same holds for Eq. (5), where y/7 appears as a parameter. We find P(y)  o~ 
exp [-H/D] and 

V' /7-1 Vy/7 n -  1 Y'/ 
H -  2 Z Y~ x~ ~ ~/~ j d x V ( v / - n x ) "  (7) 

k = l  0 

This form of the stationary distribution is reminiscent of an equilibrium system with 
Hamiltonian H. It would however be misleading to identify - H  with some measure 

of  the utility U. This stationary state has a completely dynamic origin. 
The equilibrium distribution, for D small, can be expanded around its maximum. 

The maximum of H(y)  is attained at y~=6k,  nx/~XN, in agreement with Eq. (3). 
The gaussian fluctuations around the Nash equilibrium are found in the standard way: 
Expand H ( y )  up to second order in ~Yk = Yk - Y* The inverse of the matrix of  k "  

the quadratic form, yields the fluctuations (6ykfyj) .  In view of Eq. (7), one finds 
(6ykfYj)=fk, jD/[V' I for k<n .  Note that since I V ' [ ~ n - I ,  these fluctuations are of  

order n. Because of these huge fluctuations, we shall call Yh- "soft modes". The fluc- 
tuations of  Yn instead turn out to be of  order 1. One can infer the fluctuations of  the 
xi's by using the identity 

/7 n 

= ( 8 )  

i=1 k - I  

and assuming (6xi6xj) = (A - C)6i.j + C. We discuss here only the case V = 1 - X/n 
which allows more compact expressions. The same features discussed below apply to 
any V(x) such that V ' ~  - n  - l .  Observing that (y]) =A + ( n -  1)C, and using Eq. (8) 
one finds 

(6x2i) _ 2n z + n - 2 2n + 1 
2(n + 1 ) D, (6xi(Sxj) - 2 ( n - - +  1)D" (9) 
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The main message of Eq. (9) is that fluctuations around the Nash equilibrium are 

very strong: The relative fluctuation of xi, given that the average of xi is close to one, 
is proportional to x/-nD. This depends on the fact that ] V ' l ~ n  1, which is a very 
general feature in large games of the form (1). The variable x; fluctuates the same 

order of magnitude as the sum of xi over all i = 1 . . . . .  n. This is possible because of 

the negative correlation among the variables. A fluctuation of one of the variables is 
compensated by opposite fluctuations of the others. 

Let us see what happens to the total utility. This is best seen in the variables yk, 

because U = v ~ y n V ( x / ~ y ~ )  depends only on y,.  Therefore expanding U up to second 
order around y* and taking the average, we find 

n 2 nD 
( u ) -  - -  ( i o )  

( n + l )  2 n + l  ' 

where, again we assumed V ( X ) =  1 - X / n .  As can be easily seen, the fluctuations 
decrease the utility by a term 6U ~ - D  and they can have a dramatic effect: If  

D >D,. _~ 1 the average utility becomes negative! 

With respect to the dynamics, it is easy to check that the correlation function of the 
"soft" modes Yk, in the steady state for the linear V(x),  is 

(yk ( t )yk ( t  + Z)) --~ nD e x p ( - r / n ) ,  (11) 

which implies very long correlation times in the stationary state. This applies to the 

correlations of xi as well. 

The features discussed thus far hold the same if the constraint xi > 0 is imposed. 
The fluctuation around the Nash equilibrium Eq. (3), at the level of the Gaussian 
approximation are still given by the above results. These characterize correctly the 

neighborhood of the Nash equilibrium. The corrections to the gaussian fluctuations are 
negligible when (~X i is much less than xx, which occurs for D <~n - j .  Numerical sim- 

ulations show that, even for larger D, the same qualitative features (large fluctuations 

and eventually U < 0 )  hold also in the presence of the constraint xi >0.  
It is instructive to study the "social" equilibrium in the same way. Now each player 

attempts to maximize the total utility U, and the Langevin equation is ~txi = ?U,/~?x; + 

qi. In the variables y we find: ? ~ y n = v ~ V  + nynV; + Vln and #yk=Ok for k < n .  

Note that Yk non' behave as random walks. The distribution of Yk at long times is 
P(y, t) ~ exp [ -yZ / (ZDt)]  and the correlations are ( y 2 ) = D t  for k <n  and (6y 2} ~ D. 

This implies unbounded fluctuations of xi (i.e. (~x 2) ~_Dt) and a negative correlation 
(6xi6xi)/(6x2i) -+ - 1/(n - 1) such that the fluctuations of the sum X are finite. This 
implies that the average utility remains finite. The absence of a stationary distribution 
in the "social equilibrium" reflects its instability. 

The results generalize with little qualitative changes when one considers a more 
general correlation among qi or a mixed "social" egoistic model. These and other 
generalizations, as well as more detailed calculations, will be presented in a forthcoming 
publication. 
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It is generally recognized in economy that in realistic situations the relation between 
the utility and wealth (net profit) is not linear [11]. One source of  non-linearity, for ex- 

ample, is inefficiency in capital management. This can be tolerated by the rich whereas 

it is very dangerous for the poor. Most studies [11] assume empirically a quadratic 
relation [12]. This, assuming xiV as a measure of  the wealth of  player i, leads to 

ui = xi V(X)[1 - rxi V(X)] .  (12) 

Let us define ~ =X/n and assume that V = 1 - ~ (with little loss of  generality since 
non-linearities in V do not change qualitatively the results). The interesting feature of  

this model is that if  r > 2  a new Nash equilibrium appears. Indeed 

c~ui x,= ~ ( n +  l y c ) [ 1 2 r Y ( 1 - Y c ) ] = O ,  (13) 
~X i ~ l -- n 

for r~>2, has three solutions: YC=XN, the usual Nash equilibrium Eq. (3), YC=Xr = ( r -  
• v / ~ - 2 ) ) / 2 r ,  which is a new Nash equilibrium, and $ = x + = ( r  + x / ~ - 2 ) ) / 2 r ,  
which is an unstable equilibrium (i.e. a minimum of  the utility). Provided 2 < r  <n/2, 
one has Xr<X+ <XN. The utility in the new equilibrium is ui(xj =xr, V j ) =  1/(4r) 

which is positive and finite as compared to that at XN which is O(1/n). In the presence 

of  two equilibria a player will choose one or the other according to what he judges 
other players will do. 

Situations with more than one stable solution are frequent and of  great interest in 

economy [2]. In particular one would like to know under what conditions a state is 

selected. The framework of  Langevin dynamics (4) is particularly appealing. Indeed 
as we shall see it allows to understand which state is globally stable and how long a 

transition from the other state into it will take. 
From Eq. (4) we can derive the equation for Y: 

~?tJ= 1--~XX [ 1 - - 2 r ~ ( 1 - - ~ ) ] +  n~ ~ x ~ - - n Y  2 + g  1. (14) 
i = l  

Here O is the average of  r/i, i.e. it is a white noise with equal time correlation Din. 
In spite o f  the fact that all xi appear in Eq. (14), it is still useful to use the variables 
Yk- Indeed one can use the identity (8) and average over the degrees of  freedom Yk in 
Eq. (14). This amounts to replacing the term in brackets by (n - l ) (y2] :~ )  [13] which is 
the average of  y~ conditional to a fixed ~. In order to close the equations, we assume 
that in the Langevin equation for Yk, 

O t y k =  - -  2r(1 - -  ~ ) 2  jr_ Yk Jr- n ~ k ~ f f T = l )  Z X2 - kX2+l q- Ok" 
i=1 

We can neglect the second term in the right-hand side. This can be justified by the 
expectation that this term is negligible for n >>1 if x~ ~ X~' The equation for Yk then 
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simplifies considerably and one finds that, in the steady state, 

Dn 
{3;2]x)=4nr(1 - ~ ) 2 + 2 '  (15) 

This, in Eq. (14), gives (to leading order in n) 

x,v £~ i'D(I - ~ )  
,~,.~ = - - [ 1 - 2 r ~ ( 1  - ~ ) ]  + + O, (16) 

xx 4nr( 1 _y)2 + 2  

which can be cast in the form ~£--  -dH,/dZ + O, where - H L ? )  is the integral of  the 

deterministic part of  Eq. (16). Since (f l( t)q(t '))=(D/n)f(t  t'), the stationary solution 

is P(£) ~ exp [-nHC?)/D ]. Here H plays the role of  a free energy. Indeed it has 

the form H - E -  TS where T = D/n is the analogous of  the temperature and S is the 

entropy. The entropy enters from the fluctuations of  the degrees of  freedom ),a. which 

have been self-consistently retained in the equation for £. Let us discuss, from this 

point of  view, the statistics of.~" in the steady state: Fixing E ( x + ) =  0, the energy in 

the two equilibrium states are, to leading order in n, 

E(xx ) = 2 r - 3 - 4 r ( r - 2 ) x r  + O(n_t ) ' 
24r 

E(x,.) = ~ ( r - 2 ) ( 1  -2x, .)  + O(n I) .  

9 9 Therefore E(x,v)<E(x,.) in the interval 2 ~ < r < ~  whereas E(xN)>E(x,.) for r > ~ .  It 

is important to stress that this energy cannot be interpreted as - U .  Indeed note that 
9 the minimum energy is at x,¥ for 2 ~<r< ~, whereas the maximum utility U is always 

at x,.. 
Energy alone suggests therefore that the system will fall in the rninimum energy 

minimum for t--~ ec, and this, in the limit n--~ ~ ,  is x,v for r < ~  and x,. for r >  ?- 

This conclusion holds to leading order in n even if one considers also the entropy. 

The reason is that, for n--~ oc, one is considering very small temperatures T - D / n .  
Direct calculation shows that S ( x , v ) -  ( logn) /4  + O(n -2) while S(x,.)-- [log(2rx, 

I )]/4 + O(n - I ) .  The entropy in xx is considerably larger than that in x,.. Indeed the 

fluctuations of  Yk are o f  order x/n in xx, whereas in x, they are finite [see Eq. ( I 5)]. 
/v  2 i \ the set {x~} is much more widely spread in the In other words, since (bx~/_~ \~k - /, 

xx minimum than in the x,- one. And this is an effect which is correctly accounted by 

the entropy above. 

Even though we can identify a globally stable equilibrium (xx for r <  4 and x,. 

otherwise) which will ultimately attract the system under the Langevin dynamics, it 

is important to stress that the other metastable equilibrium can be stable over times 
which are exponentially large in n. Indeed the energy barrier between the two minirna 

is tinite, but the temperature is very small T ~ D/'n. If r > ~  and initially the system 

is in the xx equilibrium, it will not visit the state x~. before a time of  the order of  
exp [nE(xx)/D]. This time can be infinite for all practical purposes. In other words, 

the system is very sensible to initial conditions. 
We have presented a general approach to extend game theory to include fluctuations. 

We used the Langevin formulation which provides a natural bridge between game 
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theory and statistical mechanics. The essential difference is that individual utility func- 
tions replace a global Hamiltonian. Fluctuations describe in a natural way the stability 
nature of various equilibria. We find that the Nash equilibrium of simple games with 
competition is stable against thermal fluctuations, even though the amplitude of fluctu- 
ations is very large. On the contrary, the "socially ideal" state is marginally unstable 
due to the presence of "soft modes". The approach also allows to study situation with 
more than one Nash equilibria and identifies the globally stable one as well as the 
criteria under which a state is reached by the dynamics. 

This work was supported in part by the Swiss National Foundation under grant 
20-40672.94/1. 
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